55943fcdaeb84f5aeb5097505d233c3ed0649078
[deliverable/linux.git] / arch / powerpc / kernel / eeh_pe.c
1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/export.h>
26 #include <linux/gfp.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34
35 static LIST_HEAD(eeh_phb_pe);
36
37 /**
38 * eeh_pe_alloc - Allocate PE
39 * @phb: PCI controller
40 * @type: PE type
41 *
42 * Allocate PE instance dynamically.
43 */
44 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
45 {
46 struct eeh_pe *pe;
47
48 /* Allocate PHB PE */
49 pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL);
50 if (!pe) return NULL;
51
52 /* Initialize PHB PE */
53 pe->type = type;
54 pe->phb = phb;
55 INIT_LIST_HEAD(&pe->child_list);
56 INIT_LIST_HEAD(&pe->child);
57 INIT_LIST_HEAD(&pe->edevs);
58
59 return pe;
60 }
61
62 /**
63 * eeh_phb_pe_create - Create PHB PE
64 * @phb: PCI controller
65 *
66 * The function should be called while the PHB is detected during
67 * system boot or PCI hotplug in order to create PHB PE.
68 */
69 int eeh_phb_pe_create(struct pci_controller *phb)
70 {
71 struct eeh_pe *pe;
72
73 /* Allocate PHB PE */
74 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
75 if (!pe) {
76 pr_err("%s: out of memory!\n", __func__);
77 return -ENOMEM;
78 }
79
80 /* Put it into the list */
81 list_add_tail(&pe->child, &eeh_phb_pe);
82
83 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
84
85 return 0;
86 }
87
88 /**
89 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
90 * @phb: PCI controller
91 *
92 * The overall PEs form hierarchy tree. The first layer of the
93 * hierarchy tree is composed of PHB PEs. The function is used
94 * to retrieve the corresponding PHB PE according to the given PHB.
95 */
96 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
97 {
98 struct eeh_pe *pe;
99
100 list_for_each_entry(pe, &eeh_phb_pe, child) {
101 /*
102 * Actually, we needn't check the type since
103 * the PE for PHB has been determined when that
104 * was created.
105 */
106 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
107 return pe;
108 }
109
110 return NULL;
111 }
112
113 /**
114 * eeh_pe_next - Retrieve the next PE in the tree
115 * @pe: current PE
116 * @root: root PE
117 *
118 * The function is used to retrieve the next PE in the
119 * hierarchy PE tree.
120 */
121 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
122 struct eeh_pe *root)
123 {
124 struct list_head *next = pe->child_list.next;
125
126 if (next == &pe->child_list) {
127 while (1) {
128 if (pe == root)
129 return NULL;
130 next = pe->child.next;
131 if (next != &pe->parent->child_list)
132 break;
133 pe = pe->parent;
134 }
135 }
136
137 return list_entry(next, struct eeh_pe, child);
138 }
139
140 /**
141 * eeh_pe_traverse - Traverse PEs in the specified PHB
142 * @root: root PE
143 * @fn: callback
144 * @flag: extra parameter to callback
145 *
146 * The function is used to traverse the specified PE and its
147 * child PEs. The traversing is to be terminated once the
148 * callback returns something other than NULL, or no more PEs
149 * to be traversed.
150 */
151 static void *eeh_pe_traverse(struct eeh_pe *root,
152 eeh_traverse_func fn, void *flag)
153 {
154 struct eeh_pe *pe;
155 void *ret;
156
157 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
158 ret = fn(pe, flag);
159 if (ret) return ret;
160 }
161
162 return NULL;
163 }
164
165 /**
166 * eeh_pe_dev_traverse - Traverse the devices from the PE
167 * @root: EEH PE
168 * @fn: function callback
169 * @flag: extra parameter to callback
170 *
171 * The function is used to traverse the devices of the specified
172 * PE and its child PEs.
173 */
174 void *eeh_pe_dev_traverse(struct eeh_pe *root,
175 eeh_traverse_func fn, void *flag)
176 {
177 struct eeh_pe *pe;
178 struct eeh_dev *edev;
179 void *ret;
180
181 if (!root) {
182 pr_warning("%s: Invalid PE %p\n", __func__, root);
183 return NULL;
184 }
185
186 /* Traverse root PE */
187 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
188 eeh_pe_for_each_dev(pe, edev) {
189 ret = fn(edev, flag);
190 if (ret)
191 return ret;
192 }
193 }
194
195 return NULL;
196 }
197
198 /**
199 * __eeh_pe_get - Check the PE address
200 * @data: EEH PE
201 * @flag: EEH device
202 *
203 * For one particular PE, it can be identified by PE address
204 * or tranditional BDF address. BDF address is composed of
205 * Bus/Device/Function number. The extra data referred by flag
206 * indicates which type of address should be used.
207 */
208 static void *__eeh_pe_get(void *data, void *flag)
209 {
210 struct eeh_pe *pe = (struct eeh_pe *)data;
211 struct eeh_dev *edev = (struct eeh_dev *)flag;
212
213 /* Unexpected PHB PE */
214 if (pe->type & EEH_PE_PHB)
215 return NULL;
216
217 /* We prefer PE address */
218 if (edev->pe_config_addr &&
219 (edev->pe_config_addr == pe->addr))
220 return pe;
221
222 /* Try BDF address */
223 if (edev->config_addr &&
224 (edev->config_addr == pe->config_addr))
225 return pe;
226
227 return NULL;
228 }
229
230 /**
231 * eeh_pe_get - Search PE based on the given address
232 * @edev: EEH device
233 *
234 * Search the corresponding PE based on the specified address which
235 * is included in the eeh device. The function is used to check if
236 * the associated PE has been created against the PE address. It's
237 * notable that the PE address has 2 format: traditional PE address
238 * which is composed of PCI bus/device/function number, or unified
239 * PE address.
240 */
241 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
242 {
243 struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
244 struct eeh_pe *pe;
245
246 pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
247
248 return pe;
249 }
250
251 /**
252 * eeh_pe_get_parent - Retrieve the parent PE
253 * @edev: EEH device
254 *
255 * The whole PEs existing in the system are organized as hierarchy
256 * tree. The function is used to retrieve the parent PE according
257 * to the parent EEH device.
258 */
259 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
260 {
261 struct device_node *dn;
262 struct eeh_dev *parent;
263
264 /*
265 * It might have the case for the indirect parent
266 * EEH device already having associated PE, but
267 * the direct parent EEH device doesn't have yet.
268 */
269 dn = edev->dn->parent;
270 while (dn) {
271 /* We're poking out of PCI territory */
272 if (!PCI_DN(dn)) return NULL;
273
274 parent = of_node_to_eeh_dev(dn);
275 /* We're poking out of PCI territory */
276 if (!parent) return NULL;
277
278 if (parent->pe)
279 return parent->pe;
280
281 dn = dn->parent;
282 }
283
284 return NULL;
285 }
286
287 /**
288 * eeh_add_to_parent_pe - Add EEH device to parent PE
289 * @edev: EEH device
290 *
291 * Add EEH device to the parent PE. If the parent PE already
292 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
293 * we have to create new PE to hold the EEH device and the new
294 * PE will be linked to its parent PE as well.
295 */
296 int eeh_add_to_parent_pe(struct eeh_dev *edev)
297 {
298 struct eeh_pe *pe, *parent;
299
300 /*
301 * Search the PE has been existing or not according
302 * to the PE address. If that has been existing, the
303 * PE should be composed of PCI bus and its subordinate
304 * components.
305 */
306 pe = eeh_pe_get(edev);
307 if (pe && !(pe->type & EEH_PE_INVALID)) {
308 if (!edev->pe_config_addr) {
309 pr_err("%s: PE with addr 0x%x already exists\n",
310 __func__, edev->config_addr);
311 return -EEXIST;
312 }
313
314 /* Mark the PE as type of PCI bus */
315 pe->type = EEH_PE_BUS;
316 edev->pe = pe;
317
318 /* Put the edev to PE */
319 list_add_tail(&edev->list, &pe->edevs);
320 pr_debug("EEH: Add %s to Bus PE#%x\n",
321 edev->dn->full_name, pe->addr);
322
323 return 0;
324 } else if (pe && (pe->type & EEH_PE_INVALID)) {
325 list_add_tail(&edev->list, &pe->edevs);
326 edev->pe = pe;
327 /*
328 * We're running to here because of PCI hotplug caused by
329 * EEH recovery. We need clear EEH_PE_INVALID until the top.
330 */
331 parent = pe;
332 while (parent) {
333 if (!(parent->type & EEH_PE_INVALID))
334 break;
335 parent->type &= ~EEH_PE_INVALID;
336 parent = parent->parent;
337 }
338 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
339 edev->dn->full_name, pe->addr, pe->parent->addr);
340
341 return 0;
342 }
343
344 /* Create a new EEH PE */
345 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
346 if (!pe) {
347 pr_err("%s: out of memory!\n", __func__);
348 return -ENOMEM;
349 }
350 pe->addr = edev->pe_config_addr;
351 pe->config_addr = edev->config_addr;
352
353 /*
354 * While doing PE reset, we probably hot-reset the
355 * upstream bridge. However, the PCI devices including
356 * the associated EEH devices might be removed when EEH
357 * core is doing recovery. So that won't safe to retrieve
358 * the bridge through downstream EEH device. We have to
359 * trace the parent PCI bus, then the upstream bridge.
360 */
361 if (eeh_probe_mode_dev())
362 pe->bus = eeh_dev_to_pci_dev(edev)->bus;
363
364 /*
365 * Put the new EEH PE into hierarchy tree. If the parent
366 * can't be found, the newly created PE will be attached
367 * to PHB directly. Otherwise, we have to associate the
368 * PE with its parent.
369 */
370 parent = eeh_pe_get_parent(edev);
371 if (!parent) {
372 parent = eeh_phb_pe_get(edev->phb);
373 if (!parent) {
374 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
375 __func__, edev->phb->global_number);
376 edev->pe = NULL;
377 kfree(pe);
378 return -EEXIST;
379 }
380 }
381 pe->parent = parent;
382
383 /*
384 * Put the newly created PE into the child list and
385 * link the EEH device accordingly.
386 */
387 list_add_tail(&pe->child, &parent->child_list);
388 list_add_tail(&edev->list, &pe->edevs);
389 edev->pe = pe;
390 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
391 edev->dn->full_name, pe->addr, pe->parent->addr);
392
393 return 0;
394 }
395
396 /**
397 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
398 * @edev: EEH device
399 * @purge_pe: remove PE or not
400 *
401 * The PE hierarchy tree might be changed when doing PCI hotplug.
402 * Also, the PCI devices or buses could be removed from the system
403 * during EEH recovery. So we have to call the function remove the
404 * corresponding PE accordingly if necessary.
405 */
406 int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe)
407 {
408 struct eeh_pe *pe, *parent, *child;
409 int cnt;
410
411 if (!edev->pe) {
412 pr_warning("%s: No PE found for EEH device %s\n",
413 __func__, edev->dn->full_name);
414 return -EEXIST;
415 }
416
417 /* Remove the EEH device */
418 pe = edev->pe;
419 edev->pe = NULL;
420 list_del(&edev->list);
421
422 /*
423 * Check if the parent PE includes any EEH devices.
424 * If not, we should delete that. Also, we should
425 * delete the parent PE if it doesn't have associated
426 * child PEs and EEH devices.
427 */
428 while (1) {
429 parent = pe->parent;
430 if (pe->type & EEH_PE_PHB)
431 break;
432
433 if (purge_pe) {
434 if (list_empty(&pe->edevs) &&
435 list_empty(&pe->child_list)) {
436 list_del(&pe->child);
437 kfree(pe);
438 } else {
439 break;
440 }
441 } else {
442 if (list_empty(&pe->edevs)) {
443 cnt = 0;
444 list_for_each_entry(child, &pe->child_list, child) {
445 if (!(child->type & EEH_PE_INVALID)) {
446 cnt++;
447 break;
448 }
449 }
450
451 if (!cnt)
452 pe->type |= EEH_PE_INVALID;
453 else
454 break;
455 }
456 }
457
458 pe = parent;
459 }
460
461 return 0;
462 }
463
464 /**
465 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
466 * @pe: EEH PE
467 *
468 * We have time stamp for each PE to trace its time of getting
469 * frozen in last hour. The function should be called to update
470 * the time stamp on first error of the specific PE. On the other
471 * handle, we needn't account for errors happened in last hour.
472 */
473 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
474 {
475 struct timeval tstamp;
476
477 if (!pe) return;
478
479 if (pe->freeze_count <= 0) {
480 pe->freeze_count = 0;
481 do_gettimeofday(&pe->tstamp);
482 } else {
483 do_gettimeofday(&tstamp);
484 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
485 pe->tstamp = tstamp;
486 pe->freeze_count = 0;
487 }
488 }
489 }
490
491 /**
492 * __eeh_pe_state_mark - Mark the state for the PE
493 * @data: EEH PE
494 * @flag: state
495 *
496 * The function is used to mark the indicated state for the given
497 * PE. Also, the associated PCI devices will be put into IO frozen
498 * state as well.
499 */
500 static void *__eeh_pe_state_mark(void *data, void *flag)
501 {
502 struct eeh_pe *pe = (struct eeh_pe *)data;
503 int state = *((int *)flag);
504 struct eeh_dev *tmp;
505 struct pci_dev *pdev;
506
507 /*
508 * Mark the PE with the indicated state. Also,
509 * the associated PCI device will be put into
510 * I/O frozen state to avoid I/O accesses from
511 * the PCI device driver.
512 */
513 pe->state |= state;
514 eeh_pe_for_each_dev(pe, tmp) {
515 pdev = eeh_dev_to_pci_dev(tmp);
516 if (pdev)
517 pdev->error_state = pci_channel_io_frozen;
518 }
519
520 return NULL;
521 }
522
523 /**
524 * eeh_pe_state_mark - Mark specified state for PE and its associated device
525 * @pe: EEH PE
526 *
527 * EEH error affects the current PE and its child PEs. The function
528 * is used to mark appropriate state for the affected PEs and the
529 * associated devices.
530 */
531 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
532 {
533 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
534 }
535
536 /**
537 * __eeh_pe_state_clear - Clear state for the PE
538 * @data: EEH PE
539 * @flag: state
540 *
541 * The function is used to clear the indicated state from the
542 * given PE. Besides, we also clear the check count of the PE
543 * as well.
544 */
545 static void *__eeh_pe_state_clear(void *data, void *flag)
546 {
547 struct eeh_pe *pe = (struct eeh_pe *)data;
548 int state = *((int *)flag);
549
550 pe->state &= ~state;
551 pe->check_count = 0;
552
553 return NULL;
554 }
555
556 /**
557 * eeh_pe_state_clear - Clear state for the PE and its children
558 * @pe: PE
559 * @state: state to be cleared
560 *
561 * When the PE and its children has been recovered from error,
562 * we need clear the error state for that. The function is used
563 * for the purpose.
564 */
565 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
566 {
567 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
568 }
569
570 /**
571 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
572 * @data: EEH device
573 * @flag: Unused
574 *
575 * Loads the PCI configuration space base address registers,
576 * the expansion ROM base address, the latency timer, and etc.
577 * from the saved values in the device node.
578 */
579 static void *eeh_restore_one_device_bars(void *data, void *flag)
580 {
581 int i;
582 u32 cmd;
583 struct eeh_dev *edev = (struct eeh_dev *)data;
584 struct device_node *dn = eeh_dev_to_of_node(edev);
585
586 for (i = 4; i < 10; i++)
587 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
588 /* 12 == Expansion ROM Address */
589 eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
590
591 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
592 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
593
594 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
595 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
596 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
597 SAVED_BYTE(PCI_LATENCY_TIMER));
598
599 /* max latency, min grant, interrupt pin and line */
600 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
601
602 /*
603 * Restore PERR & SERR bits, some devices require it,
604 * don't touch the other command bits
605 */
606 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
607 if (edev->config_space[1] & PCI_COMMAND_PARITY)
608 cmd |= PCI_COMMAND_PARITY;
609 else
610 cmd &= ~PCI_COMMAND_PARITY;
611 if (edev->config_space[1] & PCI_COMMAND_SERR)
612 cmd |= PCI_COMMAND_SERR;
613 else
614 cmd &= ~PCI_COMMAND_SERR;
615 eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
616
617 return NULL;
618 }
619
620 /**
621 * eeh_pe_restore_bars - Restore the PCI config space info
622 * @pe: EEH PE
623 *
624 * This routine performs a recursive walk to the children
625 * of this device as well.
626 */
627 void eeh_pe_restore_bars(struct eeh_pe *pe)
628 {
629 /*
630 * We needn't take the EEH lock since eeh_pe_dev_traverse()
631 * will take that.
632 */
633 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
634 }
635
636 /**
637 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
638 * @pe: EEH PE
639 *
640 * Retrieve the PCI bus according to the given PE. Basically,
641 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
642 * primary PCI bus will be retrieved. The parent bus will be
643 * returned for BUS PE. However, we don't have associated PCI
644 * bus for DEVICE PE.
645 */
646 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
647 {
648 struct pci_bus *bus = NULL;
649 struct eeh_dev *edev;
650 struct pci_dev *pdev;
651
652 if (pe->type & EEH_PE_PHB) {
653 bus = pe->phb->bus;
654 } else if (pe->type & EEH_PE_BUS ||
655 pe->type & EEH_PE_DEVICE) {
656 if (pe->bus) {
657 bus = pe->bus;
658 goto out;
659 }
660
661 edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
662 pdev = eeh_dev_to_pci_dev(edev);
663 if (pdev)
664 bus = pdev->bus;
665 }
666
667 out:
668 return bus;
669 }
This page took 0.05771 seconds and 4 git commands to generate.