c6x: Use generic time config
[deliverable/linux.git] / arch / parisc / kernel / module.c
1 /* Kernel dynamically loadable module help for PARISC.
2 *
3 * The best reference for this stuff is probably the Processor-
4 * Specific ELF Supplement for PA-RISC:
5 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
6 *
7 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
8 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 *
27 * Notes:
28 * - PLT stub handling
29 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31 * fail to reach their PLT stub if we only create one big stub array for
32 * all sections at the beginning of the core or init section.
33 * Instead we now insert individual PLT stub entries directly in front of
34 * of the code sections where the stubs are actually called.
35 * This reduces the distance between the PCREL location and the stub entry
36 * so that the relocations can be fulfilled.
37 * While calculating the final layout of the kernel module in memory, the
38 * kernel module loader calls arch_mod_section_prepend() to request the
39 * to be reserved amount of memory in front of each individual section.
40 *
41 * - SEGREL32 handling
42 * We are not doing SEGREL32 handling correctly. According to the ABI, we
43 * should do a value offset, like this:
44 * if (in_init(me, (void *)val))
45 * val -= (uint32_t)me->module_init;
46 * else
47 * val -= (uint32_t)me->module_core;
48 * However, SEGREL32 is used only for PARISC unwind entries, and we want
49 * those entries to have an absolute address, and not just an offset.
50 *
51 * The unwind table mechanism has the ability to specify an offset for
52 * the unwind table; however, because we split off the init functions into
53 * a different piece of memory, it is not possible to do this using a
54 * single offset. Instead, we use the above hack for now.
55 */
56
57 #include <linux/moduleloader.h>
58 #include <linux/elf.h>
59 #include <linux/vmalloc.h>
60 #include <linux/fs.h>
61 #include <linux/string.h>
62 #include <linux/kernel.h>
63 #include <linux/bug.h>
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66
67 #include <asm/pgtable.h>
68 #include <asm/unwind.h>
69
70 #if 0
71 #define DEBUGP printk
72 #else
73 #define DEBUGP(fmt...)
74 #endif
75
76 #define RELOC_REACHABLE(val, bits) \
77 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
78 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
79 0 : 1)
80
81 #define CHECK_RELOC(val, bits) \
82 if (!RELOC_REACHABLE(val, bits)) { \
83 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
84 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
85 return -ENOEXEC; \
86 }
87
88 /* Maximum number of GOT entries. We use a long displacement ldd from
89 * the bottom of the table, which has a maximum signed displacement of
90 * 0x3fff; however, since we're only going forward, this becomes
91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
92 * at most 1023 entries.
93 * To overcome this 14bit displacement with some kernel modules, we'll
94 * use instead the unusal 16bit displacement method (see reassemble_16a)
95 * which gives us a maximum positive displacement of 0x7fff, and as such
96 * allows us to allocate up to 4095 GOT entries. */
97 #define MAX_GOTS 4095
98
99 /* three functions to determine where in the module core
100 * or init pieces the location is */
101 static inline int in_init(struct module *me, void *loc)
102 {
103 return (loc >= me->module_init &&
104 loc <= (me->module_init + me->init_size));
105 }
106
107 static inline int in_core(struct module *me, void *loc)
108 {
109 return (loc >= me->module_core &&
110 loc <= (me->module_core + me->core_size));
111 }
112
113 static inline int in_local(struct module *me, void *loc)
114 {
115 return in_init(me, loc) || in_core(me, loc);
116 }
117
118 #ifndef CONFIG_64BIT
119 struct got_entry {
120 Elf32_Addr addr;
121 };
122
123 struct stub_entry {
124 Elf32_Word insns[2]; /* each stub entry has two insns */
125 };
126 #else
127 struct got_entry {
128 Elf64_Addr addr;
129 };
130
131 struct stub_entry {
132 Elf64_Word insns[4]; /* each stub entry has four insns */
133 };
134 #endif
135
136 /* Field selection types defined by hppa */
137 #define rnd(x) (((x)+0x1000)&~0x1fff)
138 /* fsel: full 32 bits */
139 #define fsel(v,a) ((v)+(a))
140 /* lsel: select left 21 bits */
141 #define lsel(v,a) (((v)+(a))>>11)
142 /* rsel: select right 11 bits */
143 #define rsel(v,a) (((v)+(a))&0x7ff)
144 /* lrsel with rounding of addend to nearest 8k */
145 #define lrsel(v,a) (((v)+rnd(a))>>11)
146 /* rrsel with rounding of addend to nearest 8k */
147 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
150
151
152 /* The reassemble_* functions prepare an immediate value for
153 insertion into an opcode. pa-risc uses all sorts of weird bitfields
154 in the instruction to hold the value. */
155 static inline int sign_unext(int x, int len)
156 {
157 int len_ones;
158
159 len_ones = (1 << len) - 1;
160 return x & len_ones;
161 }
162
163 static inline int low_sign_unext(int x, int len)
164 {
165 int sign, temp;
166
167 sign = (x >> (len-1)) & 1;
168 temp = sign_unext(x, len-1);
169 return (temp << 1) | sign;
170 }
171
172 static inline int reassemble_14(int as14)
173 {
174 return (((as14 & 0x1fff) << 1) |
175 ((as14 & 0x2000) >> 13));
176 }
177
178 static inline int reassemble_16a(int as16)
179 {
180 int s, t;
181
182 /* Unusual 16-bit encoding, for wide mode only. */
183 t = (as16 << 1) & 0xffff;
184 s = (as16 & 0x8000);
185 return (t ^ s ^ (s >> 1)) | (s >> 15);
186 }
187
188
189 static inline int reassemble_17(int as17)
190 {
191 return (((as17 & 0x10000) >> 16) |
192 ((as17 & 0x0f800) << 5) |
193 ((as17 & 0x00400) >> 8) |
194 ((as17 & 0x003ff) << 3));
195 }
196
197 static inline int reassemble_21(int as21)
198 {
199 return (((as21 & 0x100000) >> 20) |
200 ((as21 & 0x0ffe00) >> 8) |
201 ((as21 & 0x000180) << 7) |
202 ((as21 & 0x00007c) << 14) |
203 ((as21 & 0x000003) << 12));
204 }
205
206 static inline int reassemble_22(int as22)
207 {
208 return (((as22 & 0x200000) >> 21) |
209 ((as22 & 0x1f0000) << 5) |
210 ((as22 & 0x00f800) << 5) |
211 ((as22 & 0x000400) >> 8) |
212 ((as22 & 0x0003ff) << 3));
213 }
214
215 void *module_alloc(unsigned long size)
216 {
217 if (size == 0)
218 return NULL;
219 /* using RWX means less protection for modules, but it's
220 * easier than trying to map the text, data, init_text and
221 * init_data correctly */
222 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
223 GFP_KERNEL | __GFP_HIGHMEM,
224 PAGE_KERNEL_RWX, -1,
225 __builtin_return_address(0));
226 }
227
228 #ifndef CONFIG_64BIT
229 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
230 {
231 return 0;
232 }
233
234 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
235 {
236 return 0;
237 }
238
239 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
240 {
241 unsigned long cnt = 0;
242
243 for (; n > 0; n--, rela++)
244 {
245 switch (ELF32_R_TYPE(rela->r_info)) {
246 case R_PARISC_PCREL17F:
247 case R_PARISC_PCREL22F:
248 cnt++;
249 }
250 }
251
252 return cnt;
253 }
254 #else
255 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
256 {
257 unsigned long cnt = 0;
258
259 for (; n > 0; n--, rela++)
260 {
261 switch (ELF64_R_TYPE(rela->r_info)) {
262 case R_PARISC_LTOFF21L:
263 case R_PARISC_LTOFF14R:
264 case R_PARISC_PCREL22F:
265 cnt++;
266 }
267 }
268
269 return cnt;
270 }
271
272 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
273 {
274 unsigned long cnt = 0;
275
276 for (; n > 0; n--, rela++)
277 {
278 switch (ELF64_R_TYPE(rela->r_info)) {
279 case R_PARISC_FPTR64:
280 cnt++;
281 }
282 }
283
284 return cnt;
285 }
286
287 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
288 {
289 unsigned long cnt = 0;
290
291 for (; n > 0; n--, rela++)
292 {
293 switch (ELF64_R_TYPE(rela->r_info)) {
294 case R_PARISC_PCREL22F:
295 cnt++;
296 }
297 }
298
299 return cnt;
300 }
301 #endif
302
303
304 /* Free memory returned from module_alloc */
305 void module_free(struct module *mod, void *module_region)
306 {
307 kfree(mod->arch.section);
308 mod->arch.section = NULL;
309
310 vfree(module_region);
311 }
312
313 /* Additional bytes needed in front of individual sections */
314 unsigned int arch_mod_section_prepend(struct module *mod,
315 unsigned int section)
316 {
317 /* size needed for all stubs of this section (including
318 * one additional for correct alignment of the stubs) */
319 return (mod->arch.section[section].stub_entries + 1)
320 * sizeof(struct stub_entry);
321 }
322
323 #define CONST
324 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
325 CONST Elf_Shdr *sechdrs,
326 CONST char *secstrings,
327 struct module *me)
328 {
329 unsigned long gots = 0, fdescs = 0, len;
330 unsigned int i;
331
332 len = hdr->e_shnum * sizeof(me->arch.section[0]);
333 me->arch.section = kzalloc(len, GFP_KERNEL);
334 if (!me->arch.section)
335 return -ENOMEM;
336
337 for (i = 1; i < hdr->e_shnum; i++) {
338 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
339 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
340 unsigned int count, s;
341
342 if (strncmp(secstrings + sechdrs[i].sh_name,
343 ".PARISC.unwind", 14) == 0)
344 me->arch.unwind_section = i;
345
346 if (sechdrs[i].sh_type != SHT_RELA)
347 continue;
348
349 /* some of these are not relevant for 32-bit/64-bit
350 * we leave them here to make the code common. the
351 * compiler will do its thing and optimize out the
352 * stuff we don't need
353 */
354 gots += count_gots(rels, nrels);
355 fdescs += count_fdescs(rels, nrels);
356
357 /* XXX: By sorting the relocs and finding duplicate entries
358 * we could reduce the number of necessary stubs and save
359 * some memory. */
360 count = count_stubs(rels, nrels);
361 if (!count)
362 continue;
363
364 /* so we need relocation stubs. reserve necessary memory. */
365 /* sh_info gives the section for which we need to add stubs. */
366 s = sechdrs[i].sh_info;
367
368 /* each code section should only have one relocation section */
369 WARN_ON(me->arch.section[s].stub_entries);
370
371 /* store number of stubs we need for this section */
372 me->arch.section[s].stub_entries += count;
373 }
374
375 /* align things a bit */
376 me->core_size = ALIGN(me->core_size, 16);
377 me->arch.got_offset = me->core_size;
378 me->core_size += gots * sizeof(struct got_entry);
379
380 me->core_size = ALIGN(me->core_size, 16);
381 me->arch.fdesc_offset = me->core_size;
382 me->core_size += fdescs * sizeof(Elf_Fdesc);
383
384 me->arch.got_max = gots;
385 me->arch.fdesc_max = fdescs;
386
387 return 0;
388 }
389
390 #ifdef CONFIG_64BIT
391 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
392 {
393 unsigned int i;
394 struct got_entry *got;
395
396 value += addend;
397
398 BUG_ON(value == 0);
399
400 got = me->module_core + me->arch.got_offset;
401 for (i = 0; got[i].addr; i++)
402 if (got[i].addr == value)
403 goto out;
404
405 BUG_ON(++me->arch.got_count > me->arch.got_max);
406
407 got[i].addr = value;
408 out:
409 DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
410 value);
411 return i * sizeof(struct got_entry);
412 }
413 #endif /* CONFIG_64BIT */
414
415 #ifdef CONFIG_64BIT
416 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
417 {
418 Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
419
420 if (!value) {
421 printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
422 return 0;
423 }
424
425 /* Look for existing fdesc entry. */
426 while (fdesc->addr) {
427 if (fdesc->addr == value)
428 return (Elf_Addr)fdesc;
429 fdesc++;
430 }
431
432 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
433
434 /* Create new one */
435 fdesc->addr = value;
436 fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
437 return (Elf_Addr)fdesc;
438 }
439 #endif /* CONFIG_64BIT */
440
441 enum elf_stub_type {
442 ELF_STUB_GOT,
443 ELF_STUB_MILLI,
444 ELF_STUB_DIRECT,
445 };
446
447 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
448 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
449 {
450 struct stub_entry *stub;
451 int __maybe_unused d;
452
453 /* initialize stub_offset to point in front of the section */
454 if (!me->arch.section[targetsec].stub_offset) {
455 loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
456 sizeof(struct stub_entry);
457 /* get correct alignment for the stubs */
458 loc0 = ALIGN(loc0, sizeof(struct stub_entry));
459 me->arch.section[targetsec].stub_offset = loc0;
460 }
461
462 /* get address of stub entry */
463 stub = (void *) me->arch.section[targetsec].stub_offset;
464 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
465
466 /* do not write outside available stub area */
467 BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
468
469
470 #ifndef CONFIG_64BIT
471 /* for 32-bit the stub looks like this:
472 * ldil L'XXX,%r1
473 * be,n R'XXX(%sr4,%r1)
474 */
475 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
476
477 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */
478 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
479
480 stub->insns[0] |= reassemble_21(lrsel(value, addend));
481 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
482
483 #else
484 /* for 64-bit we have three kinds of stubs:
485 * for normal function calls:
486 * ldd 0(%dp),%dp
487 * ldd 10(%dp), %r1
488 * bve (%r1)
489 * ldd 18(%dp), %dp
490 *
491 * for millicode:
492 * ldil 0, %r1
493 * ldo 0(%r1), %r1
494 * ldd 10(%r1), %r1
495 * bve,n (%r1)
496 *
497 * for direct branches (jumps between different section of the
498 * same module):
499 * ldil 0, %r1
500 * ldo 0(%r1), %r1
501 * bve,n (%r1)
502 */
503 switch (stub_type) {
504 case ELF_STUB_GOT:
505 d = get_got(me, value, addend);
506 if (d <= 15) {
507 /* Format 5 */
508 stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
509 stub->insns[0] |= low_sign_unext(d, 5) << 16;
510 } else {
511 /* Format 3 */
512 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */
513 stub->insns[0] |= reassemble_16a(d);
514 }
515 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */
516 stub->insns[2] = 0xe820d000; /* bve (%r1) */
517 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */
518 break;
519 case ELF_STUB_MILLI:
520 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
521 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
522 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */
523 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */
524
525 stub->insns[0] |= reassemble_21(lrsel(value, addend));
526 stub->insns[1] |= reassemble_14(rrsel(value, addend));
527 break;
528 case ELF_STUB_DIRECT:
529 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
530 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
531 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */
532
533 stub->insns[0] |= reassemble_21(lrsel(value, addend));
534 stub->insns[1] |= reassemble_14(rrsel(value, addend));
535 break;
536 }
537
538 #endif
539
540 return (Elf_Addr)stub;
541 }
542
543 #ifndef CONFIG_64BIT
544 int apply_relocate_add(Elf_Shdr *sechdrs,
545 const char *strtab,
546 unsigned int symindex,
547 unsigned int relsec,
548 struct module *me)
549 {
550 int i;
551 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
552 Elf32_Sym *sym;
553 Elf32_Word *loc;
554 Elf32_Addr val;
555 Elf32_Sword addend;
556 Elf32_Addr dot;
557 Elf_Addr loc0;
558 unsigned int targetsec = sechdrs[relsec].sh_info;
559 //unsigned long dp = (unsigned long)$global$;
560 register unsigned long dp asm ("r27");
561
562 DEBUGP("Applying relocate section %u to %u\n", relsec,
563 targetsec);
564 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
565 /* This is where to make the change */
566 loc = (void *)sechdrs[targetsec].sh_addr
567 + rel[i].r_offset;
568 /* This is the start of the target section */
569 loc0 = sechdrs[targetsec].sh_addr;
570 /* This is the symbol it is referring to */
571 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
572 + ELF32_R_SYM(rel[i].r_info);
573 if (!sym->st_value) {
574 printk(KERN_WARNING "%s: Unknown symbol %s\n",
575 me->name, strtab + sym->st_name);
576 return -ENOENT;
577 }
578 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
579 dot = (Elf32_Addr)loc & ~0x03;
580
581 val = sym->st_value;
582 addend = rel[i].r_addend;
583
584 #if 0
585 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
586 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
587 strtab + sym->st_name,
588 (uint32_t)loc, val, addend,
589 r(R_PARISC_PLABEL32)
590 r(R_PARISC_DIR32)
591 r(R_PARISC_DIR21L)
592 r(R_PARISC_DIR14R)
593 r(R_PARISC_SEGREL32)
594 r(R_PARISC_DPREL21L)
595 r(R_PARISC_DPREL14R)
596 r(R_PARISC_PCREL17F)
597 r(R_PARISC_PCREL22F)
598 "UNKNOWN");
599 #undef r
600 #endif
601
602 switch (ELF32_R_TYPE(rel[i].r_info)) {
603 case R_PARISC_PLABEL32:
604 /* 32-bit function address */
605 /* no function descriptors... */
606 *loc = fsel(val, addend);
607 break;
608 case R_PARISC_DIR32:
609 /* direct 32-bit ref */
610 *loc = fsel(val, addend);
611 break;
612 case R_PARISC_DIR21L:
613 /* left 21 bits of effective address */
614 val = lrsel(val, addend);
615 *loc = mask(*loc, 21) | reassemble_21(val);
616 break;
617 case R_PARISC_DIR14R:
618 /* right 14 bits of effective address */
619 val = rrsel(val, addend);
620 *loc = mask(*loc, 14) | reassemble_14(val);
621 break;
622 case R_PARISC_SEGREL32:
623 /* 32-bit segment relative address */
624 /* See note about special handling of SEGREL32 at
625 * the beginning of this file.
626 */
627 *loc = fsel(val, addend);
628 break;
629 case R_PARISC_DPREL21L:
630 /* left 21 bit of relative address */
631 val = lrsel(val - dp, addend);
632 *loc = mask(*loc, 21) | reassemble_21(val);
633 break;
634 case R_PARISC_DPREL14R:
635 /* right 14 bit of relative address */
636 val = rrsel(val - dp, addend);
637 *loc = mask(*loc, 14) | reassemble_14(val);
638 break;
639 case R_PARISC_PCREL17F:
640 /* 17-bit PC relative address */
641 /* calculate direct call offset */
642 val += addend;
643 val = (val - dot - 8)/4;
644 if (!RELOC_REACHABLE(val, 17)) {
645 /* direct distance too far, create
646 * stub entry instead */
647 val = get_stub(me, sym->st_value, addend,
648 ELF_STUB_DIRECT, loc0, targetsec);
649 val = (val - dot - 8)/4;
650 CHECK_RELOC(val, 17);
651 }
652 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
653 break;
654 case R_PARISC_PCREL22F:
655 /* 22-bit PC relative address; only defined for pa20 */
656 /* calculate direct call offset */
657 val += addend;
658 val = (val - dot - 8)/4;
659 if (!RELOC_REACHABLE(val, 22)) {
660 /* direct distance too far, create
661 * stub entry instead */
662 val = get_stub(me, sym->st_value, addend,
663 ELF_STUB_DIRECT, loc0, targetsec);
664 val = (val - dot - 8)/4;
665 CHECK_RELOC(val, 22);
666 }
667 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
668 break;
669
670 default:
671 printk(KERN_ERR "module %s: Unknown relocation: %u\n",
672 me->name, ELF32_R_TYPE(rel[i].r_info));
673 return -ENOEXEC;
674 }
675 }
676
677 return 0;
678 }
679
680 #else
681 int apply_relocate_add(Elf_Shdr *sechdrs,
682 const char *strtab,
683 unsigned int symindex,
684 unsigned int relsec,
685 struct module *me)
686 {
687 int i;
688 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
689 Elf64_Sym *sym;
690 Elf64_Word *loc;
691 Elf64_Xword *loc64;
692 Elf64_Addr val;
693 Elf64_Sxword addend;
694 Elf64_Addr dot;
695 Elf_Addr loc0;
696 unsigned int targetsec = sechdrs[relsec].sh_info;
697
698 DEBUGP("Applying relocate section %u to %u\n", relsec,
699 targetsec);
700 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
701 /* This is where to make the change */
702 loc = (void *)sechdrs[targetsec].sh_addr
703 + rel[i].r_offset;
704 /* This is the start of the target section */
705 loc0 = sechdrs[targetsec].sh_addr;
706 /* This is the symbol it is referring to */
707 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
708 + ELF64_R_SYM(rel[i].r_info);
709 if (!sym->st_value) {
710 printk(KERN_WARNING "%s: Unknown symbol %s\n",
711 me->name, strtab + sym->st_name);
712 return -ENOENT;
713 }
714 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
715 dot = (Elf64_Addr)loc & ~0x03;
716 loc64 = (Elf64_Xword *)loc;
717
718 val = sym->st_value;
719 addend = rel[i].r_addend;
720
721 #if 0
722 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
723 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
724 strtab + sym->st_name,
725 loc, val, addend,
726 r(R_PARISC_LTOFF14R)
727 r(R_PARISC_LTOFF21L)
728 r(R_PARISC_PCREL22F)
729 r(R_PARISC_DIR64)
730 r(R_PARISC_SEGREL32)
731 r(R_PARISC_FPTR64)
732 "UNKNOWN");
733 #undef r
734 #endif
735
736 switch (ELF64_R_TYPE(rel[i].r_info)) {
737 case R_PARISC_LTOFF21L:
738 /* LT-relative; left 21 bits */
739 val = get_got(me, val, addend);
740 DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
741 strtab + sym->st_name,
742 loc, val);
743 val = lrsel(val, 0);
744 *loc = mask(*loc, 21) | reassemble_21(val);
745 break;
746 case R_PARISC_LTOFF14R:
747 /* L(ltoff(val+addend)) */
748 /* LT-relative; right 14 bits */
749 val = get_got(me, val, addend);
750 val = rrsel(val, 0);
751 DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
752 strtab + sym->st_name,
753 loc, val);
754 *loc = mask(*loc, 14) | reassemble_14(val);
755 break;
756 case R_PARISC_PCREL22F:
757 /* PC-relative; 22 bits */
758 DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
759 strtab + sym->st_name,
760 loc, val);
761 val += addend;
762 /* can we reach it locally? */
763 if (in_local(me, (void *)val)) {
764 /* this is the case where the symbol is local
765 * to the module, but in a different section,
766 * so stub the jump in case it's more than 22
767 * bits away */
768 val = (val - dot - 8)/4;
769 if (!RELOC_REACHABLE(val, 22)) {
770 /* direct distance too far, create
771 * stub entry instead */
772 val = get_stub(me, sym->st_value,
773 addend, ELF_STUB_DIRECT,
774 loc0, targetsec);
775 } else {
776 /* Ok, we can reach it directly. */
777 val = sym->st_value;
778 val += addend;
779 }
780 } else {
781 val = sym->st_value;
782 if (strncmp(strtab + sym->st_name, "$$", 2)
783 == 0)
784 val = get_stub(me, val, addend, ELF_STUB_MILLI,
785 loc0, targetsec);
786 else
787 val = get_stub(me, val, addend, ELF_STUB_GOT,
788 loc0, targetsec);
789 }
790 DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n",
791 strtab + sym->st_name, loc, sym->st_value,
792 addend, val);
793 val = (val - dot - 8)/4;
794 CHECK_RELOC(val, 22);
795 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
796 break;
797 case R_PARISC_DIR64:
798 /* 64-bit effective address */
799 *loc64 = val + addend;
800 break;
801 case R_PARISC_SEGREL32:
802 /* 32-bit segment relative address */
803 /* See note about special handling of SEGREL32 at
804 * the beginning of this file.
805 */
806 *loc = fsel(val, addend);
807 break;
808 case R_PARISC_FPTR64:
809 /* 64-bit function address */
810 if(in_local(me, (void *)(val + addend))) {
811 *loc64 = get_fdesc(me, val+addend);
812 DEBUGP("FDESC for %s at %p points to %lx\n",
813 strtab + sym->st_name, *loc64,
814 ((Elf_Fdesc *)*loc64)->addr);
815 } else {
816 /* if the symbol is not local to this
817 * module then val+addend is a pointer
818 * to the function descriptor */
819 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
820 strtab + sym->st_name,
821 loc, val);
822 *loc64 = val + addend;
823 }
824 break;
825
826 default:
827 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
828 me->name, ELF64_R_TYPE(rel[i].r_info));
829 return -ENOEXEC;
830 }
831 }
832 return 0;
833 }
834 #endif
835
836 static void
837 register_unwind_table(struct module *me,
838 const Elf_Shdr *sechdrs)
839 {
840 unsigned char *table, *end;
841 unsigned long gp;
842
843 if (!me->arch.unwind_section)
844 return;
845
846 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
847 end = table + sechdrs[me->arch.unwind_section].sh_size;
848 gp = (Elf_Addr)me->module_core + me->arch.got_offset;
849
850 DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
851 me->arch.unwind_section, table, end, gp);
852 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
853 }
854
855 static void
856 deregister_unwind_table(struct module *me)
857 {
858 if (me->arch.unwind)
859 unwind_table_remove(me->arch.unwind);
860 }
861
862 int module_finalize(const Elf_Ehdr *hdr,
863 const Elf_Shdr *sechdrs,
864 struct module *me)
865 {
866 int i;
867 unsigned long nsyms;
868 const char *strtab = NULL;
869 Elf_Sym *newptr, *oldptr;
870 Elf_Shdr *symhdr = NULL;
871 #ifdef DEBUG
872 Elf_Fdesc *entry;
873 u32 *addr;
874
875 entry = (Elf_Fdesc *)me->init;
876 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
877 entry->gp, entry->addr);
878 addr = (u32 *)entry->addr;
879 printk("INSNS: %x %x %x %x\n",
880 addr[0], addr[1], addr[2], addr[3]);
881 printk("got entries used %ld, gots max %ld\n"
882 "fdescs used %ld, fdescs max %ld\n",
883 me->arch.got_count, me->arch.got_max,
884 me->arch.fdesc_count, me->arch.fdesc_max);
885 #endif
886
887 register_unwind_table(me, sechdrs);
888
889 /* haven't filled in me->symtab yet, so have to find it
890 * ourselves */
891 for (i = 1; i < hdr->e_shnum; i++) {
892 if(sechdrs[i].sh_type == SHT_SYMTAB
893 && (sechdrs[i].sh_flags & SHF_ALLOC)) {
894 int strindex = sechdrs[i].sh_link;
895 /* FIXME: AWFUL HACK
896 * The cast is to drop the const from
897 * the sechdrs pointer */
898 symhdr = (Elf_Shdr *)&sechdrs[i];
899 strtab = (char *)sechdrs[strindex].sh_addr;
900 break;
901 }
902 }
903
904 DEBUGP("module %s: strtab %p, symhdr %p\n",
905 me->name, strtab, symhdr);
906
907 if(me->arch.got_count > MAX_GOTS) {
908 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
909 me->name, me->arch.got_count, MAX_GOTS);
910 return -EINVAL;
911 }
912
913 kfree(me->arch.section);
914 me->arch.section = NULL;
915
916 /* no symbol table */
917 if(symhdr == NULL)
918 return 0;
919
920 oldptr = (void *)symhdr->sh_addr;
921 newptr = oldptr + 1; /* we start counting at 1 */
922 nsyms = symhdr->sh_size / sizeof(Elf_Sym);
923 DEBUGP("OLD num_symtab %lu\n", nsyms);
924
925 for (i = 1; i < nsyms; i++) {
926 oldptr++; /* note, count starts at 1 so preincrement */
927 if(strncmp(strtab + oldptr->st_name,
928 ".L", 2) == 0)
929 continue;
930
931 if(newptr != oldptr)
932 *newptr++ = *oldptr;
933 else
934 newptr++;
935
936 }
937 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
938 DEBUGP("NEW num_symtab %lu\n", nsyms);
939 symhdr->sh_size = nsyms * sizeof(Elf_Sym);
940 return 0;
941 }
942
943 void module_arch_cleanup(struct module *mod)
944 {
945 deregister_unwind_table(mod);
946 }
This page took 0.086213 seconds and 5 git commands to generate.