Merge branch 'pci/resource' into next
[deliverable/linux.git] / arch / powerpc / kernel / eeh.c
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/list.h>
28 #include <linux/pci.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rbtree.h>
31 #include <linux/seq_file.h>
32 #include <linux/spinlock.h>
33 #include <linux/export.h>
34 #include <linux/of.h>
35
36 #include <linux/atomic.h>
37 #include <asm/eeh.h>
38 #include <asm/eeh_event.h>
39 #include <asm/io.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/rtas.h>
43
44
45 /** Overview:
46 * EEH, or "Extended Error Handling" is a PCI bridge technology for
47 * dealing with PCI bus errors that can't be dealt with within the
48 * usual PCI framework, except by check-stopping the CPU. Systems
49 * that are designed for high-availability/reliability cannot afford
50 * to crash due to a "mere" PCI error, thus the need for EEH.
51 * An EEH-capable bridge operates by converting a detected error
52 * into a "slot freeze", taking the PCI adapter off-line, making
53 * the slot behave, from the OS'es point of view, as if the slot
54 * were "empty": all reads return 0xff's and all writes are silently
55 * ignored. EEH slot isolation events can be triggered by parity
56 * errors on the address or data busses (e.g. during posted writes),
57 * which in turn might be caused by low voltage on the bus, dust,
58 * vibration, humidity, radioactivity or plain-old failed hardware.
59 *
60 * Note, however, that one of the leading causes of EEH slot
61 * freeze events are buggy device drivers, buggy device microcode,
62 * or buggy device hardware. This is because any attempt by the
63 * device to bus-master data to a memory address that is not
64 * assigned to the device will trigger a slot freeze. (The idea
65 * is to prevent devices-gone-wild from corrupting system memory).
66 * Buggy hardware/drivers will have a miserable time co-existing
67 * with EEH.
68 *
69 * Ideally, a PCI device driver, when suspecting that an isolation
70 * event has occurred (e.g. by reading 0xff's), will then ask EEH
71 * whether this is the case, and then take appropriate steps to
72 * reset the PCI slot, the PCI device, and then resume operations.
73 * However, until that day, the checking is done here, with the
74 * eeh_check_failure() routine embedded in the MMIO macros. If
75 * the slot is found to be isolated, an "EEH Event" is synthesized
76 * and sent out for processing.
77 */
78
79 /* If a device driver keeps reading an MMIO register in an interrupt
80 * handler after a slot isolation event, it might be broken.
81 * This sets the threshold for how many read attempts we allow
82 * before printing an error message.
83 */
84 #define EEH_MAX_FAILS 2100000
85
86 /* Time to wait for a PCI slot to report status, in milliseconds */
87 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
88
89 /* Platform dependent EEH operations */
90 struct eeh_ops *eeh_ops = NULL;
91
92 int eeh_subsystem_enabled;
93 EXPORT_SYMBOL(eeh_subsystem_enabled);
94
95 /*
96 * EEH probe mode support. The intention is to support multiple
97 * platforms for EEH. Some platforms like pSeries do PCI emunation
98 * based on device tree. However, other platforms like powernv probe
99 * PCI devices from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for particular
101 * OF node or PCI device so that the corresponding PE would be created
102 * there.
103 */
104 int eeh_probe_mode;
105
106 /* Lock to avoid races due to multiple reports of an error */
107 DEFINE_RAW_SPINLOCK(confirm_error_lock);
108
109 /* Buffer for reporting pci register dumps. Its here in BSS, and
110 * not dynamically alloced, so that it ends up in RMO where RTAS
111 * can access it.
112 */
113 #define EEH_PCI_REGS_LOG_LEN 4096
114 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
115
116 /*
117 * The struct is used to maintain the EEH global statistic
118 * information. Besides, the EEH global statistics will be
119 * exported to user space through procfs
120 */
121 struct eeh_stats {
122 u64 no_device; /* PCI device not found */
123 u64 no_dn; /* OF node not found */
124 u64 no_cfg_addr; /* Config address not found */
125 u64 ignored_check; /* EEH check skipped */
126 u64 total_mmio_ffs; /* Total EEH checks */
127 u64 false_positives; /* Unnecessary EEH checks */
128 u64 slot_resets; /* PE reset */
129 };
130
131 static struct eeh_stats eeh_stats;
132
133 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
134
135 /**
136 * eeh_gather_pci_data - Copy assorted PCI config space registers to buff
137 * @edev: device to report data for
138 * @buf: point to buffer in which to log
139 * @len: amount of room in buffer
140 *
141 * This routine captures assorted PCI configuration space data,
142 * and puts them into a buffer for RTAS error logging.
143 */
144 static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len)
145 {
146 struct device_node *dn = eeh_dev_to_of_node(edev);
147 struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
148 u32 cfg;
149 int cap, i;
150 int n = 0;
151
152 n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
153 printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name);
154
155 eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
156 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
157 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
158
159 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
160 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
161 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
162
163 if (!dev) {
164 printk(KERN_WARNING "EEH: no PCI device for this of node\n");
165 return n;
166 }
167
168 /* Gather bridge-specific registers */
169 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
170 eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
171 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
172 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
173
174 eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
175 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
176 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
177 }
178
179 /* Dump out the PCI-X command and status regs */
180 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
181 if (cap) {
182 eeh_ops->read_config(dn, cap, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
184 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
185
186 eeh_ops->read_config(dn, cap+4, 4, &cfg);
187 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
188 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
189 }
190
191 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
192 if (pci_is_pcie(dev)) {
193 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
194 printk(KERN_WARNING
195 "EEH: PCI-E capabilities and status follow:\n");
196
197 for (i=0; i<=8; i++) {
198 eeh_ops->read_config(dn, dev->pcie_cap+4*i, 4, &cfg);
199 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
200 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
201 }
202
203 cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
204 if (cap) {
205 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
206 printk(KERN_WARNING
207 "EEH: PCI-E AER capability register set follows:\n");
208
209 for (i=0; i<14; i++) {
210 eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
211 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
212 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
213 }
214 }
215 }
216
217 return n;
218 }
219
220 /**
221 * eeh_slot_error_detail - Generate combined log including driver log and error log
222 * @pe: EEH PE
223 * @severity: temporary or permanent error log
224 *
225 * This routine should be called to generate the combined log, which
226 * is comprised of driver log and error log. The driver log is figured
227 * out from the config space of the corresponding PCI device, while
228 * the error log is fetched through platform dependent function call.
229 */
230 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
231 {
232 size_t loglen = 0;
233 struct eeh_dev *edev, *tmp;
234 bool valid_cfg_log = true;
235
236 /*
237 * When the PHB is fenced or dead, it's pointless to collect
238 * the data from PCI config space because it should return
239 * 0xFF's. For ER, we still retrieve the data from the PCI
240 * config space.
241 */
242 if (eeh_probe_mode_dev() &&
243 (pe->type & EEH_PE_PHB) &&
244 (pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)))
245 valid_cfg_log = false;
246
247 if (valid_cfg_log) {
248 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
249 eeh_ops->configure_bridge(pe);
250 eeh_pe_restore_bars(pe);
251
252 pci_regs_buf[0] = 0;
253 eeh_pe_for_each_dev(pe, edev, tmp) {
254 loglen += eeh_gather_pci_data(edev, pci_regs_buf + loglen,
255 EEH_PCI_REGS_LOG_LEN - loglen);
256 }
257 }
258
259 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
260 }
261
262 /**
263 * eeh_token_to_phys - Convert EEH address token to phys address
264 * @token: I/O token, should be address in the form 0xA....
265 *
266 * This routine should be called to convert virtual I/O address
267 * to physical one.
268 */
269 static inline unsigned long eeh_token_to_phys(unsigned long token)
270 {
271 pte_t *ptep;
272 unsigned long pa;
273 int hugepage_shift;
274
275 /*
276 * We won't find hugepages here, iomem
277 */
278 ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
279 if (!ptep)
280 return token;
281 WARN_ON(hugepage_shift);
282 pa = pte_pfn(*ptep) << PAGE_SHIFT;
283
284 return pa | (token & (PAGE_SIZE-1));
285 }
286
287 /*
288 * On PowerNV platform, we might already have fenced PHB there.
289 * For that case, it's meaningless to recover frozen PE. Intead,
290 * We have to handle fenced PHB firstly.
291 */
292 static int eeh_phb_check_failure(struct eeh_pe *pe)
293 {
294 struct eeh_pe *phb_pe;
295 unsigned long flags;
296 int ret;
297
298 if (!eeh_probe_mode_dev())
299 return -EPERM;
300
301 /* Find the PHB PE */
302 phb_pe = eeh_phb_pe_get(pe->phb);
303 if (!phb_pe) {
304 pr_warning("%s Can't find PE for PHB#%d\n",
305 __func__, pe->phb->global_number);
306 return -EEXIST;
307 }
308
309 /* If the PHB has been in problematic state */
310 eeh_serialize_lock(&flags);
311 if (phb_pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)) {
312 ret = 0;
313 goto out;
314 }
315
316 /* Check PHB state */
317 ret = eeh_ops->get_state(phb_pe, NULL);
318 if ((ret < 0) ||
319 (ret == EEH_STATE_NOT_SUPPORT) ||
320 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
321 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
322 ret = 0;
323 goto out;
324 }
325
326 /* Isolate the PHB and send event */
327 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
328 eeh_serialize_unlock(flags);
329
330 pr_err("EEH: PHB#%x failure detected\n",
331 phb_pe->phb->global_number);
332 dump_stack();
333 eeh_send_failure_event(phb_pe);
334
335 return 1;
336 out:
337 eeh_serialize_unlock(flags);
338 return ret;
339 }
340
341 /**
342 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
343 * @edev: eeh device
344 *
345 * Check for an EEH failure for the given device node. Call this
346 * routine if the result of a read was all 0xff's and you want to
347 * find out if this is due to an EEH slot freeze. This routine
348 * will query firmware for the EEH status.
349 *
350 * Returns 0 if there has not been an EEH error; otherwise returns
351 * a non-zero value and queues up a slot isolation event notification.
352 *
353 * It is safe to call this routine in an interrupt context.
354 */
355 int eeh_dev_check_failure(struct eeh_dev *edev)
356 {
357 int ret;
358 unsigned long flags;
359 struct device_node *dn;
360 struct pci_dev *dev;
361 struct eeh_pe *pe;
362 int rc = 0;
363 const char *location;
364
365 eeh_stats.total_mmio_ffs++;
366
367 if (!eeh_subsystem_enabled)
368 return 0;
369
370 if (!edev) {
371 eeh_stats.no_dn++;
372 return 0;
373 }
374 dn = eeh_dev_to_of_node(edev);
375 dev = eeh_dev_to_pci_dev(edev);
376 pe = edev->pe;
377
378 /* Access to IO BARs might get this far and still not want checking. */
379 if (!pe) {
380 eeh_stats.ignored_check++;
381 pr_debug("EEH: Ignored check for %s %s\n",
382 eeh_pci_name(dev), dn->full_name);
383 return 0;
384 }
385
386 if (!pe->addr && !pe->config_addr) {
387 eeh_stats.no_cfg_addr++;
388 return 0;
389 }
390
391 /*
392 * On PowerNV platform, we might already have fenced PHB
393 * there and we need take care of that firstly.
394 */
395 ret = eeh_phb_check_failure(pe);
396 if (ret > 0)
397 return ret;
398
399 /* If we already have a pending isolation event for this
400 * slot, we know it's bad already, we don't need to check.
401 * Do this checking under a lock; as multiple PCI devices
402 * in one slot might report errors simultaneously, and we
403 * only want one error recovery routine running.
404 */
405 eeh_serialize_lock(&flags);
406 rc = 1;
407 if (pe->state & EEH_PE_ISOLATED) {
408 pe->check_count++;
409 if (pe->check_count % EEH_MAX_FAILS == 0) {
410 location = of_get_property(dn, "ibm,loc-code", NULL);
411 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
412 "location=%s driver=%s pci addr=%s\n",
413 pe->check_count, location,
414 eeh_driver_name(dev), eeh_pci_name(dev));
415 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
416 eeh_driver_name(dev));
417 dump_stack();
418 }
419 goto dn_unlock;
420 }
421
422 /*
423 * Now test for an EEH failure. This is VERY expensive.
424 * Note that the eeh_config_addr may be a parent device
425 * in the case of a device behind a bridge, or it may be
426 * function zero of a multi-function device.
427 * In any case they must share a common PHB.
428 */
429 ret = eeh_ops->get_state(pe, NULL);
430
431 /* Note that config-io to empty slots may fail;
432 * they are empty when they don't have children.
433 * We will punt with the following conditions: Failure to get
434 * PE's state, EEH not support and Permanently unavailable
435 * state, PE is in good state.
436 */
437 if ((ret < 0) ||
438 (ret == EEH_STATE_NOT_SUPPORT) ||
439 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
440 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
441 eeh_stats.false_positives++;
442 pe->false_positives++;
443 rc = 0;
444 goto dn_unlock;
445 }
446
447 eeh_stats.slot_resets++;
448
449 /* Avoid repeated reports of this failure, including problems
450 * with other functions on this device, and functions under
451 * bridges.
452 */
453 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
454 eeh_serialize_unlock(flags);
455
456 /* Most EEH events are due to device driver bugs. Having
457 * a stack trace will help the device-driver authors figure
458 * out what happened. So print that out.
459 */
460 pr_err("EEH: Frozen PE#%x detected on PHB#%x\n",
461 pe->addr, pe->phb->global_number);
462 dump_stack();
463
464 eeh_send_failure_event(pe);
465
466 return 1;
467
468 dn_unlock:
469 eeh_serialize_unlock(flags);
470 return rc;
471 }
472
473 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
474
475 /**
476 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
477 * @token: I/O token, should be address in the form 0xA....
478 * @val: value, should be all 1's (XXX why do we need this arg??)
479 *
480 * Check for an EEH failure at the given token address. Call this
481 * routine if the result of a read was all 0xff's and you want to
482 * find out if this is due to an EEH slot freeze event. This routine
483 * will query firmware for the EEH status.
484 *
485 * Note this routine is safe to call in an interrupt context.
486 */
487 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
488 {
489 unsigned long addr;
490 struct eeh_dev *edev;
491
492 /* Finding the phys addr + pci device; this is pretty quick. */
493 addr = eeh_token_to_phys((unsigned long __force) token);
494 edev = eeh_addr_cache_get_dev(addr);
495 if (!edev) {
496 eeh_stats.no_device++;
497 return val;
498 }
499
500 eeh_dev_check_failure(edev);
501 return val;
502 }
503
504 EXPORT_SYMBOL(eeh_check_failure);
505
506
507 /**
508 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
509 * @pe: EEH PE
510 *
511 * This routine should be called to reenable frozen MMIO or DMA
512 * so that it would work correctly again. It's useful while doing
513 * recovery or log collection on the indicated device.
514 */
515 int eeh_pci_enable(struct eeh_pe *pe, int function)
516 {
517 int rc;
518
519 rc = eeh_ops->set_option(pe, function);
520 if (rc)
521 pr_warning("%s: Unexpected state change %d on PHB#%d-PE#%x, err=%d\n",
522 __func__, function, pe->phb->global_number, pe->addr, rc);
523
524 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
525 if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) &&
526 (function == EEH_OPT_THAW_MMIO))
527 return 0;
528
529 return rc;
530 }
531
532 /**
533 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
534 * @dev: pci device struct
535 * @state: reset state to enter
536 *
537 * Return value:
538 * 0 if success
539 */
540 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
541 {
542 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
543 struct eeh_pe *pe = edev->pe;
544
545 if (!pe) {
546 pr_err("%s: No PE found on PCI device %s\n",
547 __func__, pci_name(dev));
548 return -EINVAL;
549 }
550
551 switch (state) {
552 case pcie_deassert_reset:
553 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
554 break;
555 case pcie_hot_reset:
556 eeh_ops->reset(pe, EEH_RESET_HOT);
557 break;
558 case pcie_warm_reset:
559 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
560 break;
561 default:
562 return -EINVAL;
563 };
564
565 return 0;
566 }
567
568 /**
569 * eeh_set_pe_freset - Check the required reset for the indicated device
570 * @data: EEH device
571 * @flag: return value
572 *
573 * Each device might have its preferred reset type: fundamental or
574 * hot reset. The routine is used to collected the information for
575 * the indicated device and its children so that the bunch of the
576 * devices could be reset properly.
577 */
578 static void *eeh_set_dev_freset(void *data, void *flag)
579 {
580 struct pci_dev *dev;
581 unsigned int *freset = (unsigned int *)flag;
582 struct eeh_dev *edev = (struct eeh_dev *)data;
583
584 dev = eeh_dev_to_pci_dev(edev);
585 if (dev)
586 *freset |= dev->needs_freset;
587
588 return NULL;
589 }
590
591 /**
592 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
593 * @pe: EEH PE
594 *
595 * Assert the PCI #RST line for 1/4 second.
596 */
597 static void eeh_reset_pe_once(struct eeh_pe *pe)
598 {
599 unsigned int freset = 0;
600
601 /* Determine type of EEH reset required for
602 * Partitionable Endpoint, a hot-reset (1)
603 * or a fundamental reset (3).
604 * A fundamental reset required by any device under
605 * Partitionable Endpoint trumps hot-reset.
606 */
607 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
608
609 if (freset)
610 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
611 else
612 eeh_ops->reset(pe, EEH_RESET_HOT);
613
614 /* The PCI bus requires that the reset be held high for at least
615 * a 100 milliseconds. We wait a bit longer 'just in case'.
616 */
617 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
618 msleep(PCI_BUS_RST_HOLD_TIME_MSEC);
619
620 /* We might get hit with another EEH freeze as soon as the
621 * pci slot reset line is dropped. Make sure we don't miss
622 * these, and clear the flag now.
623 */
624 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
625
626 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
627
628 /* After a PCI slot has been reset, the PCI Express spec requires
629 * a 1.5 second idle time for the bus to stabilize, before starting
630 * up traffic.
631 */
632 #define PCI_BUS_SETTLE_TIME_MSEC 1800
633 msleep(PCI_BUS_SETTLE_TIME_MSEC);
634 }
635
636 /**
637 * eeh_reset_pe - Reset the indicated PE
638 * @pe: EEH PE
639 *
640 * This routine should be called to reset indicated device, including
641 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
642 * might be involved as well.
643 */
644 int eeh_reset_pe(struct eeh_pe *pe)
645 {
646 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
647 int i, rc;
648
649 /* Take three shots at resetting the bus */
650 for (i=0; i<3; i++) {
651 eeh_reset_pe_once(pe);
652
653 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
654 if ((rc & flags) == flags)
655 return 0;
656
657 if (rc < 0) {
658 pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
659 __func__, pe->phb->global_number, pe->addr);
660 return -1;
661 }
662 pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n",
663 i+1, pe->phb->global_number, pe->addr, rc);
664 }
665
666 return -1;
667 }
668
669 /**
670 * eeh_save_bars - Save device bars
671 * @edev: PCI device associated EEH device
672 *
673 * Save the values of the device bars. Unlike the restore
674 * routine, this routine is *not* recursive. This is because
675 * PCI devices are added individually; but, for the restore,
676 * an entire slot is reset at a time.
677 */
678 void eeh_save_bars(struct eeh_dev *edev)
679 {
680 int i;
681 struct device_node *dn;
682
683 if (!edev)
684 return;
685 dn = eeh_dev_to_of_node(edev);
686
687 for (i = 0; i < 16; i++)
688 eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
689
690 /*
691 * For PCI bridges including root port, we need enable bus
692 * master explicitly. Otherwise, it can't fetch IODA table
693 * entries correctly. So we cache the bit in advance so that
694 * we can restore it after reset, either PHB range or PE range.
695 */
696 if (edev->mode & EEH_DEV_BRIDGE)
697 edev->config_space[1] |= PCI_COMMAND_MASTER;
698 }
699
700 /**
701 * eeh_ops_register - Register platform dependent EEH operations
702 * @ops: platform dependent EEH operations
703 *
704 * Register the platform dependent EEH operation callback
705 * functions. The platform should call this function before
706 * any other EEH operations.
707 */
708 int __init eeh_ops_register(struct eeh_ops *ops)
709 {
710 if (!ops->name) {
711 pr_warning("%s: Invalid EEH ops name for %p\n",
712 __func__, ops);
713 return -EINVAL;
714 }
715
716 if (eeh_ops && eeh_ops != ops) {
717 pr_warning("%s: EEH ops of platform %s already existing (%s)\n",
718 __func__, eeh_ops->name, ops->name);
719 return -EEXIST;
720 }
721
722 eeh_ops = ops;
723
724 return 0;
725 }
726
727 /**
728 * eeh_ops_unregister - Unreigster platform dependent EEH operations
729 * @name: name of EEH platform operations
730 *
731 * Unregister the platform dependent EEH operation callback
732 * functions.
733 */
734 int __exit eeh_ops_unregister(const char *name)
735 {
736 if (!name || !strlen(name)) {
737 pr_warning("%s: Invalid EEH ops name\n",
738 __func__);
739 return -EINVAL;
740 }
741
742 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
743 eeh_ops = NULL;
744 return 0;
745 }
746
747 return -EEXIST;
748 }
749
750 /**
751 * eeh_init - EEH initialization
752 *
753 * Initialize EEH by trying to enable it for all of the adapters in the system.
754 * As a side effect we can determine here if eeh is supported at all.
755 * Note that we leave EEH on so failed config cycles won't cause a machine
756 * check. If a user turns off EEH for a particular adapter they are really
757 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
758 * grant access to a slot if EEH isn't enabled, and so we always enable
759 * EEH for all slots/all devices.
760 *
761 * The eeh-force-off option disables EEH checking globally, for all slots.
762 * Even if force-off is set, the EEH hardware is still enabled, so that
763 * newer systems can boot.
764 */
765 int eeh_init(void)
766 {
767 struct pci_controller *hose, *tmp;
768 struct device_node *phb;
769 static int cnt = 0;
770 int ret = 0;
771
772 /*
773 * We have to delay the initialization on PowerNV after
774 * the PCI hierarchy tree has been built because the PEs
775 * are figured out based on PCI devices instead of device
776 * tree nodes
777 */
778 if (machine_is(powernv) && cnt++ <= 0)
779 return ret;
780
781 /* call platform initialization function */
782 if (!eeh_ops) {
783 pr_warning("%s: Platform EEH operation not found\n",
784 __func__);
785 return -EEXIST;
786 } else if ((ret = eeh_ops->init())) {
787 pr_warning("%s: Failed to call platform init function (%d)\n",
788 __func__, ret);
789 return ret;
790 }
791
792 /* Initialize EEH event */
793 ret = eeh_event_init();
794 if (ret)
795 return ret;
796
797 /* Enable EEH for all adapters */
798 if (eeh_probe_mode_devtree()) {
799 list_for_each_entry_safe(hose, tmp,
800 &hose_list, list_node) {
801 phb = hose->dn;
802 traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
803 }
804 } else if (eeh_probe_mode_dev()) {
805 list_for_each_entry_safe(hose, tmp,
806 &hose_list, list_node)
807 pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
808 } else {
809 pr_warning("%s: Invalid probe mode %d\n",
810 __func__, eeh_probe_mode);
811 return -EINVAL;
812 }
813
814 /*
815 * Call platform post-initialization. Actually, It's good chance
816 * to inform platform that EEH is ready to supply service if the
817 * I/O cache stuff has been built up.
818 */
819 if (eeh_ops->post_init) {
820 ret = eeh_ops->post_init();
821 if (ret)
822 return ret;
823 }
824
825 if (eeh_subsystem_enabled)
826 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
827 else
828 pr_warning("EEH: No capable adapters found\n");
829
830 return ret;
831 }
832
833 core_initcall_sync(eeh_init);
834
835 /**
836 * eeh_add_device_early - Enable EEH for the indicated device_node
837 * @dn: device node for which to set up EEH
838 *
839 * This routine must be used to perform EEH initialization for PCI
840 * devices that were added after system boot (e.g. hotplug, dlpar).
841 * This routine must be called before any i/o is performed to the
842 * adapter (inluding any config-space i/o).
843 * Whether this actually enables EEH or not for this device depends
844 * on the CEC architecture, type of the device, on earlier boot
845 * command-line arguments & etc.
846 */
847 void eeh_add_device_early(struct device_node *dn)
848 {
849 struct pci_controller *phb;
850
851 /*
852 * If we're doing EEH probe based on PCI device, we
853 * would delay the probe until late stage because
854 * the PCI device isn't available this moment.
855 */
856 if (!eeh_probe_mode_devtree())
857 return;
858
859 if (!of_node_to_eeh_dev(dn))
860 return;
861 phb = of_node_to_eeh_dev(dn)->phb;
862
863 /* USB Bus children of PCI devices will not have BUID's */
864 if (NULL == phb || 0 == phb->buid)
865 return;
866
867 eeh_ops->of_probe(dn, NULL);
868 }
869
870 /**
871 * eeh_add_device_tree_early - Enable EEH for the indicated device
872 * @dn: device node
873 *
874 * This routine must be used to perform EEH initialization for the
875 * indicated PCI device that was added after system boot (e.g.
876 * hotplug, dlpar).
877 */
878 void eeh_add_device_tree_early(struct device_node *dn)
879 {
880 struct device_node *sib;
881
882 for_each_child_of_node(dn, sib)
883 eeh_add_device_tree_early(sib);
884 eeh_add_device_early(dn);
885 }
886 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
887
888 /**
889 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
890 * @dev: pci device for which to set up EEH
891 *
892 * This routine must be used to complete EEH initialization for PCI
893 * devices that were added after system boot (e.g. hotplug, dlpar).
894 */
895 void eeh_add_device_late(struct pci_dev *dev)
896 {
897 struct device_node *dn;
898 struct eeh_dev *edev;
899
900 if (!dev || !eeh_subsystem_enabled)
901 return;
902
903 pr_debug("EEH: Adding device %s\n", pci_name(dev));
904
905 dn = pci_device_to_OF_node(dev);
906 edev = of_node_to_eeh_dev(dn);
907 if (edev->pdev == dev) {
908 pr_debug("EEH: Already referenced !\n");
909 return;
910 }
911
912 /*
913 * The EEH cache might not be removed correctly because of
914 * unbalanced kref to the device during unplug time, which
915 * relies on pcibios_release_device(). So we have to remove
916 * that here explicitly.
917 */
918 if (edev->pdev) {
919 eeh_rmv_from_parent_pe(edev);
920 eeh_addr_cache_rmv_dev(edev->pdev);
921 eeh_sysfs_remove_device(edev->pdev);
922 edev->mode &= ~EEH_DEV_SYSFS;
923
924 /*
925 * We definitely should have the PCI device removed
926 * though it wasn't correctly. So we needn't call
927 * into error handler afterwards.
928 */
929 edev->mode |= EEH_DEV_NO_HANDLER;
930
931 edev->pdev = NULL;
932 dev->dev.archdata.edev = NULL;
933 }
934
935 edev->pdev = dev;
936 dev->dev.archdata.edev = edev;
937
938 /*
939 * We have to do the EEH probe here because the PCI device
940 * hasn't been created yet in the early stage.
941 */
942 if (eeh_probe_mode_dev())
943 eeh_ops->dev_probe(dev, NULL);
944
945 eeh_addr_cache_insert_dev(dev);
946 }
947
948 /**
949 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
950 * @bus: PCI bus
951 *
952 * This routine must be used to perform EEH initialization for PCI
953 * devices which are attached to the indicated PCI bus. The PCI bus
954 * is added after system boot through hotplug or dlpar.
955 */
956 void eeh_add_device_tree_late(struct pci_bus *bus)
957 {
958 struct pci_dev *dev;
959
960 list_for_each_entry(dev, &bus->devices, bus_list) {
961 eeh_add_device_late(dev);
962 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
963 struct pci_bus *subbus = dev->subordinate;
964 if (subbus)
965 eeh_add_device_tree_late(subbus);
966 }
967 }
968 }
969 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
970
971 /**
972 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
973 * @bus: PCI bus
974 *
975 * This routine must be used to add EEH sysfs files for PCI
976 * devices which are attached to the indicated PCI bus. The PCI bus
977 * is added after system boot through hotplug or dlpar.
978 */
979 void eeh_add_sysfs_files(struct pci_bus *bus)
980 {
981 struct pci_dev *dev;
982
983 list_for_each_entry(dev, &bus->devices, bus_list) {
984 eeh_sysfs_add_device(dev);
985 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
986 struct pci_bus *subbus = dev->subordinate;
987 if (subbus)
988 eeh_add_sysfs_files(subbus);
989 }
990 }
991 }
992 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
993
994 /**
995 * eeh_remove_device - Undo EEH setup for the indicated pci device
996 * @dev: pci device to be removed
997 *
998 * This routine should be called when a device is removed from
999 * a running system (e.g. by hotplug or dlpar). It unregisters
1000 * the PCI device from the EEH subsystem. I/O errors affecting
1001 * this device will no longer be detected after this call; thus,
1002 * i/o errors affecting this slot may leave this device unusable.
1003 */
1004 void eeh_remove_device(struct pci_dev *dev)
1005 {
1006 struct eeh_dev *edev;
1007
1008 if (!dev || !eeh_subsystem_enabled)
1009 return;
1010 edev = pci_dev_to_eeh_dev(dev);
1011
1012 /* Unregister the device with the EEH/PCI address search system */
1013 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1014
1015 if (!edev || !edev->pdev || !edev->pe) {
1016 pr_debug("EEH: Not referenced !\n");
1017 return;
1018 }
1019
1020 /*
1021 * During the hotplug for EEH error recovery, we need the EEH
1022 * device attached to the parent PE in order for BAR restore
1023 * a bit later. So we keep it for BAR restore and remove it
1024 * from the parent PE during the BAR resotre.
1025 */
1026 edev->pdev = NULL;
1027 dev->dev.archdata.edev = NULL;
1028 if (!(edev->pe->state & EEH_PE_KEEP))
1029 eeh_rmv_from_parent_pe(edev);
1030 else
1031 edev->mode |= EEH_DEV_DISCONNECTED;
1032
1033 /*
1034 * We're removing from the PCI subsystem, that means
1035 * the PCI device driver can't support EEH or not
1036 * well. So we rely on hotplug completely to do recovery
1037 * for the specific PCI device.
1038 */
1039 edev->mode |= EEH_DEV_NO_HANDLER;
1040
1041 eeh_addr_cache_rmv_dev(dev);
1042 eeh_sysfs_remove_device(dev);
1043 edev->mode &= ~EEH_DEV_SYSFS;
1044 }
1045
1046 static int proc_eeh_show(struct seq_file *m, void *v)
1047 {
1048 if (0 == eeh_subsystem_enabled) {
1049 seq_printf(m, "EEH Subsystem is globally disabled\n");
1050 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1051 } else {
1052 seq_printf(m, "EEH Subsystem is enabled\n");
1053 seq_printf(m,
1054 "no device=%llu\n"
1055 "no device node=%llu\n"
1056 "no config address=%llu\n"
1057 "check not wanted=%llu\n"
1058 "eeh_total_mmio_ffs=%llu\n"
1059 "eeh_false_positives=%llu\n"
1060 "eeh_slot_resets=%llu\n",
1061 eeh_stats.no_device,
1062 eeh_stats.no_dn,
1063 eeh_stats.no_cfg_addr,
1064 eeh_stats.ignored_check,
1065 eeh_stats.total_mmio_ffs,
1066 eeh_stats.false_positives,
1067 eeh_stats.slot_resets);
1068 }
1069
1070 return 0;
1071 }
1072
1073 static int proc_eeh_open(struct inode *inode, struct file *file)
1074 {
1075 return single_open(file, proc_eeh_show, NULL);
1076 }
1077
1078 static const struct file_operations proc_eeh_operations = {
1079 .open = proc_eeh_open,
1080 .read = seq_read,
1081 .llseek = seq_lseek,
1082 .release = single_release,
1083 };
1084
1085 static int __init eeh_init_proc(void)
1086 {
1087 if (machine_is(pseries) || machine_is(powernv))
1088 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1089 return 0;
1090 }
1091 __initcall(eeh_init_proc);
This page took 0.053459 seconds and 5 git commands to generate.