powerpc: Minor cleanups of kernel virt address space definitions
[deliverable/linux.git] / arch / powerpc / include / asm / pgtable-ppc32.h
1 #ifndef _ASM_POWERPC_PGTABLE_PPC32_H
2 #define _ASM_POWERPC_PGTABLE_PPC32_H
3
4 #include <asm-generic/pgtable-nopmd.h>
5
6 #ifndef __ASSEMBLY__
7 #include <linux/sched.h>
8 #include <linux/threads.h>
9 #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
10
11 extern unsigned long va_to_phys(unsigned long address);
12 extern pte_t *va_to_pte(unsigned long address);
13 extern unsigned long ioremap_bot;
14
15 #ifdef CONFIG_44x
16 extern int icache_44x_need_flush;
17 #endif
18
19 #endif /* __ASSEMBLY__ */
20
21 /*
22 * The normal case is that PTEs are 32-bits and we have a 1-page
23 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
24 *
25 * For any >32-bit physical address platform, we can use the following
26 * two level page table layout where the pgdir is 8KB and the MS 13 bits
27 * are an index to the second level table. The combined pgdir/pmd first
28 * level has 2048 entries and the second level has 512 64-bit PTE entries.
29 * -Matt
30 */
31 /* PGDIR_SHIFT determines what a top-level page table entry can map */
32 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
33 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
34 #define PGDIR_MASK (~(PGDIR_SIZE-1))
35
36 /*
37 * entries per page directory level: our page-table tree is two-level, so
38 * we don't really have any PMD directory.
39 */
40 #ifndef __ASSEMBLY__
41 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT)
42 #define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
43 #endif /* __ASSEMBLY__ */
44
45 #define PTRS_PER_PTE (1 << PTE_SHIFT)
46 #define PTRS_PER_PMD 1
47 #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
48
49 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
50 #define FIRST_USER_ADDRESS 0
51
52 #define pte_ERROR(e) \
53 printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
54 (unsigned long long)pte_val(e))
55 #define pgd_ERROR(e) \
56 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
57
58 /*
59 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
60 * value (for now) on others, from where we can start layout kernel
61 * virtual space that goes below PKMAP and FIXMAP
62 */
63 #ifdef CONFIG_HIGHMEM
64 #define KVIRT_TOP PKMAP_BASE
65 #else
66 #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
67 #endif
68
69 /*
70 * ioremap_bot starts at that address. Early ioremaps move down from there,
71 * until mem_init() at which point this becomes the top of the vmalloc
72 * and ioremap space
73 */
74 #define IOREMAP_TOP KVIRT_TOP
75
76 /*
77 * Just any arbitrary offset to the start of the vmalloc VM area: the
78 * current 16MB value just means that there will be a 64MB "hole" after the
79 * physical memory until the kernel virtual memory starts. That means that
80 * any out-of-bounds memory accesses will hopefully be caught.
81 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
82 * area for the same reason. ;)
83 *
84 * We no longer map larger than phys RAM with the BATs so we don't have
85 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
86 * about clashes between our early calls to ioremap() that start growing down
87 * from ioremap_base being run into the VM area allocations (growing upwards
88 * from VMALLOC_START). For this reason we have ioremap_bot to check when
89 * we actually run into our mappings setup in the early boot with the VM
90 * system. This really does become a problem for machines with good amounts
91 * of RAM. -- Cort
92 */
93 #define VMALLOC_OFFSET (0x1000000) /* 16M */
94 #ifdef PPC_PIN_SIZE
95 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
96 #else
97 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
98 #endif
99 #define VMALLOC_END ioremap_bot
100
101 /*
102 * Bits in a linux-style PTE. These match the bits in the
103 * (hardware-defined) PowerPC PTE as closely as possible.
104 */
105
106 #if defined(CONFIG_40x)
107 #include <asm/pte-40x.h>
108 #elif defined(CONFIG_44x)
109 #include <asm/pte-44x.h>
110 #elif defined(CONFIG_FSL_BOOKE)
111 #include <asm/pte-fsl-booke.h>
112 #elif defined(CONFIG_8xx)
113 #include <asm/pte-8xx.h>
114 #else /* CONFIG_6xx */
115 #include <asm/pte-hash32.h>
116 #endif
117
118 /* And here we include common definitions */
119 #include <asm/pte-common.h>
120
121 #ifndef __ASSEMBLY__
122
123 #define pte_clear(mm, addr, ptep) \
124 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
125
126 #define pmd_none(pmd) (!pmd_val(pmd))
127 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
128 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
129 #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
130
131 /*
132 * When flushing the tlb entry for a page, we also need to flush the hash
133 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
134 */
135 extern int flush_hash_pages(unsigned context, unsigned long va,
136 unsigned long pmdval, int count);
137
138 /* Add an HPTE to the hash table */
139 extern void add_hash_page(unsigned context, unsigned long va,
140 unsigned long pmdval);
141
142 /* Flush an entry from the TLB/hash table */
143 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
144 unsigned long address);
145
146 /*
147 * PTE updates. This function is called whenever an existing
148 * valid PTE is updated. This does -not- include set_pte_at()
149 * which nowadays only sets a new PTE.
150 *
151 * Depending on the type of MMU, we may need to use atomic updates
152 * and the PTE may be either 32 or 64 bit wide. In the later case,
153 * when using atomic updates, only the low part of the PTE is
154 * accessed atomically.
155 *
156 * In addition, on 44x, we also maintain a global flag indicating
157 * that an executable user mapping was modified, which is needed
158 * to properly flush the virtually tagged instruction cache of
159 * those implementations.
160 */
161 #ifndef CONFIG_PTE_64BIT
162 static inline unsigned long pte_update(pte_t *p,
163 unsigned long clr,
164 unsigned long set)
165 {
166 #ifdef PTE_ATOMIC_UPDATES
167 unsigned long old, tmp;
168
169 __asm__ __volatile__("\
170 1: lwarx %0,0,%3\n\
171 andc %1,%0,%4\n\
172 or %1,%1,%5\n"
173 PPC405_ERR77(0,%3)
174 " stwcx. %1,0,%3\n\
175 bne- 1b"
176 : "=&r" (old), "=&r" (tmp), "=m" (*p)
177 : "r" (p), "r" (clr), "r" (set), "m" (*p)
178 : "cc" );
179 #else /* PTE_ATOMIC_UPDATES */
180 unsigned long old = pte_val(*p);
181 *p = __pte((old & ~clr) | set);
182 #endif /* !PTE_ATOMIC_UPDATES */
183
184 #ifdef CONFIG_44x
185 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
186 icache_44x_need_flush = 1;
187 #endif
188 return old;
189 }
190 #else /* CONFIG_PTE_64BIT */
191 static inline unsigned long long pte_update(pte_t *p,
192 unsigned long clr,
193 unsigned long set)
194 {
195 #ifdef PTE_ATOMIC_UPDATES
196 unsigned long long old;
197 unsigned long tmp;
198
199 __asm__ __volatile__("\
200 1: lwarx %L0,0,%4\n\
201 lwzx %0,0,%3\n\
202 andc %1,%L0,%5\n\
203 or %1,%1,%6\n"
204 PPC405_ERR77(0,%3)
205 " stwcx. %1,0,%4\n\
206 bne- 1b"
207 : "=&r" (old), "=&r" (tmp), "=m" (*p)
208 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
209 : "cc" );
210 #else /* PTE_ATOMIC_UPDATES */
211 unsigned long long old = pte_val(*p);
212 *p = __pte((old & ~(unsigned long long)clr) | set);
213 #endif /* !PTE_ATOMIC_UPDATES */
214
215 #ifdef CONFIG_44x
216 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
217 icache_44x_need_flush = 1;
218 #endif
219 return old;
220 }
221 #endif /* CONFIG_PTE_64BIT */
222
223 /*
224 * 2.6 calls this without flushing the TLB entry; this is wrong
225 * for our hash-based implementation, we fix that up here.
226 */
227 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
228 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
229 {
230 unsigned long old;
231 old = pte_update(ptep, _PAGE_ACCESSED, 0);
232 #if _PAGE_HASHPTE != 0
233 if (old & _PAGE_HASHPTE) {
234 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
235 flush_hash_pages(context, addr, ptephys, 1);
236 }
237 #endif
238 return (old & _PAGE_ACCESSED) != 0;
239 }
240 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
241 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
242
243 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
244 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
245 pte_t *ptep)
246 {
247 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
248 }
249
250 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
251 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
252 pte_t *ptep)
253 {
254 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
255 }
256 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
257 unsigned long addr, pte_t *ptep)
258 {
259 ptep_set_wrprotect(mm, addr, ptep);
260 }
261
262
263 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
264 {
265 unsigned long bits = pte_val(entry) &
266 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW |
267 _PAGE_HWEXEC | _PAGE_EXEC);
268 pte_update(ptep, 0, bits);
269 }
270
271 #define __HAVE_ARCH_PTE_SAME
272 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
273
274 /*
275 * Note that on Book E processors, the pmd contains the kernel virtual
276 * (lowmem) address of the pte page. The physical address is less useful
277 * because everything runs with translation enabled (even the TLB miss
278 * handler). On everything else the pmd contains the physical address
279 * of the pte page. -- paulus
280 */
281 #ifndef CONFIG_BOOKE
282 #define pmd_page_vaddr(pmd) \
283 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
284 #define pmd_page(pmd) \
285 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
286 #else
287 #define pmd_page_vaddr(pmd) \
288 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
289 #define pmd_page(pmd) \
290 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
291 #endif
292
293 /* to find an entry in a kernel page-table-directory */
294 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
295
296 /* to find an entry in a page-table-directory */
297 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
298 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
299
300 /* Find an entry in the third-level page table.. */
301 #define pte_index(address) \
302 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
303 #define pte_offset_kernel(dir, addr) \
304 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
305 #define pte_offset_map(dir, addr) \
306 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
307 #define pte_offset_map_nested(dir, addr) \
308 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
309
310 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
311 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
312
313 /*
314 * Encode and decode a swap entry.
315 * Note that the bits we use in a PTE for representing a swap entry
316 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
317 *_PAGE_HASHPTE bit (if used). -- paulus
318 */
319 #define __swp_type(entry) ((entry).val & 0x1f)
320 #define __swp_offset(entry) ((entry).val >> 5)
321 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
322 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
323 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
324
325 /* Encode and decode a nonlinear file mapping entry */
326 #define PTE_FILE_MAX_BITS 29
327 #define pte_to_pgoff(pte) (pte_val(pte) >> 3)
328 #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
329
330 /*
331 * No page table caches to initialise
332 */
333 #define pgtable_cache_init() do { } while (0)
334
335 extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
336 pmd_t **pmdp);
337
338 #endif /* !__ASSEMBLY__ */
339
340 #endif /* _ASM_POWERPC_PGTABLE_PPC32_H */
This page took 0.0845089999999999 seconds and 5 git commands to generate.