Pull misc-for-upstream into release branch
[deliverable/linux.git] / arch / parisc / mm / init.c
1 /*
2 * linux/arch/parisc/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006 Helge Deller (deller@gmx.de)
10 *
11 */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h> /* for node_online_map */
24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
25
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/pdc_chassis.h>
29 #include <asm/mmzone.h>
30 #include <asm/sections.h>
31
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33
34 extern int data_start;
35
36 #ifdef CONFIG_DISCONTIGMEM
37 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
38 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
39 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
40 #endif
41
42 static struct resource data_resource = {
43 .name = "Kernel data",
44 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
45 };
46
47 static struct resource code_resource = {
48 .name = "Kernel code",
49 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
50 };
51
52 static struct resource pdcdata_resource = {
53 .name = "PDC data (Page Zero)",
54 .start = 0,
55 .end = 0x9ff,
56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
57 };
58
59 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
60
61 /* The following array is initialized from the firmware specific
62 * information retrieved in kernel/inventory.c.
63 */
64
65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
66 int npmem_ranges __read_mostly;
67
68 #ifdef __LP64__
69 #define MAX_MEM (~0UL)
70 #else /* !__LP64__ */
71 #define MAX_MEM (3584U*1024U*1024U)
72 #endif /* !__LP64__ */
73
74 static unsigned long mem_limit __read_mostly = MAX_MEM;
75
76 static void __init mem_limit_func(void)
77 {
78 char *cp, *end;
79 unsigned long limit;
80
81 /* We need this before __setup() functions are called */
82
83 limit = MAX_MEM;
84 for (cp = boot_command_line; *cp; ) {
85 if (memcmp(cp, "mem=", 4) == 0) {
86 cp += 4;
87 limit = memparse(cp, &end);
88 if (end != cp)
89 break;
90 cp = end;
91 } else {
92 while (*cp != ' ' && *cp)
93 ++cp;
94 while (*cp == ' ')
95 ++cp;
96 }
97 }
98
99 if (limit < mem_limit)
100 mem_limit = limit;
101 }
102
103 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
104
105 static void __init setup_bootmem(void)
106 {
107 unsigned long bootmap_size;
108 unsigned long mem_max;
109 unsigned long bootmap_pages;
110 unsigned long bootmap_start_pfn;
111 unsigned long bootmap_pfn;
112 #ifndef CONFIG_DISCONTIGMEM
113 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
114 int npmem_holes;
115 #endif
116 int i, sysram_resource_count;
117
118 disable_sr_hashing(); /* Turn off space register hashing */
119
120 /*
121 * Sort the ranges. Since the number of ranges is typically
122 * small, and performance is not an issue here, just do
123 * a simple insertion sort.
124 */
125
126 for (i = 1; i < npmem_ranges; i++) {
127 int j;
128
129 for (j = i; j > 0; j--) {
130 unsigned long tmp;
131
132 if (pmem_ranges[j-1].start_pfn <
133 pmem_ranges[j].start_pfn) {
134
135 break;
136 }
137 tmp = pmem_ranges[j-1].start_pfn;
138 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
139 pmem_ranges[j].start_pfn = tmp;
140 tmp = pmem_ranges[j-1].pages;
141 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
142 pmem_ranges[j].pages = tmp;
143 }
144 }
145
146 #ifndef CONFIG_DISCONTIGMEM
147 /*
148 * Throw out ranges that are too far apart (controlled by
149 * MAX_GAP).
150 */
151
152 for (i = 1; i < npmem_ranges; i++) {
153 if (pmem_ranges[i].start_pfn -
154 (pmem_ranges[i-1].start_pfn +
155 pmem_ranges[i-1].pages) > MAX_GAP) {
156 npmem_ranges = i;
157 printk("Large gap in memory detected (%ld pages). "
158 "Consider turning on CONFIG_DISCONTIGMEM\n",
159 pmem_ranges[i].start_pfn -
160 (pmem_ranges[i-1].start_pfn +
161 pmem_ranges[i-1].pages));
162 break;
163 }
164 }
165 #endif
166
167 if (npmem_ranges > 1) {
168
169 /* Print the memory ranges */
170
171 printk(KERN_INFO "Memory Ranges:\n");
172
173 for (i = 0; i < npmem_ranges; i++) {
174 unsigned long start;
175 unsigned long size;
176
177 size = (pmem_ranges[i].pages << PAGE_SHIFT);
178 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
179 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
180 i,start, start + (size - 1), size >> 20);
181 }
182 }
183
184 sysram_resource_count = npmem_ranges;
185 for (i = 0; i < sysram_resource_count; i++) {
186 struct resource *res = &sysram_resources[i];
187 res->name = "System RAM";
188 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
189 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
190 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
191 request_resource(&iomem_resource, res);
192 }
193
194 /*
195 * For 32 bit kernels we limit the amount of memory we can
196 * support, in order to preserve enough kernel address space
197 * for other purposes. For 64 bit kernels we don't normally
198 * limit the memory, but this mechanism can be used to
199 * artificially limit the amount of memory (and it is written
200 * to work with multiple memory ranges).
201 */
202
203 mem_limit_func(); /* check for "mem=" argument */
204
205 mem_max = 0;
206 num_physpages = 0;
207 for (i = 0; i < npmem_ranges; i++) {
208 unsigned long rsize;
209
210 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
211 if ((mem_max + rsize) > mem_limit) {
212 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
213 if (mem_max == mem_limit)
214 npmem_ranges = i;
215 else {
216 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
217 - (mem_max >> PAGE_SHIFT);
218 npmem_ranges = i + 1;
219 mem_max = mem_limit;
220 }
221 num_physpages += pmem_ranges[i].pages;
222 break;
223 }
224 num_physpages += pmem_ranges[i].pages;
225 mem_max += rsize;
226 }
227
228 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
229
230 #ifndef CONFIG_DISCONTIGMEM
231 /* Merge the ranges, keeping track of the holes */
232
233 {
234 unsigned long end_pfn;
235 unsigned long hole_pages;
236
237 npmem_holes = 0;
238 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
239 for (i = 1; i < npmem_ranges; i++) {
240
241 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
242 if (hole_pages) {
243 pmem_holes[npmem_holes].start_pfn = end_pfn;
244 pmem_holes[npmem_holes++].pages = hole_pages;
245 end_pfn += hole_pages;
246 }
247 end_pfn += pmem_ranges[i].pages;
248 }
249
250 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
251 npmem_ranges = 1;
252 }
253 #endif
254
255 bootmap_pages = 0;
256 for (i = 0; i < npmem_ranges; i++)
257 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
258
259 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
260
261 #ifdef CONFIG_DISCONTIGMEM
262 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
263 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
264 NODE_DATA(i)->bdata = &bmem_data[i];
265 }
266 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
267
268 for (i = 0; i < npmem_ranges; i++)
269 node_set_online(i);
270 #endif
271
272 /*
273 * Initialize and free the full range of memory in each range.
274 * Note that the only writing these routines do are to the bootmap,
275 * and we've made sure to locate the bootmap properly so that they
276 * won't be writing over anything important.
277 */
278
279 bootmap_pfn = bootmap_start_pfn;
280 max_pfn = 0;
281 for (i = 0; i < npmem_ranges; i++) {
282 unsigned long start_pfn;
283 unsigned long npages;
284
285 start_pfn = pmem_ranges[i].start_pfn;
286 npages = pmem_ranges[i].pages;
287
288 bootmap_size = init_bootmem_node(NODE_DATA(i),
289 bootmap_pfn,
290 start_pfn,
291 (start_pfn + npages) );
292 free_bootmem_node(NODE_DATA(i),
293 (start_pfn << PAGE_SHIFT),
294 (npages << PAGE_SHIFT) );
295 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
296 if ((start_pfn + npages) > max_pfn)
297 max_pfn = start_pfn + npages;
298 }
299
300 /* IOMMU is always used to access "high mem" on those boxes
301 * that can support enough mem that a PCI device couldn't
302 * directly DMA to any physical addresses.
303 * ISA DMA support will need to revisit this.
304 */
305 max_low_pfn = max_pfn;
306
307 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
308 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
309 BUG();
310 }
311
312 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
313
314 #define PDC_CONSOLE_IO_IODC_SIZE 32768
315
316 reserve_bootmem_node(NODE_DATA(0), 0UL,
317 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
318 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
319 (unsigned long)(_end - _text));
320 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
321 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
322
323 #ifndef CONFIG_DISCONTIGMEM
324
325 /* reserve the holes */
326
327 for (i = 0; i < npmem_holes; i++) {
328 reserve_bootmem_node(NODE_DATA(0),
329 (pmem_holes[i].start_pfn << PAGE_SHIFT),
330 (pmem_holes[i].pages << PAGE_SHIFT));
331 }
332 #endif
333
334 #ifdef CONFIG_BLK_DEV_INITRD
335 if (initrd_start) {
336 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
337 if (__pa(initrd_start) < mem_max) {
338 unsigned long initrd_reserve;
339
340 if (__pa(initrd_end) > mem_max) {
341 initrd_reserve = mem_max - __pa(initrd_start);
342 } else {
343 initrd_reserve = initrd_end - initrd_start;
344 }
345 initrd_below_start_ok = 1;
346 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
347
348 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
349 }
350 }
351 #endif
352
353 data_resource.start = virt_to_phys(&data_start);
354 data_resource.end = virt_to_phys(_end) - 1;
355 code_resource.start = virt_to_phys(_text);
356 code_resource.end = virt_to_phys(&data_start)-1;
357
358 /* We don't know which region the kernel will be in, so try
359 * all of them.
360 */
361 for (i = 0; i < sysram_resource_count; i++) {
362 struct resource *res = &sysram_resources[i];
363 request_resource(res, &code_resource);
364 request_resource(res, &data_resource);
365 }
366 request_resource(&sysram_resources[0], &pdcdata_resource);
367 }
368
369 void free_initmem(void)
370 {
371 unsigned long addr, init_begin, init_end;
372
373 printk(KERN_INFO "Freeing unused kernel memory: ");
374
375 #ifdef CONFIG_DEBUG_KERNEL
376 /* Attempt to catch anyone trying to execute code here
377 * by filling the page with BRK insns.
378 *
379 * If we disable interrupts for all CPUs, then IPI stops working.
380 * Kinda breaks the global cache flushing.
381 */
382 local_irq_disable();
383
384 memset(__init_begin, 0x00,
385 (unsigned long)__init_end - (unsigned long)__init_begin);
386
387 flush_data_cache();
388 asm volatile("sync" : : );
389 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end);
390 asm volatile("sync" : : );
391
392 local_irq_enable();
393 #endif
394
395 /* align __init_begin and __init_end to page size,
396 ignoring linker script where we might have tried to save RAM */
397 init_begin = PAGE_ALIGN((unsigned long)(__init_begin));
398 init_end = PAGE_ALIGN((unsigned long)(__init_end));
399 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
400 ClearPageReserved(virt_to_page(addr));
401 init_page_count(virt_to_page(addr));
402 free_page(addr);
403 num_physpages++;
404 totalram_pages++;
405 }
406
407 /* set up a new led state on systems shipped LED State panel */
408 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
409
410 printk("%luk freed\n", (init_end - init_begin) >> 10);
411 }
412
413
414 #ifdef CONFIG_DEBUG_RODATA
415 void mark_rodata_ro(void)
416 {
417 /* rodata memory was already mapped with KERNEL_RO access rights by
418 pagetable_init() and map_pages(). No need to do additional stuff here */
419 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
420 (unsigned long)(__end_rodata - __start_rodata) >> 10);
421 }
422 #endif
423
424
425 /*
426 * Just an arbitrary offset to serve as a "hole" between mapping areas
427 * (between top of physical memory and a potential pcxl dma mapping
428 * area, and below the vmalloc mapping area).
429 *
430 * The current 32K value just means that there will be a 32K "hole"
431 * between mapping areas. That means that any out-of-bounds memory
432 * accesses will hopefully be caught. The vmalloc() routines leaves
433 * a hole of 4kB between each vmalloced area for the same reason.
434 */
435
436 /* Leave room for gateway page expansion */
437 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
438 #error KERNEL_MAP_START is in gateway reserved region
439 #endif
440 #define MAP_START (KERNEL_MAP_START)
441
442 #define VM_MAP_OFFSET (32*1024)
443 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
444 & ~(VM_MAP_OFFSET-1)))
445
446 void *vmalloc_start __read_mostly;
447 EXPORT_SYMBOL(vmalloc_start);
448
449 #ifdef CONFIG_PA11
450 unsigned long pcxl_dma_start __read_mostly;
451 #endif
452
453 void __init mem_init(void)
454 {
455 high_memory = __va((max_pfn << PAGE_SHIFT));
456
457 #ifndef CONFIG_DISCONTIGMEM
458 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
459 totalram_pages += free_all_bootmem();
460 #else
461 {
462 int i;
463
464 for (i = 0; i < npmem_ranges; i++)
465 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
466 }
467 #endif
468
469 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
470
471 #ifdef CONFIG_PA11
472 if (hppa_dma_ops == &pcxl_dma_ops) {
473 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
474 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
475 } else {
476 pcxl_dma_start = 0;
477 vmalloc_start = SET_MAP_OFFSET(MAP_START);
478 }
479 #else
480 vmalloc_start = SET_MAP_OFFSET(MAP_START);
481 #endif
482
483 }
484
485 unsigned long *empty_zero_page __read_mostly;
486
487 void show_mem(void)
488 {
489 int i,free = 0,total = 0,reserved = 0;
490 int shared = 0, cached = 0;
491
492 printk(KERN_INFO "Mem-info:\n");
493 show_free_areas();
494 printk(KERN_INFO "Free swap: %6ldkB\n",
495 nr_swap_pages<<(PAGE_SHIFT-10));
496 #ifndef CONFIG_DISCONTIGMEM
497 i = max_mapnr;
498 while (i-- > 0) {
499 total++;
500 if (PageReserved(mem_map+i))
501 reserved++;
502 else if (PageSwapCache(mem_map+i))
503 cached++;
504 else if (!page_count(&mem_map[i]))
505 free++;
506 else
507 shared += page_count(&mem_map[i]) - 1;
508 }
509 #else
510 for (i = 0; i < npmem_ranges; i++) {
511 int j;
512
513 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
514 struct page *p;
515 unsigned long flags;
516
517 pgdat_resize_lock(NODE_DATA(i), &flags);
518 p = nid_page_nr(i, j) - node_start_pfn(i);
519
520 total++;
521 if (PageReserved(p))
522 reserved++;
523 else if (PageSwapCache(p))
524 cached++;
525 else if (!page_count(p))
526 free++;
527 else
528 shared += page_count(p) - 1;
529 pgdat_resize_unlock(NODE_DATA(i), &flags);
530 }
531 }
532 #endif
533 printk(KERN_INFO "%d pages of RAM\n", total);
534 printk(KERN_INFO "%d reserved pages\n", reserved);
535 printk(KERN_INFO "%d pages shared\n", shared);
536 printk(KERN_INFO "%d pages swap cached\n", cached);
537
538
539 #ifdef CONFIG_DISCONTIGMEM
540 {
541 struct zonelist *zl;
542 int i, j, k;
543
544 for (i = 0; i < npmem_ranges; i++) {
545 for (j = 0; j < MAX_NR_ZONES; j++) {
546 zl = NODE_DATA(i)->node_zonelists + j;
547
548 printk("Zone list for zone %d on node %d: ", j, i);
549 for (k = 0; zl->zones[k] != NULL; k++)
550 printk("[%d/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name);
551 printk("\n");
552 }
553 }
554 }
555 #endif
556 }
557
558
559 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
560 {
561 pgd_t *pg_dir;
562 pmd_t *pmd;
563 pte_t *pg_table;
564 unsigned long end_paddr;
565 unsigned long start_pmd;
566 unsigned long start_pte;
567 unsigned long tmp1;
568 unsigned long tmp2;
569 unsigned long address;
570 unsigned long ro_start;
571 unsigned long ro_end;
572 unsigned long fv_addr;
573 unsigned long gw_addr;
574 extern const unsigned long fault_vector_20;
575 extern void * const linux_gateway_page;
576
577 ro_start = __pa((unsigned long)_text);
578 ro_end = __pa((unsigned long)&data_start);
579 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
580 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
581
582 end_paddr = start_paddr + size;
583
584 pg_dir = pgd_offset_k(start_vaddr);
585
586 #if PTRS_PER_PMD == 1
587 start_pmd = 0;
588 #else
589 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
590 #endif
591 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
592
593 address = start_paddr;
594 while (address < end_paddr) {
595 #if PTRS_PER_PMD == 1
596 pmd = (pmd_t *)__pa(pg_dir);
597 #else
598 pmd = (pmd_t *)pgd_address(*pg_dir);
599
600 /*
601 * pmd is physical at this point
602 */
603
604 if (!pmd) {
605 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
606 pmd = (pmd_t *) __pa(pmd);
607 }
608
609 pgd_populate(NULL, pg_dir, __va(pmd));
610 #endif
611 pg_dir++;
612
613 /* now change pmd to kernel virtual addresses */
614
615 pmd = (pmd_t *)__va(pmd) + start_pmd;
616 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
617
618 /*
619 * pg_table is physical at this point
620 */
621
622 pg_table = (pte_t *)pmd_address(*pmd);
623 if (!pg_table) {
624 pg_table = (pte_t *)
625 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
626 pg_table = (pte_t *) __pa(pg_table);
627 }
628
629 pmd_populate_kernel(NULL, pmd, __va(pg_table));
630
631 /* now change pg_table to kernel virtual addresses */
632
633 pg_table = (pte_t *) __va(pg_table) + start_pte;
634 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
635 pte_t pte;
636
637 /*
638 * Map the fault vector writable so we can
639 * write the HPMC checksum.
640 */
641 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
642 if (address >= ro_start && address < ro_end
643 && address != fv_addr
644 && address != gw_addr)
645 pte = __mk_pte(address, PAGE_KERNEL_RO);
646 else
647 #endif
648 pte = __mk_pte(address, pgprot);
649
650 if (address >= end_paddr)
651 pte_val(pte) = 0;
652
653 set_pte(pg_table, pte);
654
655 address += PAGE_SIZE;
656 }
657 start_pte = 0;
658
659 if (address >= end_paddr)
660 break;
661 }
662 start_pmd = 0;
663 }
664 }
665
666 /*
667 * pagetable_init() sets up the page tables
668 *
669 * Note that gateway_init() places the Linux gateway page at page 0.
670 * Since gateway pages cannot be dereferenced this has the desirable
671 * side effect of trapping those pesky NULL-reference errors in the
672 * kernel.
673 */
674 static void __init pagetable_init(void)
675 {
676 int range;
677
678 /* Map each physical memory range to its kernel vaddr */
679
680 for (range = 0; range < npmem_ranges; range++) {
681 unsigned long start_paddr;
682 unsigned long end_paddr;
683 unsigned long size;
684
685 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
686 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
687 size = pmem_ranges[range].pages << PAGE_SHIFT;
688
689 map_pages((unsigned long)__va(start_paddr), start_paddr,
690 size, PAGE_KERNEL);
691 }
692
693 #ifdef CONFIG_BLK_DEV_INITRD
694 if (initrd_end && initrd_end > mem_limit) {
695 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
696 map_pages(initrd_start, __pa(initrd_start),
697 initrd_end - initrd_start, PAGE_KERNEL);
698 }
699 #endif
700
701 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
702 memset(empty_zero_page, 0, PAGE_SIZE);
703 }
704
705 static void __init gateway_init(void)
706 {
707 unsigned long linux_gateway_page_addr;
708 /* FIXME: This is 'const' in order to trick the compiler
709 into not treating it as DP-relative data. */
710 extern void * const linux_gateway_page;
711
712 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
713
714 /*
715 * Setup Linux Gateway page.
716 *
717 * The Linux gateway page will reside in kernel space (on virtual
718 * page 0), so it doesn't need to be aliased into user space.
719 */
720
721 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
722 PAGE_SIZE, PAGE_GATEWAY);
723 }
724
725 #ifdef CONFIG_HPUX
726 void
727 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
728 {
729 pgd_t *pg_dir;
730 pmd_t *pmd;
731 pte_t *pg_table;
732 unsigned long start_pmd;
733 unsigned long start_pte;
734 unsigned long address;
735 unsigned long hpux_gw_page_addr;
736 /* FIXME: This is 'const' in order to trick the compiler
737 into not treating it as DP-relative data. */
738 extern void * const hpux_gateway_page;
739
740 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
741
742 /*
743 * Setup HP-UX Gateway page.
744 *
745 * The HP-UX gateway page resides in the user address space,
746 * so it needs to be aliased into each process.
747 */
748
749 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
750
751 #if PTRS_PER_PMD == 1
752 start_pmd = 0;
753 #else
754 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
755 #endif
756 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
757
758 address = __pa(&hpux_gateway_page);
759 #if PTRS_PER_PMD == 1
760 pmd = (pmd_t *)__pa(pg_dir);
761 #else
762 pmd = (pmd_t *) pgd_address(*pg_dir);
763
764 /*
765 * pmd is physical at this point
766 */
767
768 if (!pmd) {
769 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
770 pmd = (pmd_t *) __pa(pmd);
771 }
772
773 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
774 #endif
775 /* now change pmd to kernel virtual addresses */
776
777 pmd = (pmd_t *)__va(pmd) + start_pmd;
778
779 /*
780 * pg_table is physical at this point
781 */
782
783 pg_table = (pte_t *) pmd_address(*pmd);
784 if (!pg_table)
785 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
786
787 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
788
789 /* now change pg_table to kernel virtual addresses */
790
791 pg_table = (pte_t *) __va(pg_table) + start_pte;
792 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
793 }
794 EXPORT_SYMBOL(map_hpux_gateway_page);
795 #endif
796
797 void __init paging_init(void)
798 {
799 int i;
800
801 setup_bootmem();
802 pagetable_init();
803 gateway_init();
804 flush_cache_all_local(); /* start with known state */
805 flush_tlb_all_local(NULL);
806
807 for (i = 0; i < npmem_ranges; i++) {
808 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
809
810 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
811
812 #ifdef CONFIG_DISCONTIGMEM
813 /* Need to initialize the pfnnid_map before we can initialize
814 the zone */
815 {
816 int j;
817 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
818 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
819 j++) {
820 pfnnid_map[j] = i;
821 }
822 }
823 #endif
824
825 free_area_init_node(i, NODE_DATA(i), zones_size,
826 pmem_ranges[i].start_pfn, NULL);
827 }
828 }
829
830 #ifdef CONFIG_PA20
831
832 /*
833 * Currently, all PA20 chips have 18 bit protection id's, which is the
834 * limiting factor (space ids are 32 bits).
835 */
836
837 #define NR_SPACE_IDS 262144
838
839 #else
840
841 /*
842 * Currently we have a one-to-one relationship between space id's and
843 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
844 * support 15 bit protection id's, so that is the limiting factor.
845 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
846 * probably not worth the effort for a special case here.
847 */
848
849 #define NR_SPACE_IDS 32768
850
851 #endif /* !CONFIG_PA20 */
852
853 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
854 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
855
856 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
857 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
858 static unsigned long space_id_index;
859 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
860 static unsigned long dirty_space_ids = 0;
861
862 static DEFINE_SPINLOCK(sid_lock);
863
864 unsigned long alloc_sid(void)
865 {
866 unsigned long index;
867
868 spin_lock(&sid_lock);
869
870 if (free_space_ids == 0) {
871 if (dirty_space_ids != 0) {
872 spin_unlock(&sid_lock);
873 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
874 spin_lock(&sid_lock);
875 }
876 BUG_ON(free_space_ids == 0);
877 }
878
879 free_space_ids--;
880
881 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
882 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
883 space_id_index = index;
884
885 spin_unlock(&sid_lock);
886
887 return index << SPACEID_SHIFT;
888 }
889
890 void free_sid(unsigned long spaceid)
891 {
892 unsigned long index = spaceid >> SPACEID_SHIFT;
893 unsigned long *dirty_space_offset;
894
895 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
896 index &= (BITS_PER_LONG - 1);
897
898 spin_lock(&sid_lock);
899
900 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
901
902 *dirty_space_offset |= (1L << index);
903 dirty_space_ids++;
904
905 spin_unlock(&sid_lock);
906 }
907
908
909 #ifdef CONFIG_SMP
910 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
911 {
912 int i;
913
914 /* NOTE: sid_lock must be held upon entry */
915
916 *ndirtyptr = dirty_space_ids;
917 if (dirty_space_ids != 0) {
918 for (i = 0; i < SID_ARRAY_SIZE; i++) {
919 dirty_array[i] = dirty_space_id[i];
920 dirty_space_id[i] = 0;
921 }
922 dirty_space_ids = 0;
923 }
924
925 return;
926 }
927
928 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
929 {
930 int i;
931
932 /* NOTE: sid_lock must be held upon entry */
933
934 if (ndirty != 0) {
935 for (i = 0; i < SID_ARRAY_SIZE; i++) {
936 space_id[i] ^= dirty_array[i];
937 }
938
939 free_space_ids += ndirty;
940 space_id_index = 0;
941 }
942 }
943
944 #else /* CONFIG_SMP */
945
946 static void recycle_sids(void)
947 {
948 int i;
949
950 /* NOTE: sid_lock must be held upon entry */
951
952 if (dirty_space_ids != 0) {
953 for (i = 0; i < SID_ARRAY_SIZE; i++) {
954 space_id[i] ^= dirty_space_id[i];
955 dirty_space_id[i] = 0;
956 }
957
958 free_space_ids += dirty_space_ids;
959 dirty_space_ids = 0;
960 space_id_index = 0;
961 }
962 }
963 #endif
964
965 /*
966 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
967 * purged, we can safely reuse the space ids that were released but
968 * not flushed from the tlb.
969 */
970
971 #ifdef CONFIG_SMP
972
973 static unsigned long recycle_ndirty;
974 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
975 static unsigned int recycle_inuse;
976
977 void flush_tlb_all(void)
978 {
979 int do_recycle;
980
981 do_recycle = 0;
982 spin_lock(&sid_lock);
983 if (dirty_space_ids > RECYCLE_THRESHOLD) {
984 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
985 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
986 recycle_inuse++;
987 do_recycle++;
988 }
989 spin_unlock(&sid_lock);
990 on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
991 if (do_recycle) {
992 spin_lock(&sid_lock);
993 recycle_sids(recycle_ndirty,recycle_dirty_array);
994 recycle_inuse = 0;
995 spin_unlock(&sid_lock);
996 }
997 }
998 #else
999 void flush_tlb_all(void)
1000 {
1001 spin_lock(&sid_lock);
1002 flush_tlb_all_local(NULL);
1003 recycle_sids();
1004 spin_unlock(&sid_lock);
1005 }
1006 #endif
1007
1008 #ifdef CONFIG_BLK_DEV_INITRD
1009 void free_initrd_mem(unsigned long start, unsigned long end)
1010 {
1011 if (start >= end)
1012 return;
1013 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1014 for (; start < end; start += PAGE_SIZE) {
1015 ClearPageReserved(virt_to_page(start));
1016 init_page_count(virt_to_page(start));
1017 free_page(start);
1018 num_physpages++;
1019 totalram_pages++;
1020 }
1021 }
1022 #endif
This page took 0.065504 seconds and 6 git commands to generate.