rtlwifi: Change order in device startup
[deliverable/linux.git] / arch / powerpc / kernel / eeh_pe.c
1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37
38 /**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
41 *
42 * Set PE auxillary data size
43 */
44 void eeh_set_pe_aux_size(int size)
45 {
46 if (size < 0)
47 return;
48
49 eeh_pe_aux_size = size;
50 }
51
52 /**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
56 *
57 * Allocate PE instance dynamically.
58 */
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 struct eeh_pe *pe;
62 size_t alloc_size;
63
64 alloc_size = sizeof(struct eeh_pe);
65 if (eeh_pe_aux_size) {
66 alloc_size = ALIGN(alloc_size, cache_line_size());
67 alloc_size += eeh_pe_aux_size;
68 }
69
70 /* Allocate PHB PE */
71 pe = kzalloc(alloc_size, GFP_KERNEL);
72 if (!pe) return NULL;
73
74 /* Initialize PHB PE */
75 pe->type = type;
76 pe->phb = phb;
77 INIT_LIST_HEAD(&pe->child_list);
78 INIT_LIST_HEAD(&pe->child);
79 INIT_LIST_HEAD(&pe->edevs);
80
81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 cache_line_size());
83 return pe;
84 }
85
86 /**
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
89 *
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
92 */
93 int eeh_phb_pe_create(struct pci_controller *phb)
94 {
95 struct eeh_pe *pe;
96
97 /* Allocate PHB PE */
98 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 if (!pe) {
100 pr_err("%s: out of memory!\n", __func__);
101 return -ENOMEM;
102 }
103
104 /* Put it into the list */
105 list_add_tail(&pe->child, &eeh_phb_pe);
106
107 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
108
109 return 0;
110 }
111
112 /**
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
115 *
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
119 */
120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121 {
122 struct eeh_pe *pe;
123
124 list_for_each_entry(pe, &eeh_phb_pe, child) {
125 /*
126 * Actually, we needn't check the type since
127 * the PE for PHB has been determined when that
128 * was created.
129 */
130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 return pe;
132 }
133
134 return NULL;
135 }
136
137 /**
138 * eeh_pe_next - Retrieve the next PE in the tree
139 * @pe: current PE
140 * @root: root PE
141 *
142 * The function is used to retrieve the next PE in the
143 * hierarchy PE tree.
144 */
145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 struct eeh_pe *root)
147 {
148 struct list_head *next = pe->child_list.next;
149
150 if (next == &pe->child_list) {
151 while (1) {
152 if (pe == root)
153 return NULL;
154 next = pe->child.next;
155 if (next != &pe->parent->child_list)
156 break;
157 pe = pe->parent;
158 }
159 }
160
161 return list_entry(next, struct eeh_pe, child);
162 }
163
164 /**
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
166 * @root: root PE
167 * @fn: callback
168 * @flag: extra parameter to callback
169 *
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
173 * to be traversed.
174 */
175 void *eeh_pe_traverse(struct eeh_pe *root,
176 eeh_traverse_func fn, void *flag)
177 {
178 struct eeh_pe *pe;
179 void *ret;
180
181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 ret = fn(pe, flag);
183 if (ret) return ret;
184 }
185
186 return NULL;
187 }
188
189 /**
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
191 * @root: EEH PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
194 *
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
197 */
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 eeh_traverse_func fn, void *flag)
200 {
201 struct eeh_pe *pe;
202 struct eeh_dev *edev, *tmp;
203 void *ret;
204
205 if (!root) {
206 pr_warn("%s: Invalid PE %p\n",
207 __func__, root);
208 return NULL;
209 }
210
211 /* Traverse root PE */
212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 eeh_pe_for_each_dev(pe, edev, tmp) {
214 ret = fn(edev, flag);
215 if (ret)
216 return ret;
217 }
218 }
219
220 return NULL;
221 }
222
223 /**
224 * __eeh_pe_get - Check the PE address
225 * @data: EEH PE
226 * @flag: EEH device
227 *
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
232 */
233 static void *__eeh_pe_get(void *data, void *flag)
234 {
235 struct eeh_pe *pe = (struct eeh_pe *)data;
236 struct eeh_dev *edev = (struct eeh_dev *)flag;
237
238 /* Unexpected PHB PE */
239 if (pe->type & EEH_PE_PHB)
240 return NULL;
241
242 /* We prefer PE address */
243 if (edev->pe_config_addr &&
244 (edev->pe_config_addr == pe->addr))
245 return pe;
246
247 /* Try BDF address */
248 if (edev->config_addr &&
249 (edev->config_addr == pe->config_addr))
250 return pe;
251
252 return NULL;
253 }
254
255 /**
256 * eeh_pe_get - Search PE based on the given address
257 * @edev: EEH device
258 *
259 * Search the corresponding PE based on the specified address which
260 * is included in the eeh device. The function is used to check if
261 * the associated PE has been created against the PE address. It's
262 * notable that the PE address has 2 format: traditional PE address
263 * which is composed of PCI bus/device/function number, or unified
264 * PE address.
265 */
266 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
267 {
268 struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
269 struct eeh_pe *pe;
270
271 pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
272
273 return pe;
274 }
275
276 /**
277 * eeh_pe_get_parent - Retrieve the parent PE
278 * @edev: EEH device
279 *
280 * The whole PEs existing in the system are organized as hierarchy
281 * tree. The function is used to retrieve the parent PE according
282 * to the parent EEH device.
283 */
284 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
285 {
286 struct device_node *dn;
287 struct eeh_dev *parent;
288
289 /*
290 * It might have the case for the indirect parent
291 * EEH device already having associated PE, but
292 * the direct parent EEH device doesn't have yet.
293 */
294 dn = edev->dn->parent;
295 while (dn) {
296 /* We're poking out of PCI territory */
297 if (!PCI_DN(dn)) return NULL;
298
299 parent = of_node_to_eeh_dev(dn);
300 /* We're poking out of PCI territory */
301 if (!parent) return NULL;
302
303 if (parent->pe)
304 return parent->pe;
305
306 dn = dn->parent;
307 }
308
309 return NULL;
310 }
311
312 /**
313 * eeh_add_to_parent_pe - Add EEH device to parent PE
314 * @edev: EEH device
315 *
316 * Add EEH device to the parent PE. If the parent PE already
317 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
318 * we have to create new PE to hold the EEH device and the new
319 * PE will be linked to its parent PE as well.
320 */
321 int eeh_add_to_parent_pe(struct eeh_dev *edev)
322 {
323 struct eeh_pe *pe, *parent;
324
325 /*
326 * Search the PE has been existing or not according
327 * to the PE address. If that has been existing, the
328 * PE should be composed of PCI bus and its subordinate
329 * components.
330 */
331 pe = eeh_pe_get(edev);
332 if (pe && !(pe->type & EEH_PE_INVALID)) {
333 if (!edev->pe_config_addr) {
334 pr_err("%s: PE with addr 0x%x already exists\n",
335 __func__, edev->config_addr);
336 return -EEXIST;
337 }
338
339 /* Mark the PE as type of PCI bus */
340 pe->type = EEH_PE_BUS;
341 edev->pe = pe;
342
343 /* Put the edev to PE */
344 list_add_tail(&edev->list, &pe->edevs);
345 pr_debug("EEH: Add %s to Bus PE#%x\n",
346 edev->dn->full_name, pe->addr);
347
348 return 0;
349 } else if (pe && (pe->type & EEH_PE_INVALID)) {
350 list_add_tail(&edev->list, &pe->edevs);
351 edev->pe = pe;
352 /*
353 * We're running to here because of PCI hotplug caused by
354 * EEH recovery. We need clear EEH_PE_INVALID until the top.
355 */
356 parent = pe;
357 while (parent) {
358 if (!(parent->type & EEH_PE_INVALID))
359 break;
360 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
361 parent = parent->parent;
362 }
363 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
364 edev->dn->full_name, pe->addr, pe->parent->addr);
365
366 return 0;
367 }
368
369 /* Create a new EEH PE */
370 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
371 if (!pe) {
372 pr_err("%s: out of memory!\n", __func__);
373 return -ENOMEM;
374 }
375 pe->addr = edev->pe_config_addr;
376 pe->config_addr = edev->config_addr;
377
378 /*
379 * Put the new EEH PE into hierarchy tree. If the parent
380 * can't be found, the newly created PE will be attached
381 * to PHB directly. Otherwise, we have to associate the
382 * PE with its parent.
383 */
384 parent = eeh_pe_get_parent(edev);
385 if (!parent) {
386 parent = eeh_phb_pe_get(edev->phb);
387 if (!parent) {
388 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
389 __func__, edev->phb->global_number);
390 edev->pe = NULL;
391 kfree(pe);
392 return -EEXIST;
393 }
394 }
395 pe->parent = parent;
396
397 /*
398 * Put the newly created PE into the child list and
399 * link the EEH device accordingly.
400 */
401 list_add_tail(&pe->child, &parent->child_list);
402 list_add_tail(&edev->list, &pe->edevs);
403 edev->pe = pe;
404 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
405 edev->dn->full_name, pe->addr, pe->parent->addr);
406
407 return 0;
408 }
409
410 /**
411 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
412 * @edev: EEH device
413 *
414 * The PE hierarchy tree might be changed when doing PCI hotplug.
415 * Also, the PCI devices or buses could be removed from the system
416 * during EEH recovery. So we have to call the function remove the
417 * corresponding PE accordingly if necessary.
418 */
419 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
420 {
421 struct eeh_pe *pe, *parent, *child;
422 int cnt;
423
424 if (!edev->pe) {
425 pr_debug("%s: No PE found for EEH device %s\n",
426 __func__, edev->dn->full_name);
427 return -EEXIST;
428 }
429
430 /* Remove the EEH device */
431 pe = eeh_dev_to_pe(edev);
432 edev->pe = NULL;
433 list_del(&edev->list);
434
435 /*
436 * Check if the parent PE includes any EEH devices.
437 * If not, we should delete that. Also, we should
438 * delete the parent PE if it doesn't have associated
439 * child PEs and EEH devices.
440 */
441 while (1) {
442 parent = pe->parent;
443 if (pe->type & EEH_PE_PHB)
444 break;
445
446 if (!(pe->state & EEH_PE_KEEP)) {
447 if (list_empty(&pe->edevs) &&
448 list_empty(&pe->child_list)) {
449 list_del(&pe->child);
450 kfree(pe);
451 } else {
452 break;
453 }
454 } else {
455 if (list_empty(&pe->edevs)) {
456 cnt = 0;
457 list_for_each_entry(child, &pe->child_list, child) {
458 if (!(child->type & EEH_PE_INVALID)) {
459 cnt++;
460 break;
461 }
462 }
463
464 if (!cnt)
465 pe->type |= EEH_PE_INVALID;
466 else
467 break;
468 }
469 }
470
471 pe = parent;
472 }
473
474 return 0;
475 }
476
477 /**
478 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
479 * @pe: EEH PE
480 *
481 * We have time stamp for each PE to trace its time of getting
482 * frozen in last hour. The function should be called to update
483 * the time stamp on first error of the specific PE. On the other
484 * handle, we needn't account for errors happened in last hour.
485 */
486 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
487 {
488 struct timeval tstamp;
489
490 if (!pe) return;
491
492 if (pe->freeze_count <= 0) {
493 pe->freeze_count = 0;
494 do_gettimeofday(&pe->tstamp);
495 } else {
496 do_gettimeofday(&tstamp);
497 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
498 pe->tstamp = tstamp;
499 pe->freeze_count = 0;
500 }
501 }
502 }
503
504 /**
505 * __eeh_pe_state_mark - Mark the state for the PE
506 * @data: EEH PE
507 * @flag: state
508 *
509 * The function is used to mark the indicated state for the given
510 * PE. Also, the associated PCI devices will be put into IO frozen
511 * state as well.
512 */
513 static void *__eeh_pe_state_mark(void *data, void *flag)
514 {
515 struct eeh_pe *pe = (struct eeh_pe *)data;
516 int state = *((int *)flag);
517 struct eeh_dev *edev, *tmp;
518 struct pci_dev *pdev;
519
520 /* Keep the state of permanently removed PE intact */
521 if ((pe->freeze_count > EEH_MAX_ALLOWED_FREEZES) &&
522 (state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
523 return NULL;
524
525 pe->state |= state;
526
527 /* Offline PCI devices if applicable */
528 if (state != EEH_PE_ISOLATED)
529 return NULL;
530
531 eeh_pe_for_each_dev(pe, edev, tmp) {
532 pdev = eeh_dev_to_pci_dev(edev);
533 if (pdev)
534 pdev->error_state = pci_channel_io_frozen;
535 }
536
537 return NULL;
538 }
539
540 /**
541 * eeh_pe_state_mark - Mark specified state for PE and its associated device
542 * @pe: EEH PE
543 *
544 * EEH error affects the current PE and its child PEs. The function
545 * is used to mark appropriate state for the affected PEs and the
546 * associated devices.
547 */
548 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
549 {
550 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
551 }
552
553 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
554 {
555 struct eeh_dev *edev = data;
556 int mode = *((int *)flag);
557
558 edev->mode |= mode;
559
560 return NULL;
561 }
562
563 /**
564 * eeh_pe_dev_state_mark - Mark state for all device under the PE
565 * @pe: EEH PE
566 *
567 * Mark specific state for all child devices of the PE.
568 */
569 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
570 {
571 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
572 }
573
574 /**
575 * __eeh_pe_state_clear - Clear state for the PE
576 * @data: EEH PE
577 * @flag: state
578 *
579 * The function is used to clear the indicated state from the
580 * given PE. Besides, we also clear the check count of the PE
581 * as well.
582 */
583 static void *__eeh_pe_state_clear(void *data, void *flag)
584 {
585 struct eeh_pe *pe = (struct eeh_pe *)data;
586 int state = *((int *)flag);
587 struct eeh_dev *edev, *tmp;
588 struct pci_dev *pdev;
589
590 /* Keep the state of permanently removed PE intact */
591 if ((pe->freeze_count > EEH_MAX_ALLOWED_FREEZES) &&
592 (state & EEH_PE_ISOLATED))
593 return NULL;
594
595 pe->state &= ~state;
596
597 /*
598 * Special treatment on clearing isolated state. Clear
599 * check count since last isolation and put all affected
600 * devices to normal state.
601 */
602 if (!(state & EEH_PE_ISOLATED))
603 return NULL;
604
605 pe->check_count = 0;
606 eeh_pe_for_each_dev(pe, edev, tmp) {
607 pdev = eeh_dev_to_pci_dev(edev);
608 if (!pdev)
609 continue;
610
611 pdev->error_state = pci_channel_io_normal;
612 }
613
614 return NULL;
615 }
616
617 /**
618 * eeh_pe_state_clear - Clear state for the PE and its children
619 * @pe: PE
620 * @state: state to be cleared
621 *
622 * When the PE and its children has been recovered from error,
623 * we need clear the error state for that. The function is used
624 * for the purpose.
625 */
626 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
627 {
628 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
629 }
630
631 /*
632 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
633 * buses assigned explicitly by firmware, and we probably have
634 * lost that after reset. So we have to delay the check until
635 * the PCI-CFG registers have been restored for the parent
636 * bridge.
637 *
638 * Don't use normal PCI-CFG accessors, which probably has been
639 * blocked on normal path during the stage. So we need utilize
640 * eeh operations, which is always permitted.
641 */
642 static void eeh_bridge_check_link(struct eeh_dev *edev,
643 struct device_node *dn)
644 {
645 int cap;
646 uint32_t val;
647 int timeout = 0;
648
649 /*
650 * We only check root port and downstream ports of
651 * PCIe switches
652 */
653 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
654 return;
655
656 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
657 __func__, edev->phb->global_number,
658 edev->config_addr >> 8,
659 PCI_SLOT(edev->config_addr & 0xFF),
660 PCI_FUNC(edev->config_addr & 0xFF));
661
662 /* Check slot status */
663 cap = edev->pcie_cap;
664 eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val);
665 if (!(val & PCI_EXP_SLTSTA_PDS)) {
666 pr_debug(" No card in the slot (0x%04x) !\n", val);
667 return;
668 }
669
670 /* Check power status if we have the capability */
671 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val);
672 if (val & PCI_EXP_SLTCAP_PCP) {
673 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val);
674 if (val & PCI_EXP_SLTCTL_PCC) {
675 pr_debug(" In power-off state, power it on ...\n");
676 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
677 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
678 eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val);
679 msleep(2 * 1000);
680 }
681 }
682
683 /* Enable link */
684 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val);
685 val &= ~PCI_EXP_LNKCTL_LD;
686 eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val);
687
688 /* Check link */
689 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val);
690 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
691 pr_debug(" No link reporting capability (0x%08x) \n", val);
692 msleep(1000);
693 return;
694 }
695
696 /* Wait the link is up until timeout (5s) */
697 timeout = 0;
698 while (timeout < 5000) {
699 msleep(20);
700 timeout += 20;
701
702 eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val);
703 if (val & PCI_EXP_LNKSTA_DLLLA)
704 break;
705 }
706
707 if (val & PCI_EXP_LNKSTA_DLLLA)
708 pr_debug(" Link up (%s)\n",
709 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
710 else
711 pr_debug(" Link not ready (0x%04x)\n", val);
712 }
713
714 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
715 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
716
717 static void eeh_restore_bridge_bars(struct eeh_dev *edev,
718 struct device_node *dn)
719 {
720 int i;
721
722 /*
723 * Device BARs: 0x10 - 0x18
724 * Bus numbers and windows: 0x18 - 0x30
725 */
726 for (i = 4; i < 13; i++)
727 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
728 /* Rom: 0x38 */
729 eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]);
730
731 /* Cache line & Latency timer: 0xC 0xD */
732 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
733 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
734 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
735 SAVED_BYTE(PCI_LATENCY_TIMER));
736 /* Max latency, min grant, interrupt ping and line: 0x3C */
737 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
738
739 /* PCI Command: 0x4 */
740 eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]);
741
742 /* Check the PCIe link is ready */
743 eeh_bridge_check_link(edev, dn);
744 }
745
746 static void eeh_restore_device_bars(struct eeh_dev *edev,
747 struct device_node *dn)
748 {
749 int i;
750 u32 cmd;
751
752 for (i = 4; i < 10; i++)
753 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
754 /* 12 == Expansion ROM Address */
755 eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
756
757 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
758 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
759 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
760 SAVED_BYTE(PCI_LATENCY_TIMER));
761
762 /* max latency, min grant, interrupt pin and line */
763 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
764
765 /*
766 * Restore PERR & SERR bits, some devices require it,
767 * don't touch the other command bits
768 */
769 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
770 if (edev->config_space[1] & PCI_COMMAND_PARITY)
771 cmd |= PCI_COMMAND_PARITY;
772 else
773 cmd &= ~PCI_COMMAND_PARITY;
774 if (edev->config_space[1] & PCI_COMMAND_SERR)
775 cmd |= PCI_COMMAND_SERR;
776 else
777 cmd &= ~PCI_COMMAND_SERR;
778 eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
779 }
780
781 /**
782 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
783 * @data: EEH device
784 * @flag: Unused
785 *
786 * Loads the PCI configuration space base address registers,
787 * the expansion ROM base address, the latency timer, and etc.
788 * from the saved values in the device node.
789 */
790 static void *eeh_restore_one_device_bars(void *data, void *flag)
791 {
792 struct eeh_dev *edev = (struct eeh_dev *)data;
793 struct device_node *dn = eeh_dev_to_of_node(edev);
794
795 /* Do special restore for bridges */
796 if (edev->mode & EEH_DEV_BRIDGE)
797 eeh_restore_bridge_bars(edev, dn);
798 else
799 eeh_restore_device_bars(edev, dn);
800
801 if (eeh_ops->restore_config)
802 eeh_ops->restore_config(dn);
803
804 return NULL;
805 }
806
807 /**
808 * eeh_pe_restore_bars - Restore the PCI config space info
809 * @pe: EEH PE
810 *
811 * This routine performs a recursive walk to the children
812 * of this device as well.
813 */
814 void eeh_pe_restore_bars(struct eeh_pe *pe)
815 {
816 /*
817 * We needn't take the EEH lock since eeh_pe_dev_traverse()
818 * will take that.
819 */
820 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
821 }
822
823 /**
824 * eeh_pe_loc_get - Retrieve location code binding to the given PE
825 * @pe: EEH PE
826 *
827 * Retrieve the location code of the given PE. If the primary PE bus
828 * is root bus, we will grab location code from PHB device tree node
829 * or root port. Otherwise, the upstream bridge's device tree node
830 * of the primary PE bus will be checked for the location code.
831 */
832 const char *eeh_pe_loc_get(struct eeh_pe *pe)
833 {
834 struct pci_bus *bus = eeh_pe_bus_get(pe);
835 struct device_node *dn = pci_bus_to_OF_node(bus);
836 const char *loc = NULL;
837
838 if (!dn)
839 goto out;
840
841 /* PHB PE or root PE ? */
842 if (pci_is_root_bus(bus)) {
843 loc = of_get_property(dn, "ibm,loc-code", NULL);
844 if (!loc)
845 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
846 if (loc)
847 goto out;
848
849 /* Check the root port */
850 dn = dn->child;
851 if (!dn)
852 goto out;
853 }
854
855 loc = of_get_property(dn, "ibm,loc-code", NULL);
856 if (!loc)
857 loc = of_get_property(dn, "ibm,slot-location-code", NULL);
858
859 out:
860 return loc ? loc : "N/A";
861 }
862
863 /**
864 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
865 * @pe: EEH PE
866 *
867 * Retrieve the PCI bus according to the given PE. Basically,
868 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
869 * primary PCI bus will be retrieved. The parent bus will be
870 * returned for BUS PE. However, we don't have associated PCI
871 * bus for DEVICE PE.
872 */
873 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
874 {
875 struct pci_bus *bus = NULL;
876 struct eeh_dev *edev;
877 struct pci_dev *pdev;
878
879 if (pe->type & EEH_PE_PHB) {
880 bus = pe->phb->bus;
881 } else if (pe->type & EEH_PE_BUS ||
882 pe->type & EEH_PE_DEVICE) {
883 if (pe->bus) {
884 bus = pe->bus;
885 goto out;
886 }
887
888 edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
889 pdev = eeh_dev_to_pci_dev(edev);
890 if (pdev)
891 bus = pdev->bus;
892 }
893
894 out:
895 return bus;
896 }
This page took 0.067789 seconds and 5 git commands to generate.