ACPI / LPSS: make code less confusing for reader
[deliverable/linux.git] / arch / powerpc / include / asm / mmu-hash64.h
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17
18 /*
19 * This is necessary to get the definition of PGTABLE_RANGE which we
20 * need for various slices related matters. Note that this isn't the
21 * complete pgtable.h but only a portion of it.
22 */
23 #include <asm/pgtable-ppc64.h>
24
25 /*
26 * Segment table
27 */
28
29 #define STE_ESID_V 0x80
30 #define STE_ESID_KS 0x20
31 #define STE_ESID_KP 0x10
32 #define STE_ESID_N 0x08
33
34 #define STE_VSID_SHIFT 12
35
36 /* Location of cpu0's segment table */
37 #define STAB0_PAGE 0x8
38 #define STAB0_OFFSET (STAB0_PAGE << 12)
39 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
40
41 #ifndef __ASSEMBLY__
42 extern char initial_stab[];
43 #endif /* ! __ASSEMBLY */
44
45 /*
46 * SLB
47 */
48
49 #define SLB_NUM_BOLTED 3
50 #define SLB_CACHE_ENTRIES 8
51 #define SLB_MIN_SIZE 32
52
53 /* Bits in the SLB ESID word */
54 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
55
56 /* Bits in the SLB VSID word */
57 #define SLB_VSID_SHIFT 12
58 #define SLB_VSID_SHIFT_1T 24
59 #define SLB_VSID_SSIZE_SHIFT 62
60 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
61 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
62 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
63 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
64 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
65 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
66 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
67 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
68 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
69 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
70 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
71 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
72 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
73 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
74
75 #define SLB_VSID_KERNEL (SLB_VSID_KP)
76 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
77
78 #define SLBIE_C (0x08000000)
79 #define SLBIE_SSIZE_SHIFT 25
80
81 /*
82 * Hash table
83 */
84
85 #define HPTES_PER_GROUP 8
86
87 #define HPTE_V_SSIZE_SHIFT 62
88 #define HPTE_V_AVPN_SHIFT 7
89 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
90 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
92 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
93 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
94 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
95 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
96 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
97
98 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
99 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
100 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
101 #define HPTE_R_RPN_SHIFT 12
102 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
103 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
104 #define HPTE_R_N ASM_CONST(0x0000000000000004)
105 #define HPTE_R_G ASM_CONST(0x0000000000000008)
106 #define HPTE_R_M ASM_CONST(0x0000000000000010)
107 #define HPTE_R_I ASM_CONST(0x0000000000000020)
108 #define HPTE_R_W ASM_CONST(0x0000000000000040)
109 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
110 #define HPTE_R_C ASM_CONST(0x0000000000000080)
111 #define HPTE_R_R ASM_CONST(0x0000000000000100)
112 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
113
114 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
115 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
116
117 /* Values for PP (assumes Ks=0, Kp=1) */
118 #define PP_RWXX 0 /* Supervisor read/write, User none */
119 #define PP_RWRX 1 /* Supervisor read/write, User read */
120 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
121 #define PP_RXRX 3 /* Supervisor read, User read */
122 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
123
124 /* Fields for tlbiel instruction in architecture 2.06 */
125 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
126 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
127 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
128 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
129 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
130 #define TLBIEL_INVAL_SET_SHIFT 12
131
132 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
133
134 #ifndef __ASSEMBLY__
135
136 struct hash_pte {
137 unsigned long v;
138 unsigned long r;
139 };
140
141 extern struct hash_pte *htab_address;
142 extern unsigned long htab_size_bytes;
143 extern unsigned long htab_hash_mask;
144
145 /*
146 * Page size definition
147 *
148 * shift : is the "PAGE_SHIFT" value for that page size
149 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
150 * directly to a slbmte "vsid" value
151 * penc : is the HPTE encoding mask for the "LP" field:
152 *
153 */
154 struct mmu_psize_def
155 {
156 unsigned int shift; /* number of bits */
157 unsigned int penc; /* HPTE encoding */
158 unsigned int tlbiel; /* tlbiel supported for that page size */
159 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
160 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
161 };
162
163 #endif /* __ASSEMBLY__ */
164
165 /*
166 * Segment sizes.
167 * These are the values used by hardware in the B field of
168 * SLB entries and the first dword of MMU hashtable entries.
169 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
170 */
171 #define MMU_SEGSIZE_256M 0
172 #define MMU_SEGSIZE_1T 1
173
174 /*
175 * encode page number shift.
176 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
177 * 12 bits. This enable us to address upto 76 bit va.
178 * For hpt hash from a va we can ignore the page size bits of va and for
179 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
180 * we work in all cases including 4k page size.
181 */
182 #define VPN_SHIFT 12
183
184 #ifndef __ASSEMBLY__
185
186 static inline int segment_shift(int ssize)
187 {
188 if (ssize == MMU_SEGSIZE_256M)
189 return SID_SHIFT;
190 return SID_SHIFT_1T;
191 }
192
193 /*
194 * The current system page and segment sizes
195 */
196 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
197 extern int mmu_linear_psize;
198 extern int mmu_virtual_psize;
199 extern int mmu_vmalloc_psize;
200 extern int mmu_vmemmap_psize;
201 extern int mmu_io_psize;
202 extern int mmu_kernel_ssize;
203 extern int mmu_highuser_ssize;
204 extern u16 mmu_slb_size;
205 extern unsigned long tce_alloc_start, tce_alloc_end;
206
207 /*
208 * If the processor supports 64k normal pages but not 64k cache
209 * inhibited pages, we have to be prepared to switch processes
210 * to use 4k pages when they create cache-inhibited mappings.
211 * If this is the case, mmu_ci_restrictions will be set to 1.
212 */
213 extern int mmu_ci_restrictions;
214
215 /*
216 * This computes the AVPN and B fields of the first dword of a HPTE,
217 * for use when we want to match an existing PTE. The bottom 7 bits
218 * of the returned value are zero.
219 */
220 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
221 int ssize)
222 {
223 unsigned long v;
224 /*
225 * The AVA field omits the low-order 23 bits of the 78 bits VA.
226 * These bits are not needed in the PTE, because the
227 * low-order b of these bits are part of the byte offset
228 * into the virtual page and, if b < 23, the high-order
229 * 23-b of these bits are always used in selecting the
230 * PTEGs to be searched
231 */
232 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
233 v <<= HPTE_V_AVPN_SHIFT;
234 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
235 return v;
236 }
237
238 /*
239 * This function sets the AVPN and L fields of the HPTE appropriately
240 * for the page size
241 */
242 static inline unsigned long hpte_encode_v(unsigned long vpn,
243 int psize, int ssize)
244 {
245 unsigned long v;
246 v = hpte_encode_avpn(vpn, psize, ssize);
247 if (psize != MMU_PAGE_4K)
248 v |= HPTE_V_LARGE;
249 return v;
250 }
251
252 /*
253 * This function sets the ARPN, and LP fields of the HPTE appropriately
254 * for the page size. We assume the pa is already "clean" that is properly
255 * aligned for the requested page size
256 */
257 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
258 {
259 unsigned long r;
260
261 /* A 4K page needs no special encoding */
262 if (psize == MMU_PAGE_4K)
263 return pa & HPTE_R_RPN;
264 else {
265 unsigned int penc = mmu_psize_defs[psize].penc;
266 unsigned int shift = mmu_psize_defs[psize].shift;
267 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
268 }
269 return r;
270 }
271
272 /*
273 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
274 */
275 static inline unsigned long hpt_vpn(unsigned long ea,
276 unsigned long vsid, int ssize)
277 {
278 unsigned long mask;
279 int s_shift = segment_shift(ssize);
280
281 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
282 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
283 }
284
285 /*
286 * This hashes a virtual address
287 */
288 static inline unsigned long hpt_hash(unsigned long vpn,
289 unsigned int shift, int ssize)
290 {
291 int mask;
292 unsigned long hash, vsid;
293
294 /* VPN_SHIFT can be atmost 12 */
295 if (ssize == MMU_SEGSIZE_256M) {
296 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
297 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
298 ((vpn & mask) >> (shift - VPN_SHIFT));
299 } else {
300 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
301 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
302 hash = vsid ^ (vsid << 25) ^
303 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
304 }
305 return hash & 0x7fffffffffUL;
306 }
307
308 extern int __hash_page_4K(unsigned long ea, unsigned long access,
309 unsigned long vsid, pte_t *ptep, unsigned long trap,
310 unsigned int local, int ssize, int subpage_prot);
311 extern int __hash_page_64K(unsigned long ea, unsigned long access,
312 unsigned long vsid, pte_t *ptep, unsigned long trap,
313 unsigned int local, int ssize);
314 struct mm_struct;
315 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
316 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
317 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
318 pte_t *ptep, unsigned long trap, int local, int ssize,
319 unsigned int shift, unsigned int mmu_psize);
320 extern void hash_failure_debug(unsigned long ea, unsigned long access,
321 unsigned long vsid, unsigned long trap,
322 int ssize, int psize, unsigned long pte);
323 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
324 unsigned long pstart, unsigned long prot,
325 int psize, int ssize);
326 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
327 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
328
329 extern void hpte_init_native(void);
330 extern void hpte_init_lpar(void);
331 extern void hpte_init_beat(void);
332 extern void hpte_init_beat_v3(void);
333
334 extern void stabs_alloc(void);
335 extern void slb_initialize(void);
336 extern void slb_flush_and_rebolt(void);
337 extern void stab_initialize(unsigned long stab);
338
339 extern void slb_vmalloc_update(void);
340 extern void slb_set_size(u16 size);
341 #endif /* __ASSEMBLY__ */
342
343 /*
344 * VSID allocation (256MB segment)
345 *
346 * We first generate a 38-bit "proto-VSID". For kernel addresses this
347 * is equal to the ESID | 1 << 37, for user addresses it is:
348 * (context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
349 *
350 * This splits the proto-VSID into the below range
351 * 0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
352 * 2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
353 *
354 * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
355 * That is, we assign half of the space to user processes and half
356 * to the kernel.
357 *
358 * The proto-VSIDs are then scrambled into real VSIDs with the
359 * multiplicative hash:
360 *
361 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
362 *
363 * VSID_MULTIPLIER is prime, so in particular it is
364 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
365 * Because the modulus is 2^n-1 we can compute it efficiently without
366 * a divide or extra multiply (see below).
367 *
368 * This scheme has several advantages over older methods:
369 *
370 * - We have VSIDs allocated for every kernel address
371 * (i.e. everything above 0xC000000000000000), except the very top
372 * segment, which simplifies several things.
373 *
374 * - We allow for USER_ESID_BITS significant bits of ESID and
375 * CONTEXT_BITS bits of context for user addresses.
376 * i.e. 64T (46 bits) of address space for up to half a million contexts.
377 *
378 * - The scramble function gives robust scattering in the hash
379 * table (at least based on some initial results). The previous
380 * method was more susceptible to pathological cases giving excessive
381 * hash collisions.
382 */
383
384 /*
385 * This should be computed such that protovosid * vsid_mulitplier
386 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
387 */
388 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
389 #define VSID_BITS_256M 38
390 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
391
392 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
393 #define VSID_BITS_1T 26
394 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
395
396 #define CONTEXT_BITS 19
397 #define USER_ESID_BITS 18
398 #define USER_ESID_BITS_1T 6
399
400 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
401
402 /*
403 * This macro generates asm code to compute the VSID scramble
404 * function. Used in slb_allocate() and do_stab_bolted. The function
405 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
406 *
407 * rt = register continaing the proto-VSID and into which the
408 * VSID will be stored
409 * rx = scratch register (clobbered)
410 *
411 * - rt and rx must be different registers
412 * - The answer will end up in the low VSID_BITS bits of rt. The higher
413 * bits may contain other garbage, so you may need to mask the
414 * result.
415 */
416 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
417 lis rx,VSID_MULTIPLIER_##size@h; \
418 ori rx,rx,VSID_MULTIPLIER_##size@l; \
419 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
420 \
421 srdi rx,rt,VSID_BITS_##size; \
422 clrldi rt,rt,(64-VSID_BITS_##size); \
423 add rt,rt,rx; /* add high and low bits */ \
424 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
425 * 2^36-1+2^28-1. That in particular means that if r3 >= \
426 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
427 * the bit clear, r3 already has the answer we want, if it \
428 * doesn't, the answer is the low 36 bits of r3+1. So in all \
429 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
430 addi rx,rt,1; \
431 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
432 add rt,rt,rx
433
434 /* 4 bits per slice and we have one slice per 1TB */
435 #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
436
437 #ifndef __ASSEMBLY__
438
439 #ifdef CONFIG_PPC_SUBPAGE_PROT
440 /*
441 * For the sub-page protection option, we extend the PGD with one of
442 * these. Basically we have a 3-level tree, with the top level being
443 * the protptrs array. To optimize speed and memory consumption when
444 * only addresses < 4GB are being protected, pointers to the first
445 * four pages of sub-page protection words are stored in the low_prot
446 * array.
447 * Each page of sub-page protection words protects 1GB (4 bytes
448 * protects 64k). For the 3-level tree, each page of pointers then
449 * protects 8TB.
450 */
451 struct subpage_prot_table {
452 unsigned long maxaddr; /* only addresses < this are protected */
453 unsigned int **protptrs[2];
454 unsigned int *low_prot[4];
455 };
456
457 #define SBP_L1_BITS (PAGE_SHIFT - 2)
458 #define SBP_L2_BITS (PAGE_SHIFT - 3)
459 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
460 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
461 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
462 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
463
464 extern void subpage_prot_free(struct mm_struct *mm);
465 extern void subpage_prot_init_new_context(struct mm_struct *mm);
466 #else
467 static inline void subpage_prot_free(struct mm_struct *mm) {}
468 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
469 #endif /* CONFIG_PPC_SUBPAGE_PROT */
470
471 typedef unsigned long mm_context_id_t;
472 struct spinlock;
473
474 typedef struct {
475 mm_context_id_t id;
476 u16 user_psize; /* page size index */
477
478 #ifdef CONFIG_PPC_MM_SLICES
479 u64 low_slices_psize; /* SLB page size encodings */
480 unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
481 #else
482 u16 sllp; /* SLB page size encoding */
483 #endif
484 unsigned long vdso_base;
485 #ifdef CONFIG_PPC_SUBPAGE_PROT
486 struct subpage_prot_table spt;
487 #endif /* CONFIG_PPC_SUBPAGE_PROT */
488 #ifdef CONFIG_PPC_ICSWX
489 struct spinlock *cop_lockp; /* guard acop and cop_pid */
490 unsigned long acop; /* mask of enabled coprocessor types */
491 unsigned int cop_pid; /* pid value used with coprocessors */
492 #endif /* CONFIG_PPC_ICSWX */
493 } mm_context_t;
494
495
496 #if 0
497 /*
498 * The code below is equivalent to this function for arguments
499 * < 2^VSID_BITS, which is all this should ever be called
500 * with. However gcc is not clever enough to compute the
501 * modulus (2^n-1) without a second multiply.
502 */
503 #define vsid_scramble(protovsid, size) \
504 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
505
506 #else /* 1 */
507 #define vsid_scramble(protovsid, size) \
508 ({ \
509 unsigned long x; \
510 x = (protovsid) * VSID_MULTIPLIER_##size; \
511 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
512 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
513 })
514 #endif /* 1 */
515
516 /*
517 * This is only valid for addresses >= PAGE_OFFSET
518 * The proto-VSID space is divided into two class
519 * User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
520 * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
521 *
522 * With KERNEL_START at 0xc000000000000000, the proto vsid for
523 * the kernel ends up with 0xc00000000 (36 bits). With 64TB
524 * support we need to have kernel proto-VSID in the
525 * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
526 */
527 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
528 {
529 unsigned long proto_vsid;
530 /*
531 * We need to make sure proto_vsid for the kernel is
532 * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
533 */
534 if (ssize == MMU_SEGSIZE_256M) {
535 proto_vsid = ea >> SID_SHIFT;
536 proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
537 return vsid_scramble(proto_vsid, 256M);
538 }
539 proto_vsid = ea >> SID_SHIFT_1T;
540 proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
541 return vsid_scramble(proto_vsid, 1T);
542 }
543
544 /* Returns the segment size indicator for a user address */
545 static inline int user_segment_size(unsigned long addr)
546 {
547 /* Use 1T segments if possible for addresses >= 1T */
548 if (addr >= (1UL << SID_SHIFT_1T))
549 return mmu_highuser_ssize;
550 return MMU_SEGSIZE_256M;
551 }
552
553 /* This is only valid for user addresses (which are below 2^44) */
554 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
555 int ssize)
556 {
557 if (ssize == MMU_SEGSIZE_256M)
558 return vsid_scramble((context << USER_ESID_BITS)
559 | (ea >> SID_SHIFT), 256M);
560 return vsid_scramble((context << USER_ESID_BITS_1T)
561 | (ea >> SID_SHIFT_1T), 1T);
562 }
563
564 #endif /* __ASSEMBLY__ */
565
566 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
This page took 0.059865 seconds and 5 git commands to generate.