7ee2300ee392ae3f31bc43a12420ab06a7493396
[deliverable/linux.git] / arch / powerpc / include / asm / pgtable-ppc64.h
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
7
8 #ifdef CONFIG_PPC_64K_PAGES
9 #include <asm/pgtable-ppc64-64k.h>
10 #else
11 #include <asm/pgtable-ppc64-4k.h>
12 #endif
13 #include <asm/barrier.h>
14
15 #define FIRST_USER_ADDRESS 0UL
16
17 /*
18 * Size of EA range mapped by our pagetables.
19 */
20 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
21 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
22 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
23
24 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
25 #define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1)
26 #else
27 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
28 #endif
29 /*
30 * Define the address range of the kernel non-linear virtual area
31 */
32
33 #ifdef CONFIG_PPC_BOOK3E
34 #define KERN_VIRT_START ASM_CONST(0x8000000000000000)
35 #else
36 #define KERN_VIRT_START ASM_CONST(0xD000000000000000)
37 #endif
38 #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
39
40 /*
41 * The vmalloc space starts at the beginning of that region, and
42 * occupies half of it on hash CPUs and a quarter of it on Book3E
43 * (we keep a quarter for the virtual memmap)
44 */
45 #define VMALLOC_START KERN_VIRT_START
46 #ifdef CONFIG_PPC_BOOK3E
47 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
48 #else
49 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
50 #endif
51 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
52
53 /*
54 * The second half of the kernel virtual space is used for IO mappings,
55 * it's itself carved into the PIO region (ISA and PHB IO space) and
56 * the ioremap space
57 *
58 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
59 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
60 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
61 */
62 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
63 #define FULL_IO_SIZE 0x80000000ul
64 #define ISA_IO_BASE (KERN_IO_START)
65 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
66 #define PHB_IO_BASE (ISA_IO_END)
67 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
68 #define IOREMAP_BASE (PHB_IO_END)
69 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
70
71
72 /*
73 * Region IDs
74 */
75 #define REGION_SHIFT 60UL
76 #define REGION_MASK (0xfUL << REGION_SHIFT)
77 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
78
79 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
80 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
81 #define VMEMMAP_REGION_ID (0xfUL) /* Server only */
82 #define USER_REGION_ID (0UL)
83
84 /*
85 * Defines the address of the vmemap area, in its own region on
86 * hash table CPUs and after the vmalloc space on Book3E
87 */
88 #ifdef CONFIG_PPC_BOOK3E
89 #define VMEMMAP_BASE VMALLOC_END
90 #define VMEMMAP_END KERN_IO_START
91 #else
92 #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
93 #endif
94 #define vmemmap ((struct page *)VMEMMAP_BASE)
95
96
97 /*
98 * Include the PTE bits definitions
99 */
100 #ifdef CONFIG_PPC_BOOK3S
101 #include <asm/pte-hash64.h>
102 #else
103 #include <asm/pte-book3e.h>
104 #endif
105 #include <asm/pte-common.h>
106
107 #ifdef CONFIG_PPC_MM_SLICES
108 #define HAVE_ARCH_UNMAPPED_AREA
109 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
110 #endif /* CONFIG_PPC_MM_SLICES */
111
112 #ifndef __ASSEMBLY__
113
114 /*
115 * This is the default implementation of various PTE accessors, it's
116 * used in all cases except Book3S with 64K pages where we have a
117 * concept of sub-pages
118 */
119 #ifndef __real_pte
120
121 #ifdef CONFIG_STRICT_MM_TYPECHECKS
122 #define __real_pte(e,p) ((real_pte_t){(e)})
123 #define __rpte_to_pte(r) ((r).pte)
124 #else
125 #define __real_pte(e,p) (e)
126 #define __rpte_to_pte(r) (__pte(r))
127 #endif
128 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
129
130 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
131 do { \
132 index = 0; \
133 shift = mmu_psize_defs[psize].shift; \
134
135 #define pte_iterate_hashed_end() } while(0)
136
137 #ifdef CONFIG_PPC_HAS_HASH_64K
138 /*
139 * We expect this to be called only for user addresses or kernel virtual
140 * addresses other than the linear mapping.
141 */
142 #define pte_pagesize_index(mm, addr, pte) \
143 ({ \
144 unsigned int psize; \
145 if (is_kernel_addr(addr)) \
146 psize = MMU_PAGE_4K; \
147 else \
148 psize = get_slice_psize(mm, addr); \
149 psize; \
150 })
151 #else
152 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
153 #endif
154
155 #endif /* __real_pte */
156
157
158 /* pte_clear moved to later in this file */
159
160 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
161 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
162
163 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
164 #define pmd_none(pmd) (!pmd_val(pmd))
165 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
166 || (pmd_val(pmd) & PMD_BAD_BITS))
167 #define pmd_present(pmd) (!pmd_none(pmd))
168 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
169 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
170 extern struct page *pmd_page(pmd_t pmd);
171
172 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
173 #define pud_none(pud) (!pud_val(pud))
174 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
175 || (pud_val(pud) & PUD_BAD_BITS))
176 #define pud_present(pud) (pud_val(pud) != 0)
177 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
178 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
179
180 extern struct page *pud_page(pud_t pud);
181
182 static inline pte_t pud_pte(pud_t pud)
183 {
184 return __pte(pud_val(pud));
185 }
186
187 static inline pud_t pte_pud(pte_t pte)
188 {
189 return __pud(pte_val(pte));
190 }
191 #define pud_write(pud) pte_write(pud_pte(pud))
192 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
193 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
194
195 /*
196 * Find an entry in a page-table-directory. We combine the address region
197 * (the high order N bits) and the pgd portion of the address.
198 */
199 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
200
201 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
202
203 #define pmd_offset(pudp,addr) \
204 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
205
206 #define pte_offset_kernel(dir,addr) \
207 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
208
209 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
210 #define pte_unmap(pte) do { } while(0)
211
212 /* to find an entry in a kernel page-table-directory */
213 /* This now only contains the vmalloc pages */
214 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
215 extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
216 pte_t *ptep, unsigned long pte, int huge);
217
218 /* Atomic PTE updates */
219 static inline unsigned long pte_update(struct mm_struct *mm,
220 unsigned long addr,
221 pte_t *ptep, unsigned long clr,
222 unsigned long set,
223 int huge)
224 {
225 #ifdef PTE_ATOMIC_UPDATES
226 unsigned long old, tmp;
227
228 __asm__ __volatile__(
229 "1: ldarx %0,0,%3 # pte_update\n\
230 andi. %1,%0,%6\n\
231 bne- 1b \n\
232 andc %1,%0,%4 \n\
233 or %1,%1,%7\n\
234 stdcx. %1,0,%3 \n\
235 bne- 1b"
236 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
237 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
238 : "cc" );
239 #else
240 unsigned long old = pte_val(*ptep);
241 *ptep = __pte((old & ~clr) | set);
242 #endif
243 /* huge pages use the old page table lock */
244 if (!huge)
245 assert_pte_locked(mm, addr);
246
247 #ifdef CONFIG_PPC_STD_MMU_64
248 if (old & _PAGE_HASHPTE)
249 hpte_need_flush(mm, addr, ptep, old, huge);
250 #endif
251
252 return old;
253 }
254
255 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
256 unsigned long addr, pte_t *ptep)
257 {
258 unsigned long old;
259
260 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
261 return 0;
262 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
263 return (old & _PAGE_ACCESSED) != 0;
264 }
265 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
266 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
267 ({ \
268 int __r; \
269 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
270 __r; \
271 })
272
273 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
274 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
275 pte_t *ptep)
276 {
277
278 if ((pte_val(*ptep) & _PAGE_RW) == 0)
279 return;
280
281 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
282 }
283
284 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
285 unsigned long addr, pte_t *ptep)
286 {
287 if ((pte_val(*ptep) & _PAGE_RW) == 0)
288 return;
289
290 pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
291 }
292
293 /*
294 * We currently remove entries from the hashtable regardless of whether
295 * the entry was young or dirty. The generic routines only flush if the
296 * entry was young or dirty which is not good enough.
297 *
298 * We should be more intelligent about this but for the moment we override
299 * these functions and force a tlb flush unconditionally
300 */
301 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
302 #define ptep_clear_flush_young(__vma, __address, __ptep) \
303 ({ \
304 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
305 __ptep); \
306 __young; \
307 })
308
309 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
310 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
311 unsigned long addr, pte_t *ptep)
312 {
313 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
314 return __pte(old);
315 }
316
317 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
318 pte_t * ptep)
319 {
320 pte_update(mm, addr, ptep, ~0UL, 0, 0);
321 }
322
323
324 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
325 * function doesn't need to flush the hash entry
326 */
327 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
328 {
329 unsigned long bits = pte_val(entry) &
330 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
331
332 #ifdef PTE_ATOMIC_UPDATES
333 unsigned long old, tmp;
334
335 __asm__ __volatile__(
336 "1: ldarx %0,0,%4\n\
337 andi. %1,%0,%6\n\
338 bne- 1b \n\
339 or %0,%3,%0\n\
340 stdcx. %0,0,%4\n\
341 bne- 1b"
342 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
343 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
344 :"cc");
345 #else
346 unsigned long old = pte_val(*ptep);
347 *ptep = __pte(old | bits);
348 #endif
349 }
350
351 #define __HAVE_ARCH_PTE_SAME
352 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
353
354 #define pte_ERROR(e) \
355 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
356 #define pmd_ERROR(e) \
357 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
358 #define pgd_ERROR(e) \
359 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
360
361 /* Encode and de-code a swap entry */
362 #define MAX_SWAPFILES_CHECK() do { \
363 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
364 /* \
365 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
366 * We filter HPTEFLAGS on set_pte. \
367 */ \
368 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
369 } while (0)
370 /*
371 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
372 */
373 #define SWP_TYPE_BITS 5
374 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
375 & ((1UL << SWP_TYPE_BITS) - 1))
376 #define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT)
377 #define __swp_entry(type, offset) ((swp_entry_t) { \
378 ((type) << _PAGE_BIT_SWAP_TYPE) \
379 | ((offset) << PTE_RPN_SHIFT) })
380
381 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) })
382 #define __swp_entry_to_pte(x) __pte((x).val)
383
384 void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
385 void pgtable_cache_init(void);
386 #endif /* __ASSEMBLY__ */
387
388 /*
389 * THP pages can't be special. So use the _PAGE_SPECIAL
390 */
391 #define _PAGE_SPLITTING _PAGE_SPECIAL
392
393 /*
394 * We need to differentiate between explicit huge page and THP huge
395 * page, since THP huge page also need to track real subpage details
396 */
397 #define _PAGE_THP_HUGE _PAGE_4K_PFN
398
399 /*
400 * set of bits not changed in pmd_modify.
401 */
402 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
403 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
404 _PAGE_THP_HUGE)
405
406 #ifndef __ASSEMBLY__
407 /*
408 * The linux hugepage PMD now include the pmd entries followed by the address
409 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
410 * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
411 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
412 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
413 *
414 * The last three bits are intentionally left to zero. This memory location
415 * are also used as normal page PTE pointers. So if we have any pointers
416 * left around while we collapse a hugepage, we need to make sure
417 * _PAGE_PRESENT bit of that is zero when we look at them
418 */
419 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
420 {
421 return (hpte_slot_array[index] >> 3) & 0x1;
422 }
423
424 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
425 int index)
426 {
427 return hpte_slot_array[index] >> 4;
428 }
429
430 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
431 unsigned int index, unsigned int hidx)
432 {
433 hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
434 }
435
436 struct page *realmode_pfn_to_page(unsigned long pfn);
437
438 static inline char *get_hpte_slot_array(pmd_t *pmdp)
439 {
440 /*
441 * The hpte hindex is stored in the pgtable whose address is in the
442 * second half of the PMD
443 *
444 * Order this load with the test for pmd_trans_huge in the caller
445 */
446 smp_rmb();
447 return *(char **)(pmdp + PTRS_PER_PMD);
448
449
450 }
451
452 extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
453 pmd_t *pmdp, unsigned long old_pmd);
454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
455 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
456 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
457 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
458 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
459 pmd_t *pmdp, pmd_t pmd);
460 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
461 pmd_t *pmd);
462 /*
463 *
464 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
465 * page. The hugetlbfs page table walking and mangling paths are totally
466 * separated form the core VM paths and they're differentiated by
467 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
468 *
469 * pmd_trans_huge() is defined as false at build time if
470 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
471 * time in such case.
472 *
473 * For ppc64 we need to differntiate from explicit hugepages from THP, because
474 * for THP we also track the subpage details at the pmd level. We don't do
475 * that for explicit huge pages.
476 *
477 */
478 static inline int pmd_trans_huge(pmd_t pmd)
479 {
480 /*
481 * leaf pte for huge page, bottom two bits != 00
482 */
483 return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
484 }
485
486 static inline int pmd_trans_splitting(pmd_t pmd)
487 {
488 if (pmd_trans_huge(pmd))
489 return pmd_val(pmd) & _PAGE_SPLITTING;
490 return 0;
491 }
492
493 extern int has_transparent_hugepage(void);
494 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
495
496 static inline int pmd_large(pmd_t pmd)
497 {
498 /*
499 * leaf pte for huge page, bottom two bits != 00
500 */
501 return ((pmd_val(pmd) & 0x3) != 0x0);
502 }
503
504 static inline pte_t pmd_pte(pmd_t pmd)
505 {
506 return __pte(pmd_val(pmd));
507 }
508
509 static inline pmd_t pte_pmd(pte_t pte)
510 {
511 return __pmd(pte_val(pte));
512 }
513
514 static inline pte_t *pmdp_ptep(pmd_t *pmd)
515 {
516 return (pte_t *)pmd;
517 }
518
519 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
520 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
521 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
522 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
523 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
524 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
525 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
526 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
527
528 #define __HAVE_ARCH_PMD_WRITE
529 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
530
531 static inline pmd_t pmd_mkhuge(pmd_t pmd)
532 {
533 /* Do nothing, mk_pmd() does this part. */
534 return pmd;
535 }
536
537 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
538 {
539 pmd_val(pmd) &= ~_PAGE_PRESENT;
540 return pmd;
541 }
542
543 static inline pmd_t pmd_mksplitting(pmd_t pmd)
544 {
545 pmd_val(pmd) |= _PAGE_SPLITTING;
546 return pmd;
547 }
548
549 #define __HAVE_ARCH_PMD_SAME
550 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
551 {
552 return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
553 }
554
555 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
556 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
557 unsigned long address, pmd_t *pmdp,
558 pmd_t entry, int dirty);
559
560 extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
561 unsigned long addr,
562 pmd_t *pmdp,
563 unsigned long clr,
564 unsigned long set);
565
566 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
567 unsigned long addr, pmd_t *pmdp)
568 {
569 unsigned long old;
570
571 if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
572 return 0;
573 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
574 return ((old & _PAGE_ACCESSED) != 0);
575 }
576
577 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
578 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
579 unsigned long address, pmd_t *pmdp);
580 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
581 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
582 unsigned long address, pmd_t *pmdp);
583
584 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
585 extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
586 unsigned long addr, pmd_t *pmdp);
587
588 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
589 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
590 pmd_t *pmdp)
591 {
592
593 if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
594 return;
595
596 pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
597 }
598
599 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
600 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
601 unsigned long address, pmd_t *pmdp);
602
603 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
604 unsigned long address, pmd_t *pmdp);
605 #define pmdp_collapse_flush pmdp_collapse_flush
606
607 #define __HAVE_ARCH_PGTABLE_DEPOSIT
608 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
609 pgtable_t pgtable);
610 #define __HAVE_ARCH_PGTABLE_WITHDRAW
611 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
612
613 #define __HAVE_ARCH_PMDP_INVALIDATE
614 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
615 pmd_t *pmdp);
616
617 #define pmd_move_must_withdraw pmd_move_must_withdraw
618 struct spinlock;
619 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
620 struct spinlock *old_pmd_ptl)
621 {
622 /*
623 * Archs like ppc64 use pgtable to store per pmd
624 * specific information. So when we switch the pmd,
625 * we should also withdraw and deposit the pgtable
626 */
627 return true;
628 }
629 #endif /* __ASSEMBLY__ */
630 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
This page took 0.052367 seconds and 5 git commands to generate.