ARM: clocksource: Add support for MOXA ART SoCs
[deliverable/linux.git] / arch / powerpc / include / asm / eeh.h
1 /*
2 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
3 * Copyright 2001-2012 IBM Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #ifndef _POWERPC_EEH_H
21 #define _POWERPC_EEH_H
22 #ifdef __KERNEL__
23
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 #include <linux/time.h>
28
29 struct pci_dev;
30 struct pci_bus;
31 struct device_node;
32
33 #ifdef CONFIG_EEH
34
35 /*
36 * The struct is used to trace PE related EEH functionality.
37 * In theory, there will have one instance of the struct to
38 * be created against particular PE. In nature, PEs corelate
39 * to each other. the struct has to reflect that hierarchy in
40 * order to easily pick up those affected PEs when one particular
41 * PE has EEH errors.
42 *
43 * Also, one particular PE might be composed of PCI device, PCI
44 * bus and its subordinate components. The struct also need ship
45 * the information. Further more, one particular PE is only meaingful
46 * in the corresponding PHB. Therefore, the root PEs should be created
47 * against existing PHBs in on-to-one fashion.
48 */
49 #define EEH_PE_INVALID (1 << 0) /* Invalid */
50 #define EEH_PE_PHB (1 << 1) /* PHB PE */
51 #define EEH_PE_DEVICE (1 << 2) /* Device PE */
52 #define EEH_PE_BUS (1 << 3) /* Bus PE */
53
54 #define EEH_PE_ISOLATED (1 << 0) /* Isolated PE */
55 #define EEH_PE_RECOVERING (1 << 1) /* Recovering PE */
56 #define EEH_PE_PHB_DEAD (1 << 2) /* Dead PHB */
57
58 struct eeh_pe {
59 int type; /* PE type: PHB/Bus/Device */
60 int state; /* PE EEH dependent mode */
61 int config_addr; /* Traditional PCI address */
62 int addr; /* PE configuration address */
63 struct pci_controller *phb; /* Associated PHB */
64 struct pci_bus *bus; /* Top PCI bus for bus PE */
65 int check_count; /* Times of ignored error */
66 int freeze_count; /* Times of froze up */
67 struct timeval tstamp; /* Time on first-time freeze */
68 int false_positives; /* Times of reported #ff's */
69 struct eeh_pe *parent; /* Parent PE */
70 struct list_head child_list; /* Link PE to the child list */
71 struct list_head edevs; /* Link list of EEH devices */
72 struct list_head child; /* Child PEs */
73 };
74
75 #define eeh_pe_for_each_dev(pe, edev) \
76 list_for_each_entry(edev, &pe->edevs, list)
77
78 /*
79 * The struct is used to trace EEH state for the associated
80 * PCI device node or PCI device. In future, it might
81 * represent PE as well so that the EEH device to form
82 * another tree except the currently existing tree of PCI
83 * buses and PCI devices
84 */
85 #define EEH_DEV_IRQ_DISABLED (1<<0) /* Interrupt disabled */
86
87 struct eeh_dev {
88 int mode; /* EEH mode */
89 int class_code; /* Class code of the device */
90 int config_addr; /* Config address */
91 int pe_config_addr; /* PE config address */
92 u32 config_space[16]; /* Saved PCI config space */
93 struct eeh_pe *pe; /* Associated PE */
94 struct list_head list; /* Form link list in the PE */
95 struct pci_controller *phb; /* Associated PHB */
96 struct device_node *dn; /* Associated device node */
97 struct pci_dev *pdev; /* Associated PCI device */
98 };
99
100 static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev)
101 {
102 return edev ? edev->dn : NULL;
103 }
104
105 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
106 {
107 return edev ? edev->pdev : NULL;
108 }
109
110 /*
111 * The struct is used to trace the registered EEH operation
112 * callback functions. Actually, those operation callback
113 * functions are heavily platform dependent. That means the
114 * platform should register its own EEH operation callback
115 * functions before any EEH further operations.
116 */
117 #define EEH_OPT_DISABLE 0 /* EEH disable */
118 #define EEH_OPT_ENABLE 1 /* EEH enable */
119 #define EEH_OPT_THAW_MMIO 2 /* MMIO enable */
120 #define EEH_OPT_THAW_DMA 3 /* DMA enable */
121 #define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */
122 #define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */
123 #define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */
124 #define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */
125 #define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */
126 #define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */
127 #define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */
128 #define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */
129 #define EEH_RESET_HOT 1 /* Hot reset */
130 #define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */
131 #define EEH_LOG_TEMP 1 /* EEH temporary error log */
132 #define EEH_LOG_PERM 2 /* EEH permanent error log */
133
134 struct eeh_ops {
135 char *name;
136 int (*init)(void);
137 int (*post_init)(void);
138 void* (*of_probe)(struct device_node *dn, void *flag);
139 int (*dev_probe)(struct pci_dev *dev, void *flag);
140 int (*set_option)(struct eeh_pe *pe, int option);
141 int (*get_pe_addr)(struct eeh_pe *pe);
142 int (*get_state)(struct eeh_pe *pe, int *state);
143 int (*reset)(struct eeh_pe *pe, int option);
144 int (*wait_state)(struct eeh_pe *pe, int max_wait);
145 int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
146 int (*configure_bridge)(struct eeh_pe *pe);
147 int (*read_config)(struct device_node *dn, int where, int size, u32 *val);
148 int (*write_config)(struct device_node *dn, int where, int size, u32 val);
149 int (*next_error)(struct eeh_pe **pe);
150 };
151
152 extern struct eeh_ops *eeh_ops;
153 extern int eeh_subsystem_enabled;
154 extern raw_spinlock_t confirm_error_lock;
155 extern int eeh_probe_mode;
156
157 #define EEH_PROBE_MODE_DEV (1<<0) /* From PCI device */
158 #define EEH_PROBE_MODE_DEVTREE (1<<1) /* From device tree */
159
160 static inline void eeh_probe_mode_set(int flag)
161 {
162 eeh_probe_mode = flag;
163 }
164
165 static inline int eeh_probe_mode_devtree(void)
166 {
167 return (eeh_probe_mode == EEH_PROBE_MODE_DEVTREE);
168 }
169
170 static inline int eeh_probe_mode_dev(void)
171 {
172 return (eeh_probe_mode == EEH_PROBE_MODE_DEV);
173 }
174
175 static inline void eeh_serialize_lock(unsigned long *flags)
176 {
177 raw_spin_lock_irqsave(&confirm_error_lock, *flags);
178 }
179
180 static inline void eeh_serialize_unlock(unsigned long flags)
181 {
182 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
183 }
184
185 /*
186 * Max number of EEH freezes allowed before we consider the device
187 * to be permanently disabled.
188 */
189 #define EEH_MAX_ALLOWED_FREEZES 5
190
191 typedef void *(*eeh_traverse_func)(void *data, void *flag);
192 int eeh_phb_pe_create(struct pci_controller *phb);
193 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
194 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev);
195 int eeh_add_to_parent_pe(struct eeh_dev *edev);
196 int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe);
197 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 eeh_traverse_func fn, void *flag);
200 void eeh_pe_restore_bars(struct eeh_pe *pe);
201 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
202
203 void *eeh_dev_init(struct device_node *dn, void *data);
204 void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
205 int eeh_init(void);
206 int __init eeh_ops_register(struct eeh_ops *ops);
207 int __exit eeh_ops_unregister(const char *name);
208 unsigned long eeh_check_failure(const volatile void __iomem *token,
209 unsigned long val);
210 int eeh_dev_check_failure(struct eeh_dev *edev);
211 void eeh_addr_cache_build(void);
212 void eeh_add_device_tree_early(struct device_node *);
213 void eeh_add_device_tree_late(struct pci_bus *);
214 void eeh_add_sysfs_files(struct pci_bus *);
215 void eeh_remove_bus_device(struct pci_dev *, int);
216
217 /**
218 * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
219 *
220 * If this macro yields TRUE, the caller relays to eeh_check_failure()
221 * which does further tests out of line.
222 */
223 #define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_subsystem_enabled)
224
225 /*
226 * Reads from a device which has been isolated by EEH will return
227 * all 1s. This macro gives an all-1s value of the given size (in
228 * bytes: 1, 2, or 4) for comparing with the result of a read.
229 */
230 #define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8))
231
232 #else /* !CONFIG_EEH */
233
234 static inline int eeh_init(void)
235 {
236 return 0;
237 }
238
239 static inline void *eeh_dev_init(struct device_node *dn, void *data)
240 {
241 return NULL;
242 }
243
244 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
245
246 static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
247 {
248 return val;
249 }
250
251 #define eeh_dev_check_failure(x) (0)
252
253 static inline void eeh_addr_cache_build(void) { }
254
255 static inline void eeh_add_device_tree_early(struct device_node *dn) { }
256
257 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
258
259 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
260
261 static inline void eeh_remove_bus_device(struct pci_dev *dev, int purge_pe) { }
262
263 #define EEH_POSSIBLE_ERROR(val, type) (0)
264 #define EEH_IO_ERROR_VALUE(size) (-1UL)
265 #endif /* CONFIG_EEH */
266
267 #ifdef CONFIG_PPC64
268 /*
269 * MMIO read/write operations with EEH support.
270 */
271 static inline u8 eeh_readb(const volatile void __iomem *addr)
272 {
273 u8 val = in_8(addr);
274 if (EEH_POSSIBLE_ERROR(val, u8))
275 return eeh_check_failure(addr, val);
276 return val;
277 }
278
279 static inline u16 eeh_readw(const volatile void __iomem *addr)
280 {
281 u16 val = in_le16(addr);
282 if (EEH_POSSIBLE_ERROR(val, u16))
283 return eeh_check_failure(addr, val);
284 return val;
285 }
286
287 static inline u32 eeh_readl(const volatile void __iomem *addr)
288 {
289 u32 val = in_le32(addr);
290 if (EEH_POSSIBLE_ERROR(val, u32))
291 return eeh_check_failure(addr, val);
292 return val;
293 }
294
295 static inline u64 eeh_readq(const volatile void __iomem *addr)
296 {
297 u64 val = in_le64(addr);
298 if (EEH_POSSIBLE_ERROR(val, u64))
299 return eeh_check_failure(addr, val);
300 return val;
301 }
302
303 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
304 {
305 u16 val = in_be16(addr);
306 if (EEH_POSSIBLE_ERROR(val, u16))
307 return eeh_check_failure(addr, val);
308 return val;
309 }
310
311 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
312 {
313 u32 val = in_be32(addr);
314 if (EEH_POSSIBLE_ERROR(val, u32))
315 return eeh_check_failure(addr, val);
316 return val;
317 }
318
319 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
320 {
321 u64 val = in_be64(addr);
322 if (EEH_POSSIBLE_ERROR(val, u64))
323 return eeh_check_failure(addr, val);
324 return val;
325 }
326
327 static inline void eeh_memcpy_fromio(void *dest, const
328 volatile void __iomem *src,
329 unsigned long n)
330 {
331 _memcpy_fromio(dest, src, n);
332
333 /* Look for ffff's here at dest[n]. Assume that at least 4 bytes
334 * were copied. Check all four bytes.
335 */
336 if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
337 eeh_check_failure(src, *((u32 *)(dest + n - 4)));
338 }
339
340 /* in-string eeh macros */
341 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
342 int ns)
343 {
344 _insb(addr, buf, ns);
345 if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
346 eeh_check_failure(addr, *(u8*)buf);
347 }
348
349 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
350 int ns)
351 {
352 _insw(addr, buf, ns);
353 if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
354 eeh_check_failure(addr, *(u16*)buf);
355 }
356
357 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
358 int nl)
359 {
360 _insl(addr, buf, nl);
361 if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
362 eeh_check_failure(addr, *(u32*)buf);
363 }
364
365 #endif /* CONFIG_PPC64 */
366 #endif /* __KERNEL__ */
367 #endif /* _POWERPC_EEH_H */
This page took 0.039904 seconds and 5 git commands to generate.