Merge git://git.infradead.org/hdrinstall-2.6
[deliverable/linux.git] / arch / parisc / kernel / firmware.c
1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h> /* for boot_cpu_data */
72
73 static DEFINE_SPINLOCK(pdc_lock);
74 static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
76
77 #ifdef __LP64__
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80
81 /* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
85
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
89 *
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95 */
96
97 #ifdef __LP64__
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101
102 #ifdef __LP64__
103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109
110
111 /**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef __LP64__
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128 #endif
129 return address;
130 }
131
132 /**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef __LP64__
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150 #endif
151 }
152
153 /**
154 * set_firmware_width - Determine if the firmware is wide or narrow.
155 *
156 * This function must be called before any pdc_* function that uses the convert_to_wide
157 * function.
158 */
159 void __init set_firmware_width(void)
160 {
161 #ifdef __LP64__
162 int retval;
163
164 spin_lock_irq(&pdc_lock);
165 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
166 convert_to_wide(pdc_result);
167 if(pdc_result[0] != NARROW_FIRMWARE)
168 parisc_narrow_firmware = 0;
169 spin_unlock_irq(&pdc_lock);
170 #endif
171 }
172
173 /**
174 * pdc_emergency_unlock - Unlock the linux pdc lock
175 *
176 * This call unlocks the linux pdc lock in case we need some PDC functions
177 * (like pdc_add_valid) during kernel stack dump.
178 */
179 void pdc_emergency_unlock(void)
180 {
181 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
182 if (spin_is_locked(&pdc_lock))
183 spin_unlock(&pdc_lock);
184 }
185
186
187 /**
188 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
189 * @address: Address to be verified.
190 *
191 * This PDC call attempts to read from the specified address and verifies
192 * if the address is valid.
193 *
194 * The return value is PDC_OK (0) in case accessing this address is valid.
195 */
196 int pdc_add_valid(unsigned long address)
197 {
198 int retval;
199
200 spin_lock_irq(&pdc_lock);
201 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
202 spin_unlock_irq(&pdc_lock);
203
204 return retval;
205 }
206 EXPORT_SYMBOL(pdc_add_valid);
207
208 /**
209 * pdc_chassis_info - Return chassis information.
210 * @result: The return buffer.
211 * @chassis_info: The memory buffer address.
212 * @len: The size of the memory buffer address.
213 *
214 * An HVERSION dependent call for returning the chassis information.
215 */
216 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
217 {
218 int retval;
219
220 spin_lock_irq(&pdc_lock);
221 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
222 memcpy(&pdc_result2, led_info, len);
223 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
224 __pa(pdc_result), __pa(pdc_result2), len);
225 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
226 memcpy(led_info, pdc_result2, len);
227 spin_unlock_irq(&pdc_lock);
228
229 return retval;
230 }
231
232 /**
233 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
234 * @retval: -1 on error, 0 on success. Other value are PDC errors
235 *
236 * Must be correctly formatted or expect system crash
237 */
238 #ifdef __LP64__
239 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
240 {
241 int retval = 0;
242
243 if (!is_pdc_pat())
244 return -1;
245
246 spin_lock_irq(&pdc_lock);
247 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
248 spin_unlock_irq(&pdc_lock);
249
250 return retval;
251 }
252 #endif
253
254 /**
255 * pdc_chassis_disp - Updates chassis code
256 * @retval: -1 on error, 0 on success
257 */
258 int pdc_chassis_disp(unsigned long disp)
259 {
260 int retval = 0;
261
262 spin_lock_irq(&pdc_lock);
263 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
264 spin_unlock_irq(&pdc_lock);
265
266 return retval;
267 }
268
269 /**
270 * pdc_chassis_warn - Fetches chassis warnings
271 * @retval: -1 on error, 0 on success
272 */
273 int pdc_chassis_warn(unsigned long *warn)
274 {
275 int retval = 0;
276
277 spin_lock_irq(&pdc_lock);
278 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
279 *warn = pdc_result[0];
280 spin_unlock_irq(&pdc_lock);
281
282 return retval;
283 }
284
285 /**
286 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
287 * @pdc_coproc_info: Return buffer address.
288 *
289 * This PDC call returns the presence and status of all the coprocessors
290 * attached to the processor.
291 */
292 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
293 {
294 int retval;
295
296 spin_lock_irq(&pdc_lock);
297 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
298 convert_to_wide(pdc_result);
299 pdc_coproc_info->ccr_functional = pdc_result[0];
300 pdc_coproc_info->ccr_present = pdc_result[1];
301 pdc_coproc_info->revision = pdc_result[17];
302 pdc_coproc_info->model = pdc_result[18];
303 spin_unlock_irq(&pdc_lock);
304
305 return retval;
306 }
307
308 /**
309 * pdc_iodc_read - Read data from the modules IODC.
310 * @actcnt: The actual number of bytes.
311 * @hpa: The HPA of the module for the iodc read.
312 * @index: The iodc entry point.
313 * @iodc_data: A buffer memory for the iodc options.
314 * @iodc_data_size: Size of the memory buffer.
315 *
316 * This PDC call reads from the IODC of the module specified by the hpa
317 * argument.
318 */
319 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
320 void *iodc_data, unsigned int iodc_data_size)
321 {
322 int retval;
323
324 spin_lock_irq(&pdc_lock);
325 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
326 index, __pa(pdc_result2), iodc_data_size);
327 convert_to_wide(pdc_result);
328 *actcnt = pdc_result[0];
329 memcpy(iodc_data, pdc_result2, iodc_data_size);
330 spin_unlock_irq(&pdc_lock);
331
332 return retval;
333 }
334 EXPORT_SYMBOL(pdc_iodc_read);
335
336 /**
337 * pdc_system_map_find_mods - Locate unarchitected modules.
338 * @pdc_mod_info: Return buffer address.
339 * @mod_path: pointer to dev path structure.
340 * @mod_index: fixed address module index.
341 *
342 * To locate and identify modules which reside at fixed I/O addresses, which
343 * do not self-identify via architected bus walks.
344 */
345 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
346 struct pdc_module_path *mod_path, long mod_index)
347 {
348 int retval;
349
350 spin_lock_irq(&pdc_lock);
351 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
352 __pa(pdc_result2), mod_index);
353 convert_to_wide(pdc_result);
354 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
355 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
356 spin_unlock_irq(&pdc_lock);
357
358 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
359 return retval;
360 }
361
362 /**
363 * pdc_system_map_find_addrs - Retrieve additional address ranges.
364 * @pdc_addr_info: Return buffer address.
365 * @mod_index: Fixed address module index.
366 * @addr_index: Address range index.
367 *
368 * Retrieve additional information about subsequent address ranges for modules
369 * with multiple address ranges.
370 */
371 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
372 long mod_index, long addr_index)
373 {
374 int retval;
375
376 spin_lock_irq(&pdc_lock);
377 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
378 mod_index, addr_index);
379 convert_to_wide(pdc_result);
380 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
381 spin_unlock_irq(&pdc_lock);
382
383 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
384 return retval;
385 }
386
387 /**
388 * pdc_model_info - Return model information about the processor.
389 * @model: The return buffer.
390 *
391 * Returns the version numbers, identifiers, and capabilities from the processor module.
392 */
393 int pdc_model_info(struct pdc_model *model)
394 {
395 int retval;
396
397 spin_lock_irq(&pdc_lock);
398 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
399 convert_to_wide(pdc_result);
400 memcpy(model, pdc_result, sizeof(*model));
401 spin_unlock_irq(&pdc_lock);
402
403 return retval;
404 }
405
406 /**
407 * pdc_model_sysmodel - Get the system model name.
408 * @name: A char array of at least 81 characters.
409 *
410 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
411 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
412 * on HP/UX.
413 */
414 int pdc_model_sysmodel(char *name)
415 {
416 int retval;
417
418 spin_lock_irq(&pdc_lock);
419 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
420 OS_ID_HPUX, __pa(name));
421 convert_to_wide(pdc_result);
422
423 if (retval == PDC_OK) {
424 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
425 } else {
426 name[0] = 0;
427 }
428 spin_unlock_irq(&pdc_lock);
429
430 return retval;
431 }
432
433 /**
434 * pdc_model_versions - Identify the version number of each processor.
435 * @cpu_id: The return buffer.
436 * @id: The id of the processor to check.
437 *
438 * Returns the version number for each processor component.
439 *
440 * This comment was here before, but I do not know what it means :( -RB
441 * id: 0 = cpu revision, 1 = boot-rom-version
442 */
443 int pdc_model_versions(unsigned long *versions, int id)
444 {
445 int retval;
446
447 spin_lock_irq(&pdc_lock);
448 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
449 convert_to_wide(pdc_result);
450 *versions = pdc_result[0];
451 spin_unlock_irq(&pdc_lock);
452
453 return retval;
454 }
455
456 /**
457 * pdc_model_cpuid - Returns the CPU_ID.
458 * @cpu_id: The return buffer.
459 *
460 * Returns the CPU_ID value which uniquely identifies the cpu portion of
461 * the processor module.
462 */
463 int pdc_model_cpuid(unsigned long *cpu_id)
464 {
465 int retval;
466
467 spin_lock_irq(&pdc_lock);
468 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
469 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
470 convert_to_wide(pdc_result);
471 *cpu_id = pdc_result[0];
472 spin_unlock_irq(&pdc_lock);
473
474 return retval;
475 }
476
477 /**
478 * pdc_model_capabilities - Returns the platform capabilities.
479 * @capabilities: The return buffer.
480 *
481 * Returns information about platform support for 32- and/or 64-bit
482 * OSes, IO-PDIR coherency, and virtual aliasing.
483 */
484 int pdc_model_capabilities(unsigned long *capabilities)
485 {
486 int retval;
487
488 spin_lock_irq(&pdc_lock);
489 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
490 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
491 convert_to_wide(pdc_result);
492 *capabilities = pdc_result[0];
493 spin_unlock_irq(&pdc_lock);
494
495 return retval;
496 }
497
498 /**
499 * pdc_cache_info - Return cache and TLB information.
500 * @cache_info: The return buffer.
501 *
502 * Returns information about the processor's cache and TLB.
503 */
504 int pdc_cache_info(struct pdc_cache_info *cache_info)
505 {
506 int retval;
507
508 spin_lock_irq(&pdc_lock);
509 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
510 convert_to_wide(pdc_result);
511 memcpy(cache_info, pdc_result, sizeof(*cache_info));
512 spin_unlock_irq(&pdc_lock);
513
514 return retval;
515 }
516
517 /**
518 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
519 * @space_bits: Should be 0, if not, bad mojo!
520 *
521 * Returns information about Space ID hashing.
522 */
523 int pdc_spaceid_bits(unsigned long *space_bits)
524 {
525 int retval;
526
527 spin_lock_irq(&pdc_lock);
528 pdc_result[0] = 0;
529 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
530 convert_to_wide(pdc_result);
531 *space_bits = pdc_result[0];
532 spin_unlock_irq(&pdc_lock);
533
534 return retval;
535 }
536
537 #ifndef CONFIG_PA20
538 /**
539 * pdc_btlb_info - Return block TLB information.
540 * @btlb: The return buffer.
541 *
542 * Returns information about the hardware Block TLB.
543 */
544 int pdc_btlb_info(struct pdc_btlb_info *btlb)
545 {
546 int retval;
547
548 spin_lock_irq(&pdc_lock);
549 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
550 memcpy(btlb, pdc_result, sizeof(*btlb));
551 spin_unlock_irq(&pdc_lock);
552
553 if(retval < 0) {
554 btlb->max_size = 0;
555 }
556 return retval;
557 }
558
559 /**
560 * pdc_mem_map_hpa - Find fixed module information.
561 * @address: The return buffer
562 * @mod_path: pointer to dev path structure.
563 *
564 * This call was developed for S700 workstations to allow the kernel to find
565 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
566 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
567 * call.
568 *
569 * This call is supported by all existing S700 workstations (up to Gecko).
570 */
571 int pdc_mem_map_hpa(struct pdc_memory_map *address,
572 struct pdc_module_path *mod_path)
573 {
574 int retval;
575
576 spin_lock_irq(&pdc_lock);
577 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
578 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
579 __pa(pdc_result2));
580 memcpy(address, pdc_result, sizeof(*address));
581 spin_unlock_irq(&pdc_lock);
582
583 return retval;
584 }
585 #endif /* !CONFIG_PA20 */
586
587 /**
588 * pdc_lan_station_id - Get the LAN address.
589 * @lan_addr: The return buffer.
590 * @hpa: The network device HPA.
591 *
592 * Get the LAN station address when it is not directly available from the LAN hardware.
593 */
594 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
595 {
596 int retval;
597
598 spin_lock_irq(&pdc_lock);
599 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
600 __pa(pdc_result), hpa);
601 if (retval < 0) {
602 /* FIXME: else read MAC from NVRAM */
603 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
604 } else {
605 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
606 }
607 spin_unlock_irq(&pdc_lock);
608
609 return retval;
610 }
611 EXPORT_SYMBOL(pdc_lan_station_id);
612
613 /**
614 * pdc_stable_read - Read data from Stable Storage.
615 * @staddr: Stable Storage address to access.
616 * @memaddr: The memory address where Stable Storage data shall be copied.
617 * @count: number of bytes to transfert. count is multiple of 4.
618 *
619 * This PDC call reads from the Stable Storage address supplied in staddr
620 * and copies count bytes to the memory address memaddr.
621 * The call will fail if staddr+count > PDC_STABLE size.
622 */
623 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
624 {
625 int retval;
626
627 spin_lock_irq(&pdc_lock);
628 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
629 __pa(pdc_result), count);
630 convert_to_wide(pdc_result);
631 memcpy(memaddr, pdc_result, count);
632 spin_unlock_irq(&pdc_lock);
633
634 return retval;
635 }
636 EXPORT_SYMBOL(pdc_stable_read);
637
638 /**
639 * pdc_stable_write - Write data to Stable Storage.
640 * @staddr: Stable Storage address to access.
641 * @memaddr: The memory address where Stable Storage data shall be read from.
642 * @count: number of bytes to transfert. count is multiple of 4.
643 *
644 * This PDC call reads count bytes from the supplied memaddr address,
645 * and copies count bytes to the Stable Storage address staddr.
646 * The call will fail if staddr+count > PDC_STABLE size.
647 */
648 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
649 {
650 int retval;
651
652 spin_lock_irq(&pdc_lock);
653 memcpy(pdc_result, memaddr, count);
654 convert_to_wide(pdc_result);
655 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
656 __pa(pdc_result), count);
657 spin_unlock_irq(&pdc_lock);
658
659 return retval;
660 }
661 EXPORT_SYMBOL(pdc_stable_write);
662
663 /**
664 * pdc_stable_get_size - Get Stable Storage size in bytes.
665 * @size: pointer where the size will be stored.
666 *
667 * This PDC call returns the number of bytes in the processor's Stable
668 * Storage, which is the number of contiguous bytes implemented in Stable
669 * Storage starting from staddr=0. size in an unsigned 64-bit integer
670 * which is a multiple of four.
671 */
672 int pdc_stable_get_size(unsigned long *size)
673 {
674 int retval;
675
676 spin_lock_irq(&pdc_lock);
677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
678 *size = pdc_result[0];
679 spin_unlock_irq(&pdc_lock);
680
681 return retval;
682 }
683 EXPORT_SYMBOL(pdc_stable_get_size);
684
685 /**
686 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
687 *
688 * This PDC call is meant to be used to check the integrity of the current
689 * contents of Stable Storage.
690 */
691 int pdc_stable_verify_contents(void)
692 {
693 int retval;
694
695 spin_lock_irq(&pdc_lock);
696 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
697 spin_unlock_irq(&pdc_lock);
698
699 return retval;
700 }
701 EXPORT_SYMBOL(pdc_stable_verify_contents);
702
703 /**
704 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
705 * the validity indicator.
706 *
707 * This PDC call will erase all contents of Stable Storage. Use with care!
708 */
709 int pdc_stable_initialize(void)
710 {
711 int retval;
712
713 spin_lock_irq(&pdc_lock);
714 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
715 spin_unlock_irq(&pdc_lock);
716
717 return retval;
718 }
719 EXPORT_SYMBOL(pdc_stable_initialize);
720
721 /**
722 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
723 * @hwpath: fully bc.mod style path to the device.
724 * @initiator: the array to return the result into
725 *
726 * Get the SCSI operational parameters from PDC.
727 * Needed since HPUX never used BIOS or symbios card NVRAM.
728 * Most ncr/sym cards won't have an entry and just use whatever
729 * capabilities of the card are (eg Ultra, LVD). But there are
730 * several cases where it's useful:
731 * o set SCSI id for Multi-initiator clusters,
732 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
733 * o bus width exported is less than what the interface chip supports.
734 */
735 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
736 {
737 int retval;
738
739 spin_lock_irq(&pdc_lock);
740
741 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
742 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
743 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
744
745 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
746 __pa(pdc_result), __pa(hwpath));
747 if (retval < PDC_OK)
748 goto out;
749
750 if (pdc_result[0] < 16) {
751 initiator->host_id = pdc_result[0];
752 } else {
753 initiator->host_id = -1;
754 }
755
756 /*
757 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
758 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
759 */
760 switch (pdc_result[1]) {
761 case 1: initiator->factor = 50; break;
762 case 2: initiator->factor = 25; break;
763 case 5: initiator->factor = 12; break;
764 case 25: initiator->factor = 10; break;
765 case 20: initiator->factor = 12; break;
766 case 40: initiator->factor = 10; break;
767 default: initiator->factor = -1; break;
768 }
769
770 if (IS_SPROCKETS()) {
771 initiator->width = pdc_result[4];
772 initiator->mode = pdc_result[5];
773 } else {
774 initiator->width = -1;
775 initiator->mode = -1;
776 }
777
778 out:
779 spin_unlock_irq(&pdc_lock);
780 return (retval >= PDC_OK);
781 }
782 EXPORT_SYMBOL(pdc_get_initiator);
783
784
785 /**
786 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
787 * @num_entries: The return value.
788 * @hpa: The HPA for the device.
789 *
790 * This PDC function returns the number of entries in the specified cell's
791 * interrupt table.
792 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
793 */
794 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
795 {
796 int retval;
797
798 spin_lock_irq(&pdc_lock);
799 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
800 __pa(pdc_result), hpa);
801 convert_to_wide(pdc_result);
802 *num_entries = pdc_result[0];
803 spin_unlock_irq(&pdc_lock);
804
805 return retval;
806 }
807
808 /**
809 * pdc_pci_irt - Get the PCI interrupt routing table.
810 * @num_entries: The number of entries in the table.
811 * @hpa: The Hard Physical Address of the device.
812 * @tbl:
813 *
814 * Get the PCI interrupt routing table for the device at the given HPA.
815 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
816 */
817 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
818 {
819 int retval;
820
821 BUG_ON((unsigned long)tbl & 0x7);
822
823 spin_lock_irq(&pdc_lock);
824 pdc_result[0] = num_entries;
825 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
826 __pa(pdc_result), hpa, __pa(tbl));
827 spin_unlock_irq(&pdc_lock);
828
829 return retval;
830 }
831
832
833 #if 0 /* UNTEST CODE - left here in case someone needs it */
834
835 /**
836 * pdc_pci_config_read - read PCI config space.
837 * @hpa token from PDC to indicate which PCI device
838 * @pci_addr configuration space address to read from
839 *
840 * Read PCI Configuration space *before* linux PCI subsystem is running.
841 */
842 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
843 {
844 int retval;
845 spin_lock_irq(&pdc_lock);
846 pdc_result[0] = 0;
847 pdc_result[1] = 0;
848 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
849 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
850 spin_unlock_irq(&pdc_lock);
851 return retval ? ~0 : (unsigned int) pdc_result[0];
852 }
853
854
855 /**
856 * pdc_pci_config_write - read PCI config space.
857 * @hpa token from PDC to indicate which PCI device
858 * @pci_addr configuration space address to write
859 * @val value we want in the 32-bit register
860 *
861 * Write PCI Configuration space *before* linux PCI subsystem is running.
862 */
863 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
864 {
865 int retval;
866 spin_lock_irq(&pdc_lock);
867 pdc_result[0] = 0;
868 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
869 __pa(pdc_result), hpa,
870 cfg_addr&~3UL, 4UL, (unsigned long) val);
871 spin_unlock_irq(&pdc_lock);
872 return retval;
873 }
874 #endif /* UNTESTED CODE */
875
876 /**
877 * pdc_tod_read - Read the Time-Of-Day clock.
878 * @tod: The return buffer:
879 *
880 * Read the Time-Of-Day clock
881 */
882 int pdc_tod_read(struct pdc_tod *tod)
883 {
884 int retval;
885
886 spin_lock_irq(&pdc_lock);
887 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
888 convert_to_wide(pdc_result);
889 memcpy(tod, pdc_result, sizeof(*tod));
890 spin_unlock_irq(&pdc_lock);
891
892 return retval;
893 }
894 EXPORT_SYMBOL(pdc_tod_read);
895
896 /**
897 * pdc_tod_set - Set the Time-Of-Day clock.
898 * @sec: The number of seconds since epoch.
899 * @usec: The number of micro seconds.
900 *
901 * Set the Time-Of-Day clock.
902 */
903 int pdc_tod_set(unsigned long sec, unsigned long usec)
904 {
905 int retval;
906
907 spin_lock_irq(&pdc_lock);
908 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
909 spin_unlock_irq(&pdc_lock);
910
911 return retval;
912 }
913 EXPORT_SYMBOL(pdc_tod_set);
914
915 #ifdef __LP64__
916 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
917 struct pdc_memory_table *tbl, unsigned long entries)
918 {
919 int retval;
920
921 spin_lock_irq(&pdc_lock);
922 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
923 convert_to_wide(pdc_result);
924 memcpy(r_addr, pdc_result, sizeof(*r_addr));
925 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
926 spin_unlock_irq(&pdc_lock);
927
928 return retval;
929 }
930 #endif /* __LP64__ */
931
932 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
933 * so I guessed at unsigned long. Someone who knows what this does, can fix
934 * it later. :)
935 */
936 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
937 {
938 int retval;
939
940 spin_lock_irq(&pdc_lock);
941 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
942 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
943 spin_unlock_irq(&pdc_lock);
944
945 return retval;
946 }
947
948 /*
949 * pdc_do_reset - Reset the system.
950 *
951 * Reset the system.
952 */
953 int pdc_do_reset(void)
954 {
955 int retval;
956
957 spin_lock_irq(&pdc_lock);
958 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
959 spin_unlock_irq(&pdc_lock);
960
961 return retval;
962 }
963
964 /*
965 * pdc_soft_power_info - Enable soft power switch.
966 * @power_reg: address of soft power register
967 *
968 * Return the absolute address of the soft power switch register
969 */
970 int __init pdc_soft_power_info(unsigned long *power_reg)
971 {
972 int retval;
973
974 *power_reg = (unsigned long) (-1);
975
976 spin_lock_irq(&pdc_lock);
977 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
978 if (retval == PDC_OK) {
979 convert_to_wide(pdc_result);
980 *power_reg = f_extend(pdc_result[0]);
981 }
982 spin_unlock_irq(&pdc_lock);
983
984 return retval;
985 }
986
987 /*
988 * pdc_soft_power_button - Control the soft power button behaviour
989 * @sw_control: 0 for hardware control, 1 for software control
990 *
991 *
992 * This PDC function places the soft power button under software or
993 * hardware control.
994 * Under software control the OS may control to when to allow to shut
995 * down the system. Under hardware control pressing the power button
996 * powers off the system immediately.
997 */
998 int pdc_soft_power_button(int sw_control)
999 {
1000 int retval;
1001 spin_lock_irq(&pdc_lock);
1002 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1003 spin_unlock_irq(&pdc_lock);
1004 return retval;
1005 }
1006
1007 /*
1008 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1009 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1010 * who knows what other platform firmware might do with this OS "hook".
1011 */
1012 void pdc_io_reset(void)
1013 {
1014 spin_lock_irq(&pdc_lock);
1015 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1016 spin_unlock_irq(&pdc_lock);
1017 }
1018
1019 /*
1020 * pdc_io_reset_devices - Hack to Stop USB controller
1021 *
1022 * If PDC used the usb controller, the usb controller
1023 * is still running and will crash the machines during iommu
1024 * setup, because of still running DMA. This PDC call
1025 * stops the USB controller.
1026 * Normally called after calling pdc_io_reset().
1027 */
1028 void pdc_io_reset_devices(void)
1029 {
1030 spin_lock_irq(&pdc_lock);
1031 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1032 spin_unlock_irq(&pdc_lock);
1033 }
1034
1035
1036 /**
1037 * pdc_iodc_putc - Console character print using IODC.
1038 * @c: the character to output.
1039 *
1040 * Note that only these special chars are architected for console IODC io:
1041 * BEL, BS, CR, and LF. Others are passed through.
1042 * Since the HP console requires CR+LF to perform a 'newline', we translate
1043 * "\n" to "\r\n".
1044 */
1045 void pdc_iodc_putc(unsigned char c)
1046 {
1047 /* XXX Should we spinlock posx usage */
1048 static int posx; /* for simple TAB-Simulation... */
1049 static int __attribute__((aligned(8))) iodc_retbuf[32];
1050 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1051 unsigned int n;
1052 unsigned int flags;
1053
1054 switch (c) {
1055 case '\n':
1056 iodc_dbuf[0] = '\r';
1057 iodc_dbuf[1] = '\n';
1058 n = 2;
1059 posx = 0;
1060 break;
1061 case '\t':
1062 pdc_iodc_putc(' ');
1063 while (posx & 7) /* expand TAB */
1064 pdc_iodc_putc(' ');
1065 return; /* return since IODC can't handle this */
1066 case '\b':
1067 posx-=2; /* BS */
1068 default:
1069 iodc_dbuf[0] = c;
1070 n = 1;
1071 posx++;
1072 break;
1073 }
1074
1075 spin_lock_irqsave(&pdc_lock, flags);
1076 real32_call(PAGE0->mem_cons.iodc_io,
1077 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1078 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1079 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1080 spin_unlock_irqrestore(&pdc_lock, flags);
1081 }
1082
1083 /**
1084 * pdc_iodc_outc - Console character print using IODC (without conversions).
1085 * @c: the character to output.
1086 *
1087 * Write the character directly to the IODC console.
1088 */
1089 void pdc_iodc_outc(unsigned char c)
1090 {
1091 unsigned int n, flags;
1092
1093 /* fill buffer with one caracter and print it */
1094 static int __attribute__((aligned(8))) iodc_retbuf[32];
1095 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1096
1097 n = 1;
1098 iodc_dbuf[0] = c;
1099
1100 spin_lock_irqsave(&pdc_lock, flags);
1101 real32_call(PAGE0->mem_cons.iodc_io,
1102 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1103 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1104 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1105 spin_unlock_irqrestore(&pdc_lock, flags);
1106 }
1107
1108 /**
1109 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1110 *
1111 * Read a character (non-blocking) from the PDC console, returns -1 if
1112 * key is not present.
1113 */
1114 int pdc_iodc_getc(void)
1115 {
1116 unsigned int flags;
1117 static int __attribute__((aligned(8))) iodc_retbuf[32];
1118 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1119 int ch;
1120 int status;
1121
1122 /* Bail if no console input device. */
1123 if (!PAGE0->mem_kbd.iodc_io)
1124 return 0;
1125
1126 /* wait for a keyboard (rs232)-input */
1127 spin_lock_irqsave(&pdc_lock, flags);
1128 real32_call(PAGE0->mem_kbd.iodc_io,
1129 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1130 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1131 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1132
1133 ch = *iodc_dbuf;
1134 status = *iodc_retbuf;
1135 spin_unlock_irqrestore(&pdc_lock, flags);
1136
1137 if (status == 0)
1138 return -1;
1139
1140 return ch;
1141 }
1142
1143 int pdc_sti_call(unsigned long func, unsigned long flags,
1144 unsigned long inptr, unsigned long outputr,
1145 unsigned long glob_cfg)
1146 {
1147 int retval;
1148
1149 spin_lock_irq(&pdc_lock);
1150 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1151 spin_unlock_irq(&pdc_lock);
1152
1153 return retval;
1154 }
1155 EXPORT_SYMBOL(pdc_sti_call);
1156
1157 #ifdef __LP64__
1158 /**
1159 * pdc_pat_cell_get_number - Returns the cell number.
1160 * @cell_info: The return buffer.
1161 *
1162 * This PDC call returns the cell number of the cell from which the call
1163 * is made.
1164 */
1165 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1166 {
1167 int retval;
1168
1169 spin_lock_irq(&pdc_lock);
1170 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1171 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1172 spin_unlock_irq(&pdc_lock);
1173
1174 return retval;
1175 }
1176
1177 /**
1178 * pdc_pat_cell_module - Retrieve the cell's module information.
1179 * @actcnt: The number of bytes written to mem_addr.
1180 * @ploc: The physical location.
1181 * @mod: The module index.
1182 * @view_type: The view of the address type.
1183 * @mem_addr: The return buffer.
1184 *
1185 * This PDC call returns information about each module attached to the cell
1186 * at the specified location.
1187 */
1188 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1189 unsigned long view_type, void *mem_addr)
1190 {
1191 int retval;
1192 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1193
1194 spin_lock_irq(&pdc_lock);
1195 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1196 ploc, mod, view_type, __pa(&result));
1197 if(!retval) {
1198 *actcnt = pdc_result[0];
1199 memcpy(mem_addr, &result, *actcnt);
1200 }
1201 spin_unlock_irq(&pdc_lock);
1202
1203 return retval;
1204 }
1205
1206 /**
1207 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1208 * @cpu_info: The return buffer.
1209 * @hpa: The Hard Physical Address of the CPU.
1210 *
1211 * Retrieve the cpu number for the cpu at the specified HPA.
1212 */
1213 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1214 {
1215 int retval;
1216
1217 spin_lock_irq(&pdc_lock);
1218 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1219 __pa(&pdc_result), hpa);
1220 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1221 spin_unlock_irq(&pdc_lock);
1222
1223 return retval;
1224 }
1225
1226 /**
1227 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1228 * @num_entries: The return value.
1229 * @cell_num: The target cell.
1230 *
1231 * This PDC function returns the number of entries in the specified cell's
1232 * interrupt table.
1233 */
1234 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1235 {
1236 int retval;
1237
1238 spin_lock_irq(&pdc_lock);
1239 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1240 __pa(pdc_result), cell_num);
1241 *num_entries = pdc_result[0];
1242 spin_unlock_irq(&pdc_lock);
1243
1244 return retval;
1245 }
1246
1247 /**
1248 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1249 * @r_addr: The return buffer.
1250 * @cell_num: The target cell.
1251 *
1252 * This PDC function returns the actual interrupt table for the specified cell.
1253 */
1254 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1255 {
1256 int retval;
1257
1258 spin_lock_irq(&pdc_lock);
1259 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1260 __pa(r_addr), cell_num);
1261 spin_unlock_irq(&pdc_lock);
1262
1263 return retval;
1264 }
1265
1266 /**
1267 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1268 * @actlen: The return buffer.
1269 * @mem_addr: Pointer to the memory buffer.
1270 * @count: The number of bytes to read from the buffer.
1271 * @offset: The offset with respect to the beginning of the buffer.
1272 *
1273 */
1274 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1275 unsigned long count, unsigned long offset)
1276 {
1277 int retval;
1278
1279 spin_lock_irq(&pdc_lock);
1280 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1281 __pa(pdc_result2), count, offset);
1282 *actual_len = pdc_result[0];
1283 memcpy(mem_addr, pdc_result2, *actual_len);
1284 spin_unlock_irq(&pdc_lock);
1285
1286 return retval;
1287 }
1288
1289 /**
1290 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1291 * @pci_addr: PCI configuration space address for which the read request is being made.
1292 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1293 * @mem_addr: Pointer to return memory buffer.
1294 *
1295 */
1296 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1297 {
1298 int retval;
1299 spin_lock_irq(&pdc_lock);
1300 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1301 __pa(pdc_result), pci_addr, pci_size);
1302 switch(pci_size) {
1303 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1304 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1305 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1306 }
1307 spin_unlock_irq(&pdc_lock);
1308
1309 return retval;
1310 }
1311
1312 /**
1313 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1314 * @pci_addr: PCI configuration space address for which the write request is being made.
1315 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1316 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1317 * written to PCI Config space.
1318 *
1319 */
1320 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1321 {
1322 int retval;
1323
1324 spin_lock_irq(&pdc_lock);
1325 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1326 pci_addr, pci_size, val);
1327 spin_unlock_irq(&pdc_lock);
1328
1329 return retval;
1330 }
1331 #endif /* __LP64__ */
1332
1333
1334 /***************** 32-bit real-mode calls ***********/
1335 /* The struct below is used
1336 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1337 * real32_call_asm() then uses this stack in narrow real mode
1338 */
1339
1340 struct narrow_stack {
1341 /* use int, not long which is 64 bits */
1342 unsigned int arg13;
1343 unsigned int arg12;
1344 unsigned int arg11;
1345 unsigned int arg10;
1346 unsigned int arg9;
1347 unsigned int arg8;
1348 unsigned int arg7;
1349 unsigned int arg6;
1350 unsigned int arg5;
1351 unsigned int arg4;
1352 unsigned int arg3;
1353 unsigned int arg2;
1354 unsigned int arg1;
1355 unsigned int arg0;
1356 unsigned int frame_marker[8];
1357 unsigned int sp;
1358 /* in reality, there's nearly 8k of stack after this */
1359 };
1360
1361 long real32_call(unsigned long fn, ...)
1362 {
1363 va_list args;
1364 extern struct narrow_stack real_stack;
1365 extern unsigned long real32_call_asm(unsigned int *,
1366 unsigned int *,
1367 unsigned int);
1368
1369 va_start(args, fn);
1370 real_stack.arg0 = va_arg(args, unsigned int);
1371 real_stack.arg1 = va_arg(args, unsigned int);
1372 real_stack.arg2 = va_arg(args, unsigned int);
1373 real_stack.arg3 = va_arg(args, unsigned int);
1374 real_stack.arg4 = va_arg(args, unsigned int);
1375 real_stack.arg5 = va_arg(args, unsigned int);
1376 real_stack.arg6 = va_arg(args, unsigned int);
1377 real_stack.arg7 = va_arg(args, unsigned int);
1378 real_stack.arg8 = va_arg(args, unsigned int);
1379 real_stack.arg9 = va_arg(args, unsigned int);
1380 real_stack.arg10 = va_arg(args, unsigned int);
1381 real_stack.arg11 = va_arg(args, unsigned int);
1382 real_stack.arg12 = va_arg(args, unsigned int);
1383 real_stack.arg13 = va_arg(args, unsigned int);
1384 va_end(args);
1385
1386 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1387 }
1388
1389 #ifdef __LP64__
1390 /***************** 64-bit real-mode calls ***********/
1391
1392 struct wide_stack {
1393 unsigned long arg0;
1394 unsigned long arg1;
1395 unsigned long arg2;
1396 unsigned long arg3;
1397 unsigned long arg4;
1398 unsigned long arg5;
1399 unsigned long arg6;
1400 unsigned long arg7;
1401 unsigned long arg8;
1402 unsigned long arg9;
1403 unsigned long arg10;
1404 unsigned long arg11;
1405 unsigned long arg12;
1406 unsigned long arg13;
1407 unsigned long frame_marker[2]; /* rp, previous sp */
1408 unsigned long sp;
1409 /* in reality, there's nearly 8k of stack after this */
1410 };
1411
1412 long real64_call(unsigned long fn, ...)
1413 {
1414 va_list args;
1415 extern struct wide_stack real64_stack;
1416 extern unsigned long real64_call_asm(unsigned long *,
1417 unsigned long *,
1418 unsigned long);
1419
1420 va_start(args, fn);
1421 real64_stack.arg0 = va_arg(args, unsigned long);
1422 real64_stack.arg1 = va_arg(args, unsigned long);
1423 real64_stack.arg2 = va_arg(args, unsigned long);
1424 real64_stack.arg3 = va_arg(args, unsigned long);
1425 real64_stack.arg4 = va_arg(args, unsigned long);
1426 real64_stack.arg5 = va_arg(args, unsigned long);
1427 real64_stack.arg6 = va_arg(args, unsigned long);
1428 real64_stack.arg7 = va_arg(args, unsigned long);
1429 real64_stack.arg8 = va_arg(args, unsigned long);
1430 real64_stack.arg9 = va_arg(args, unsigned long);
1431 real64_stack.arg10 = va_arg(args, unsigned long);
1432 real64_stack.arg11 = va_arg(args, unsigned long);
1433 real64_stack.arg12 = va_arg(args, unsigned long);
1434 real64_stack.arg13 = va_arg(args, unsigned long);
1435 va_end(args);
1436
1437 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1438 }
1439
1440 #endif /* __LP64__ */
1441
This page took 0.059495 seconds and 6 git commands to generate.