b0f18be81d9fbde440a17ccf52e785cfb3b7a408
[deliverable/linux.git] / arch / powerpc / include / asm / pgtable-ppc64.h
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
7
8 #ifndef __ASSEMBLY__
9 #include <linux/stddef.h>
10 #include <asm/tlbflush.h>
11 #endif /* __ASSEMBLY__ */
12
13 #ifdef CONFIG_PPC_64K_PAGES
14 #include <asm/pgtable-64k.h>
15 #else
16 #include <asm/pgtable-4k.h>
17 #endif
18
19 #define FIRST_USER_ADDRESS 0
20
21 /*
22 * Size of EA range mapped by our pagetables.
23 */
24 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
25 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
26 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
27
28 #if TASK_SIZE_USER64 > PGTABLE_RANGE
29 #error TASK_SIZE_USER64 exceeds pagetable range
30 #endif
31
32 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
33 #error TASK_SIZE_USER64 exceeds user VSID range
34 #endif
35
36
37 /*
38 * Define the address range of the vmalloc VM area.
39 */
40 #define VMALLOC_START ASM_CONST(0xD000000000000000)
41 #define VMALLOC_SIZE (PGTABLE_RANGE >> 1)
42 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
43
44 /*
45 * Define the address ranges for MMIO and IO space :
46 *
47 * ISA_IO_BASE = VMALLOC_END, 64K reserved area
48 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
49 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
50 */
51 #define FULL_IO_SIZE 0x80000000ul
52 #define ISA_IO_BASE (VMALLOC_END)
53 #define ISA_IO_END (VMALLOC_END + 0x10000ul)
54 #define PHB_IO_BASE (ISA_IO_END)
55 #define PHB_IO_END (VMALLOC_END + FULL_IO_SIZE)
56 #define IOREMAP_BASE (PHB_IO_END)
57 #define IOREMAP_END (VMALLOC_START + PGTABLE_RANGE)
58
59 /*
60 * Region IDs
61 */
62 #define REGION_SHIFT 60UL
63 #define REGION_MASK (0xfUL << REGION_SHIFT)
64 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
65
66 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
67 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
68 #define VMEMMAP_REGION_ID (0xfUL)
69 #define USER_REGION_ID (0UL)
70
71 /*
72 * Defines the address of the vmemap area, in its own region
73 */
74 #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
75 #define vmemmap ((struct page *)VMEMMAP_BASE)
76
77
78 /*
79 * Common bits in a linux-style PTE. These match the bits in the
80 * (hardware-defined) PowerPC PTE as closely as possible. Additional
81 * bits may be defined in pgtable-*.h
82 */
83 #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
84 #define _PAGE_USER 0x0002 /* matches one of the PP bits */
85 #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
86 #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
87 #define _PAGE_GUARDED 0x0008
88 #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
89 #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
90 #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
91 #define _PAGE_DIRTY 0x0080 /* C: page changed */
92 #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
93 #define _PAGE_RW 0x0200 /* software: user write access allowed */
94 #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
95
96 /* Strong Access Ordering */
97 #define _PAGE_SAO (_PAGE_WRITETHRU | _PAGE_NO_CACHE | _PAGE_COHERENT)
98
99 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
100
101 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
102
103 /* __pgprot defined in arch/powerpc/include/asm/page.h */
104 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
105
106 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
107 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
108 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
109 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
110 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
111 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
112 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
113 #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
114 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
115 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
116
117 #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
118 #define HAVE_PAGE_AGP
119
120 #define PAGE_PROT_BITS (_PAGE_GUARDED | _PAGE_COHERENT | \
121 _PAGE_NO_CACHE | _PAGE_WRITETHRU | \
122 _PAGE_4K_PFN | _PAGE_RW | _PAGE_USER | \
123 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_EXEC)
124 /* PTEIDX nibble */
125 #define _PTEIDX_SECONDARY 0x8
126 #define _PTEIDX_GROUP_IX 0x7
127
128
129 /*
130 * POWER4 and newer have per page execute protection, older chips can only
131 * do this on a segment (256MB) basis.
132 *
133 * Also, write permissions imply read permissions.
134 * This is the closest we can get..
135 *
136 * Note due to the way vm flags are laid out, the bits are XWR
137 */
138 #define __P000 PAGE_NONE
139 #define __P001 PAGE_READONLY
140 #define __P010 PAGE_COPY
141 #define __P011 PAGE_COPY
142 #define __P100 PAGE_READONLY_X
143 #define __P101 PAGE_READONLY_X
144 #define __P110 PAGE_COPY_X
145 #define __P111 PAGE_COPY_X
146
147 #define __S000 PAGE_NONE
148 #define __S001 PAGE_READONLY
149 #define __S010 PAGE_SHARED
150 #define __S011 PAGE_SHARED
151 #define __S100 PAGE_READONLY_X
152 #define __S101 PAGE_READONLY_X
153 #define __S110 PAGE_SHARED_X
154 #define __S111 PAGE_SHARED_X
155
156 #ifdef CONFIG_PPC_MM_SLICES
157 #define HAVE_ARCH_UNMAPPED_AREA
158 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
159 #endif /* CONFIG_PPC_MM_SLICES */
160
161 #ifndef __ASSEMBLY__
162
163 /*
164 * Conversion functions: convert a page and protection to a page entry,
165 * and a page entry and page directory to the page they refer to.
166 *
167 * mk_pte takes a (struct page *) as input
168 */
169 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
170
171 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
172 {
173 pte_t pte;
174
175
176 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
177 return pte;
178 }
179
180 #define pte_modify(_pte, newprot) \
181 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
182
183 #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
184 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
185
186 /* pte_clear moved to later in this file */
187
188 #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
189 #define pte_page(x) pfn_to_page(pte_pfn(x))
190
191 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
192 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
193
194 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
195 #define pmd_none(pmd) (!pmd_val(pmd))
196 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
197 || (pmd_val(pmd) & PMD_BAD_BITS))
198 #define pmd_present(pmd) (pmd_val(pmd) != 0)
199 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
200 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
201 #define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
202
203 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
204 #define pud_none(pud) (!pud_val(pud))
205 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
206 || (pud_val(pud) & PUD_BAD_BITS))
207 #define pud_present(pud) (pud_val(pud) != 0)
208 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
209 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
210 #define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
211
212 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
213
214 /*
215 * Find an entry in a page-table-directory. We combine the address region
216 * (the high order N bits) and the pgd portion of the address.
217 */
218 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
219 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
220
221 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
222
223 #define pmd_offset(pudp,addr) \
224 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
225
226 #define pte_offset_kernel(dir,addr) \
227 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
228
229 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
230 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
231 #define pte_unmap(pte) do { } while(0)
232 #define pte_unmap_nested(pte) do { } while(0)
233
234 /* to find an entry in a kernel page-table-directory */
235 /* This now only contains the vmalloc pages */
236 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
237
238 /*
239 * The following only work if pte_present() is true.
240 * Undefined behaviour if not..
241 */
242 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
243 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
244 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
245 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
246 static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
247
248 static inline pte_t pte_wrprotect(pte_t pte) {
249 pte_val(pte) &= ~(_PAGE_RW); return pte; }
250 static inline pte_t pte_mkclean(pte_t pte) {
251 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
252 static inline pte_t pte_mkold(pte_t pte) {
253 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
254 static inline pte_t pte_mkwrite(pte_t pte) {
255 pte_val(pte) |= _PAGE_RW; return pte; }
256 static inline pte_t pte_mkdirty(pte_t pte) {
257 pte_val(pte) |= _PAGE_DIRTY; return pte; }
258 static inline pte_t pte_mkyoung(pte_t pte) {
259 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
260 static inline pte_t pte_mkhuge(pte_t pte) {
261 return pte; }
262 static inline pte_t pte_mkspecial(pte_t pte) {
263 pte_val(pte) |= _PAGE_SPECIAL; return pte; }
264 static inline pgprot_t pte_pgprot(pte_t pte)
265 {
266 return __pgprot(pte_val(pte) & PAGE_PROT_BITS);
267 }
268
269 /* Atomic PTE updates */
270 static inline unsigned long pte_update(struct mm_struct *mm,
271 unsigned long addr,
272 pte_t *ptep, unsigned long clr,
273 int huge)
274 {
275 unsigned long old, tmp;
276
277 __asm__ __volatile__(
278 "1: ldarx %0,0,%3 # pte_update\n\
279 andi. %1,%0,%6\n\
280 bne- 1b \n\
281 andc %1,%0,%4 \n\
282 stdcx. %1,0,%3 \n\
283 bne- 1b"
284 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
285 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
286 : "cc" );
287
288 if (old & _PAGE_HASHPTE)
289 hpte_need_flush(mm, addr, ptep, old, huge);
290 return old;
291 }
292
293 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
294 unsigned long addr, pte_t *ptep)
295 {
296 unsigned long old;
297
298 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
299 return 0;
300 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
301 return (old & _PAGE_ACCESSED) != 0;
302 }
303 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
304 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
305 ({ \
306 int __r; \
307 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
308 __r; \
309 })
310
311 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
312 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
313 pte_t *ptep)
314 {
315 unsigned long old;
316
317 if ((pte_val(*ptep) & _PAGE_RW) == 0)
318 return;
319 old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
320 }
321
322 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
323 unsigned long addr, pte_t *ptep)
324 {
325 unsigned long old;
326
327 if ((pte_val(*ptep) & _PAGE_RW) == 0)
328 return;
329 old = pte_update(mm, addr, ptep, _PAGE_RW, 1);
330 }
331
332 /*
333 * We currently remove entries from the hashtable regardless of whether
334 * the entry was young or dirty. The generic routines only flush if the
335 * entry was young or dirty which is not good enough.
336 *
337 * We should be more intelligent about this but for the moment we override
338 * these functions and force a tlb flush unconditionally
339 */
340 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
341 #define ptep_clear_flush_young(__vma, __address, __ptep) \
342 ({ \
343 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
344 __ptep); \
345 __young; \
346 })
347
348 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
349 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
350 unsigned long addr, pte_t *ptep)
351 {
352 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
353 return __pte(old);
354 }
355
356 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
357 pte_t * ptep)
358 {
359 pte_update(mm, addr, ptep, ~0UL, 0);
360 }
361
362 /*
363 * set_pte stores a linux PTE into the linux page table.
364 */
365 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
366 pte_t *ptep, pte_t pte)
367 {
368 if (pte_present(*ptep))
369 pte_clear(mm, addr, ptep);
370 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
371 *ptep = pte;
372 }
373
374 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
375 * function doesn't need to flush the hash entry
376 */
377 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
378 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
379 {
380 unsigned long bits = pte_val(entry) &
381 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
382 unsigned long old, tmp;
383
384 __asm__ __volatile__(
385 "1: ldarx %0,0,%4\n\
386 andi. %1,%0,%6\n\
387 bne- 1b \n\
388 or %0,%3,%0\n\
389 stdcx. %0,0,%4\n\
390 bne- 1b"
391 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
392 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
393 :"cc");
394 }
395 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
396 ({ \
397 int __changed = !pte_same(*(__ptep), __entry); \
398 if (__changed) { \
399 __ptep_set_access_flags(__ptep, __entry, __dirty); \
400 flush_tlb_page_nohash(__vma, __address); \
401 } \
402 __changed; \
403 })
404
405 #define __HAVE_ARCH_PTE_SAME
406 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
407
408 #define pte_ERROR(e) \
409 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
410 #define pmd_ERROR(e) \
411 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
412 #define pgd_ERROR(e) \
413 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
414
415 /* Encode and de-code a swap entry */
416 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
417 #define __swp_offset(entry) ((entry).val >> 8)
418 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
419 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
420 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
421 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
422 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
423 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
424
425 void pgtable_cache_init(void);
426
427 /*
428 * find_linux_pte returns the address of a linux pte for a given
429 * effective address and directory. If not found, it returns zero.
430 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
431 {
432 pgd_t *pg;
433 pud_t *pu;
434 pmd_t *pm;
435 pte_t *pt = NULL;
436
437 pg = pgdir + pgd_index(ea);
438 if (!pgd_none(*pg)) {
439 pu = pud_offset(pg, ea);
440 if (!pud_none(*pu)) {
441 pm = pmd_offset(pu, ea);
442 if (pmd_present(*pm))
443 pt = pte_offset_kernel(pm, ea);
444 }
445 }
446 return pt;
447 }
448
449 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long address);
450
451 #endif /* __ASSEMBLY__ */
452
453 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
This page took 0.039378 seconds and 4 git commands to generate.