powerpc/mm: Move radix/hash common data structures to book3s64 headers
[deliverable/linux.git] / arch / powerpc / include / asm / book3s / 64 / mmu-hash.h
1 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3 /*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 #include <asm/bug.h>
18
19 /*
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
23 */
24 #include <asm/book3s/64/pgtable.h>
25 #include <asm/bug.h>
26 #include <asm/processor.h>
27
28 /*
29 * SLB
30 */
31
32 #define SLB_NUM_BOLTED 3
33 #define SLB_CACHE_ENTRIES 8
34 #define SLB_MIN_SIZE 32
35
36 /* Bits in the SLB ESID word */
37 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
38
39 /* Bits in the SLB VSID word */
40 #define SLB_VSID_SHIFT 12
41 #define SLB_VSID_SHIFT_1T 24
42 #define SLB_VSID_SSIZE_SHIFT 62
43 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
44 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
45 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
46 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
47 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
48 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
49 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
50 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
51 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
52 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
53 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
54 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
55 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
56 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
57
58 #define SLB_VSID_KERNEL (SLB_VSID_KP)
59 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
60
61 #define SLBIE_C (0x08000000)
62 #define SLBIE_SSIZE_SHIFT 25
63
64 /*
65 * Hash table
66 */
67
68 #define HPTES_PER_GROUP 8
69
70 #define HPTE_V_SSIZE_SHIFT 62
71 #define HPTE_V_AVPN_SHIFT 7
72 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
73 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
74 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
75 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
76 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
77 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
78 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
79 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
80
81 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
82 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
83 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
84 #define HPTE_R_RPN_SHIFT 12
85 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
86 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
87 #define HPTE_R_N ASM_CONST(0x0000000000000004)
88 #define HPTE_R_G ASM_CONST(0x0000000000000008)
89 #define HPTE_R_M ASM_CONST(0x0000000000000010)
90 #define HPTE_R_I ASM_CONST(0x0000000000000020)
91 #define HPTE_R_W ASM_CONST(0x0000000000000040)
92 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
93 #define HPTE_R_C ASM_CONST(0x0000000000000080)
94 #define HPTE_R_R ASM_CONST(0x0000000000000100)
95 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
96
97 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
98 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
99
100 /* Values for PP (assumes Ks=0, Kp=1) */
101 #define PP_RWXX 0 /* Supervisor read/write, User none */
102 #define PP_RWRX 1 /* Supervisor read/write, User read */
103 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
104 #define PP_RXRX 3 /* Supervisor read, User read */
105 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
106
107 /* Fields for tlbiel instruction in architecture 2.06 */
108 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
109 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
110 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
111 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
112 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
113 #define TLBIEL_INVAL_SET_SHIFT 12
114
115 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
116 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
117 #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
118
119 #ifndef __ASSEMBLY__
120
121 struct hash_pte {
122 __be64 v;
123 __be64 r;
124 };
125
126 extern struct hash_pte *htab_address;
127 extern unsigned long htab_size_bytes;
128 extern unsigned long htab_hash_mask;
129
130
131 static inline int shift_to_mmu_psize(unsigned int shift)
132 {
133 int psize;
134
135 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
136 if (mmu_psize_defs[psize].shift == shift)
137 return psize;
138 return -1;
139 }
140
141 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
142 {
143 if (mmu_psize_defs[mmu_psize].shift)
144 return mmu_psize_defs[mmu_psize].shift;
145 BUG();
146 }
147
148 #endif /* __ASSEMBLY__ */
149
150 /*
151 * Segment sizes.
152 * These are the values used by hardware in the B field of
153 * SLB entries and the first dword of MMU hashtable entries.
154 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
155 */
156 #define MMU_SEGSIZE_256M 0
157 #define MMU_SEGSIZE_1T 1
158
159 /*
160 * encode page number shift.
161 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
162 * 12 bits. This enable us to address upto 76 bit va.
163 * For hpt hash from a va we can ignore the page size bits of va and for
164 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
165 * we work in all cases including 4k page size.
166 */
167 #define VPN_SHIFT 12
168
169 /*
170 * HPTE Large Page (LP) details
171 */
172 #define LP_SHIFT 12
173 #define LP_BITS 8
174 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
175
176 #ifndef __ASSEMBLY__
177
178 static inline int slb_vsid_shift(int ssize)
179 {
180 if (ssize == MMU_SEGSIZE_256M)
181 return SLB_VSID_SHIFT;
182 return SLB_VSID_SHIFT_1T;
183 }
184
185 static inline int segment_shift(int ssize)
186 {
187 if (ssize == MMU_SEGSIZE_256M)
188 return SID_SHIFT;
189 return SID_SHIFT_1T;
190 }
191
192 /*
193 * The current system page and segment sizes
194 */
195 extern int mmu_kernel_ssize;
196 extern int mmu_highuser_ssize;
197 extern u16 mmu_slb_size;
198 extern unsigned long tce_alloc_start, tce_alloc_end;
199
200 /*
201 * If the processor supports 64k normal pages but not 64k cache
202 * inhibited pages, we have to be prepared to switch processes
203 * to use 4k pages when they create cache-inhibited mappings.
204 * If this is the case, mmu_ci_restrictions will be set to 1.
205 */
206 extern int mmu_ci_restrictions;
207
208 /*
209 * This computes the AVPN and B fields of the first dword of a HPTE,
210 * for use when we want to match an existing PTE. The bottom 7 bits
211 * of the returned value are zero.
212 */
213 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
214 int ssize)
215 {
216 unsigned long v;
217 /*
218 * The AVA field omits the low-order 23 bits of the 78 bits VA.
219 * These bits are not needed in the PTE, because the
220 * low-order b of these bits are part of the byte offset
221 * into the virtual page and, if b < 23, the high-order
222 * 23-b of these bits are always used in selecting the
223 * PTEGs to be searched
224 */
225 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
226 v <<= HPTE_V_AVPN_SHIFT;
227 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
228 return v;
229 }
230
231 /*
232 * This function sets the AVPN and L fields of the HPTE appropriately
233 * using the base page size and actual page size.
234 */
235 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
236 int actual_psize, int ssize)
237 {
238 unsigned long v;
239 v = hpte_encode_avpn(vpn, base_psize, ssize);
240 if (actual_psize != MMU_PAGE_4K)
241 v |= HPTE_V_LARGE;
242 return v;
243 }
244
245 /*
246 * This function sets the ARPN, and LP fields of the HPTE appropriately
247 * for the page size. We assume the pa is already "clean" that is properly
248 * aligned for the requested page size
249 */
250 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
251 int actual_psize)
252 {
253 /* A 4K page needs no special encoding */
254 if (actual_psize == MMU_PAGE_4K)
255 return pa & HPTE_R_RPN;
256 else {
257 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
258 unsigned int shift = mmu_psize_defs[actual_psize].shift;
259 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
260 }
261 }
262
263 /*
264 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
265 */
266 static inline unsigned long hpt_vpn(unsigned long ea,
267 unsigned long vsid, int ssize)
268 {
269 unsigned long mask;
270 int s_shift = segment_shift(ssize);
271
272 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
273 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
274 }
275
276 /*
277 * This hashes a virtual address
278 */
279 static inline unsigned long hpt_hash(unsigned long vpn,
280 unsigned int shift, int ssize)
281 {
282 int mask;
283 unsigned long hash, vsid;
284
285 /* VPN_SHIFT can be atmost 12 */
286 if (ssize == MMU_SEGSIZE_256M) {
287 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
288 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
289 ((vpn & mask) >> (shift - VPN_SHIFT));
290 } else {
291 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
292 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
293 hash = vsid ^ (vsid << 25) ^
294 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
295 }
296 return hash & 0x7fffffffffUL;
297 }
298
299 #define HPTE_LOCAL_UPDATE 0x1
300 #define HPTE_NOHPTE_UPDATE 0x2
301
302 extern int __hash_page_4K(unsigned long ea, unsigned long access,
303 unsigned long vsid, pte_t *ptep, unsigned long trap,
304 unsigned long flags, int ssize, int subpage_prot);
305 extern int __hash_page_64K(unsigned long ea, unsigned long access,
306 unsigned long vsid, pte_t *ptep, unsigned long trap,
307 unsigned long flags, int ssize);
308 struct mm_struct;
309 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
310 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
311 unsigned long access, unsigned long trap,
312 unsigned long flags);
313 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
314 unsigned long dsisr);
315 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
316 pte_t *ptep, unsigned long trap, unsigned long flags,
317 int ssize, unsigned int shift, unsigned int mmu_psize);
318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 extern int __hash_page_thp(unsigned long ea, unsigned long access,
320 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
321 unsigned long flags, int ssize, unsigned int psize);
322 #else
323 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
324 unsigned long vsid, pmd_t *pmdp,
325 unsigned long trap, unsigned long flags,
326 int ssize, unsigned int psize)
327 {
328 BUG();
329 return -1;
330 }
331 #endif
332 extern void hash_failure_debug(unsigned long ea, unsigned long access,
333 unsigned long vsid, unsigned long trap,
334 int ssize, int psize, int lpsize,
335 unsigned long pte);
336 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
337 unsigned long pstart, unsigned long prot,
338 int psize, int ssize);
339 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
340 int psize, int ssize);
341 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
342 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
343
344 extern void hpte_init_native(void);
345 extern void hpte_init_lpar(void);
346 extern void hpte_init_beat(void);
347 extern void hpte_init_beat_v3(void);
348
349 extern void slb_initialize(void);
350 extern void slb_flush_and_rebolt(void);
351
352 extern void slb_vmalloc_update(void);
353 extern void slb_set_size(u16 size);
354 #endif /* __ASSEMBLY__ */
355
356 /*
357 * VSID allocation (256MB segment)
358 *
359 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
360 * from mmu context id and effective segment id of the address.
361 *
362 * For user processes max context id is limited to ((1ul << 19) - 5)
363 * for kernel space, we use the top 4 context ids to map address as below
364 * NOTE: each context only support 64TB now.
365 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
366 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
367 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
368 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
369 *
370 * The proto-VSIDs are then scrambled into real VSIDs with the
371 * multiplicative hash:
372 *
373 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
374 *
375 * VSID_MULTIPLIER is prime, so in particular it is
376 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
377 * Because the modulus is 2^n-1 we can compute it efficiently without
378 * a divide or extra multiply (see below). The scramble function gives
379 * robust scattering in the hash table (at least based on some initial
380 * results).
381 *
382 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
383 * bad address. This enables us to consolidate bad address handling in
384 * hash_page.
385 *
386 * We also need to avoid the last segment of the last context, because that
387 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
388 * because of the modulo operation in vsid scramble. But the vmemmap
389 * (which is what uses region 0xf) will never be close to 64TB in size
390 * (it's 56 bytes per page of system memory).
391 */
392
393 #define CONTEXT_BITS 19
394 #define ESID_BITS 18
395 #define ESID_BITS_1T 6
396
397 /*
398 * 256MB segment
399 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
400 * available for user + kernel mapping. The top 4 contexts are used for
401 * kernel mapping. Each segment contains 2^28 bytes. Each
402 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
403 * (19 == 37 + 28 - 46).
404 */
405 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
406
407 /*
408 * This should be computed such that protovosid * vsid_mulitplier
409 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
410 */
411 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
412 #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
413 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
414
415 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
416 #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
417 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
418
419
420 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
421
422 /*
423 * This macro generates asm code to compute the VSID scramble
424 * function. Used in slb_allocate() and do_stab_bolted. The function
425 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
426 *
427 * rt = register continaing the proto-VSID and into which the
428 * VSID will be stored
429 * rx = scratch register (clobbered)
430 *
431 * - rt and rx must be different registers
432 * - The answer will end up in the low VSID_BITS bits of rt. The higher
433 * bits may contain other garbage, so you may need to mask the
434 * result.
435 */
436 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
437 lis rx,VSID_MULTIPLIER_##size@h; \
438 ori rx,rx,VSID_MULTIPLIER_##size@l; \
439 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
440 \
441 srdi rx,rt,VSID_BITS_##size; \
442 clrldi rt,rt,(64-VSID_BITS_##size); \
443 add rt,rt,rx; /* add high and low bits */ \
444 /* NOTE: explanation based on VSID_BITS_##size = 36 \
445 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
446 * 2^36-1+2^28-1. That in particular means that if r3 >= \
447 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
448 * the bit clear, r3 already has the answer we want, if it \
449 * doesn't, the answer is the low 36 bits of r3+1. So in all \
450 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
451 addi rx,rt,1; \
452 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
453 add rt,rt,rx
454
455 /* 4 bits per slice and we have one slice per 1TB */
456 #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
457
458 #ifndef __ASSEMBLY__
459
460 #ifdef CONFIG_PPC_SUBPAGE_PROT
461 /*
462 * For the sub-page protection option, we extend the PGD with one of
463 * these. Basically we have a 3-level tree, with the top level being
464 * the protptrs array. To optimize speed and memory consumption when
465 * only addresses < 4GB are being protected, pointers to the first
466 * four pages of sub-page protection words are stored in the low_prot
467 * array.
468 * Each page of sub-page protection words protects 1GB (4 bytes
469 * protects 64k). For the 3-level tree, each page of pointers then
470 * protects 8TB.
471 */
472 struct subpage_prot_table {
473 unsigned long maxaddr; /* only addresses < this are protected */
474 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
475 unsigned int *low_prot[4];
476 };
477
478 #define SBP_L1_BITS (PAGE_SHIFT - 2)
479 #define SBP_L2_BITS (PAGE_SHIFT - 3)
480 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
481 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
482 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
483 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
484
485 extern void subpage_prot_free(struct mm_struct *mm);
486 extern void subpage_prot_init_new_context(struct mm_struct *mm);
487 #else
488 static inline void subpage_prot_free(struct mm_struct *mm) {}
489 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
490 #endif /* CONFIG_PPC_SUBPAGE_PROT */
491
492 #if 0
493 /*
494 * The code below is equivalent to this function for arguments
495 * < 2^VSID_BITS, which is all this should ever be called
496 * with. However gcc is not clever enough to compute the
497 * modulus (2^n-1) without a second multiply.
498 */
499 #define vsid_scramble(protovsid, size) \
500 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
501
502 #else /* 1 */
503 #define vsid_scramble(protovsid, size) \
504 ({ \
505 unsigned long x; \
506 x = (protovsid) * VSID_MULTIPLIER_##size; \
507 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
508 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
509 })
510 #endif /* 1 */
511
512 /* Returns the segment size indicator for a user address */
513 static inline int user_segment_size(unsigned long addr)
514 {
515 /* Use 1T segments if possible for addresses >= 1T */
516 if (addr >= (1UL << SID_SHIFT_1T))
517 return mmu_highuser_ssize;
518 return MMU_SEGSIZE_256M;
519 }
520
521 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
522 int ssize)
523 {
524 /*
525 * Bad address. We return VSID 0 for that
526 */
527 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
528 return 0;
529
530 if (ssize == MMU_SEGSIZE_256M)
531 return vsid_scramble((context << ESID_BITS)
532 | (ea >> SID_SHIFT), 256M);
533 return vsid_scramble((context << ESID_BITS_1T)
534 | (ea >> SID_SHIFT_1T), 1T);
535 }
536
537 /*
538 * This is only valid for addresses >= PAGE_OFFSET
539 *
540 * For kernel space, we use the top 4 context ids to map address as below
541 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
542 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
543 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
544 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
545 */
546 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
547 {
548 unsigned long context;
549
550 /*
551 * kernel take the top 4 context from the available range
552 */
553 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
554 return get_vsid(context, ea, ssize);
555 }
556
557 unsigned htab_shift_for_mem_size(unsigned long mem_size);
558
559 #endif /* __ASSEMBLY__ */
560
561 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
This page took 0.043112 seconds and 6 git commands to generate.