[PATCH] simplify update_times (avoid jiffies/jiffies_64 aliasing problem)
[deliverable/linux.git] / arch / parisc / kernel / time.c
1 /*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25
26 #include <asm/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/irq.h>
29 #include <asm/param.h>
30 #include <asm/pdc.h>
31 #include <asm/led.h>
32
33 #include <linux/timex.h>
34
35 /* xtime and wall_jiffies keep wall-clock time */
36 extern unsigned long wall_jiffies;
37
38 static long clocktick __read_mostly; /* timer cycles per tick */
39 static long halftick __read_mostly;
40
41 #ifdef CONFIG_SMP
42 extern void smp_do_timer(struct pt_regs *regs);
43 #endif
44
45 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
46 {
47 long now;
48 long next_tick;
49 int nticks;
50 int cpu = smp_processor_id();
51
52 profile_tick(CPU_PROFILING, regs);
53
54 now = mfctl(16);
55 /* initialize next_tick to time at last clocktick */
56 next_tick = cpu_data[cpu].it_value;
57
58 /* since time passes between the interrupt and the mfctl()
59 * above, it is never true that last_tick + clocktick == now. If we
60 * never miss a clocktick, we could set next_tick = last_tick + clocktick
61 * but maybe we'll miss ticks, hence the loop.
62 *
63 * Variables are *signed*.
64 */
65
66 nticks = 0;
67 while((next_tick - now) < halftick) {
68 next_tick += clocktick;
69 nticks++;
70 }
71 mtctl(next_tick, 16);
72 cpu_data[cpu].it_value = next_tick;
73
74 while (nticks--) {
75 #ifdef CONFIG_SMP
76 smp_do_timer(regs);
77 #else
78 update_process_times(user_mode(regs));
79 #endif
80 if (cpu == 0) {
81 write_seqlock(&xtime_lock);
82 do_timer(1);
83 write_sequnlock(&xtime_lock);
84 }
85 }
86
87 /* check soft power switch status */
88 if (cpu == 0 && !atomic_read(&power_tasklet.count))
89 tasklet_schedule(&power_tasklet);
90
91 return IRQ_HANDLED;
92 }
93
94
95 unsigned long profile_pc(struct pt_regs *regs)
96 {
97 unsigned long pc = instruction_pointer(regs);
98
99 if (regs->gr[0] & PSW_N)
100 pc -= 4;
101
102 #ifdef CONFIG_SMP
103 if (in_lock_functions(pc))
104 pc = regs->gr[2];
105 #endif
106
107 return pc;
108 }
109 EXPORT_SYMBOL(profile_pc);
110
111
112 /*** converted from ia64 ***/
113 /*
114 * Return the number of micro-seconds that elapsed since the last
115 * update to wall time (aka xtime aka wall_jiffies). The xtime_lock
116 * must be at least read-locked when calling this routine.
117 */
118 static inline unsigned long
119 gettimeoffset (void)
120 {
121 #ifndef CONFIG_SMP
122 /*
123 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
124 * Once parisc-linux learns the cr16 difference between processors,
125 * this could be made to work.
126 */
127 long last_tick;
128 long elapsed_cycles;
129
130 /* it_value is the intended time of the next tick */
131 last_tick = cpu_data[smp_processor_id()].it_value;
132
133 /* Subtract one tick and account for possible difference between
134 * when we expected the tick and when it actually arrived.
135 * (aka wall vs real)
136 */
137 last_tick -= clocktick * (jiffies - wall_jiffies + 1);
138 elapsed_cycles = mfctl(16) - last_tick;
139
140 /* the precision of this math could be improved */
141 return elapsed_cycles / (PAGE0->mem_10msec / 10000);
142 #else
143 return 0;
144 #endif
145 }
146
147 void
148 do_gettimeofday (struct timeval *tv)
149 {
150 unsigned long flags, seq, usec, sec;
151
152 do {
153 seq = read_seqbegin_irqsave(&xtime_lock, flags);
154 usec = gettimeoffset();
155 sec = xtime.tv_sec;
156 usec += (xtime.tv_nsec / 1000);
157 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
158
159 if (unlikely(usec > LONG_MAX)) {
160 /* This can happen if the gettimeoffset adjustment is
161 * negative and xtime.tv_nsec is smaller than the
162 * adjustment */
163 printk(KERN_ERR "do_gettimeofday() spurious xtime.tv_nsec of %ld\n", usec);
164 usec += USEC_PER_SEC;
165 --sec;
166 /* This should never happen, it means the negative
167 * time adjustment was more than a second, so there's
168 * something seriously wrong */
169 BUG_ON(usec > LONG_MAX);
170 }
171
172
173 while (usec >= USEC_PER_SEC) {
174 usec -= USEC_PER_SEC;
175 ++sec;
176 }
177
178 tv->tv_sec = sec;
179 tv->tv_usec = usec;
180 }
181
182 EXPORT_SYMBOL(do_gettimeofday);
183
184 int
185 do_settimeofday (struct timespec *tv)
186 {
187 time_t wtm_sec, sec = tv->tv_sec;
188 long wtm_nsec, nsec = tv->tv_nsec;
189
190 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
191 return -EINVAL;
192
193 write_seqlock_irq(&xtime_lock);
194 {
195 /*
196 * This is revolting. We need to set "xtime"
197 * correctly. However, the value in this location is
198 * the value at the most recent update of wall time.
199 * Discover what correction gettimeofday would have
200 * done, and then undo it!
201 */
202 nsec -= gettimeoffset() * 1000;
203
204 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
205 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
206
207 set_normalized_timespec(&xtime, sec, nsec);
208 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
209
210 ntp_clear();
211 }
212 write_sequnlock_irq(&xtime_lock);
213 clock_was_set();
214 return 0;
215 }
216 EXPORT_SYMBOL(do_settimeofday);
217
218 /*
219 * XXX: We can do better than this.
220 * Returns nanoseconds
221 */
222
223 unsigned long long sched_clock(void)
224 {
225 return (unsigned long long)jiffies * (1000000000 / HZ);
226 }
227
228
229 void __init time_init(void)
230 {
231 unsigned long next_tick;
232 static struct pdc_tod tod_data;
233
234 clocktick = (100 * PAGE0->mem_10msec) / HZ;
235 halftick = clocktick / 2;
236
237 /* Setup clock interrupt timing */
238
239 next_tick = mfctl(16);
240 next_tick += clocktick;
241 cpu_data[smp_processor_id()].it_value = next_tick;
242
243 /* kick off Itimer (CR16) */
244 mtctl(next_tick, 16);
245
246 if(pdc_tod_read(&tod_data) == 0) {
247 write_seqlock_irq(&xtime_lock);
248 xtime.tv_sec = tod_data.tod_sec;
249 xtime.tv_nsec = tod_data.tod_usec * 1000;
250 set_normalized_timespec(&wall_to_monotonic,
251 -xtime.tv_sec, -xtime.tv_nsec);
252 write_sequnlock_irq(&xtime_lock);
253 } else {
254 printk(KERN_ERR "Error reading tod clock\n");
255 xtime.tv_sec = 0;
256 xtime.tv_nsec = 0;
257 }
258 }
259
This page took 0.044068 seconds and 5 git commands to generate.