[PATCH] powerpc64: Fix loading of modules without a .toc section
[deliverable/linux.git] / arch / powerpc / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
27 */
28
29 #include <linux/config.h>
30 #include <linux/kprobes.h>
31 #include <linux/ptrace.h>
32 #include <linux/preempt.h>
33 #include <linux/module.h>
34 #include <asm/cacheflush.h>
35 #include <asm/kdebug.h>
36 #include <asm/sstep.h>
37 #include <asm/uaccess.h>
38
39 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41
42 int __kprobes arch_prepare_kprobe(struct kprobe *p)
43 {
44 int ret = 0;
45 kprobe_opcode_t insn = *p->addr;
46
47 if ((unsigned long)p->addr & 0x03) {
48 printk("Attempt to register kprobe at an unaligned address\n");
49 ret = -EINVAL;
50 } else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
51 printk("Cannot register a kprobe on rfid or mtmsrd\n");
52 ret = -EINVAL;
53 }
54
55 /* insn must be on a special executable page on ppc64 */
56 if (!ret) {
57 p->ainsn.insn = get_insn_slot();
58 if (!p->ainsn.insn)
59 ret = -ENOMEM;
60 }
61
62 if (!ret) {
63 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
64 p->opcode = *p->addr;
65 }
66
67 return ret;
68 }
69
70 void __kprobes arch_arm_kprobe(struct kprobe *p)
71 {
72 *p->addr = BREAKPOINT_INSTRUCTION;
73 flush_icache_range((unsigned long) p->addr,
74 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
75 }
76
77 void __kprobes arch_disarm_kprobe(struct kprobe *p)
78 {
79 *p->addr = p->opcode;
80 flush_icache_range((unsigned long) p->addr,
81 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
82 }
83
84 void __kprobes arch_remove_kprobe(struct kprobe *p)
85 {
86 mutex_lock(&kprobe_mutex);
87 free_insn_slot(p->ainsn.insn);
88 mutex_unlock(&kprobe_mutex);
89 }
90
91 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
92 {
93 kprobe_opcode_t insn = *p->ainsn.insn;
94
95 regs->msr |= MSR_SE;
96
97 /* single step inline if it is a trap variant */
98 if (is_trap(insn))
99 regs->nip = (unsigned long)p->addr;
100 else
101 regs->nip = (unsigned long)p->ainsn.insn;
102 }
103
104 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
105 {
106 kcb->prev_kprobe.kp = kprobe_running();
107 kcb->prev_kprobe.status = kcb->kprobe_status;
108 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
109 }
110
111 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
112 {
113 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
114 kcb->kprobe_status = kcb->prev_kprobe.status;
115 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
116 }
117
118 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
119 struct kprobe_ctlblk *kcb)
120 {
121 __get_cpu_var(current_kprobe) = p;
122 kcb->kprobe_saved_msr = regs->msr;
123 }
124
125 /* Called with kretprobe_lock held */
126 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
127 struct pt_regs *regs)
128 {
129 struct kretprobe_instance *ri;
130
131 if ((ri = get_free_rp_inst(rp)) != NULL) {
132 ri->rp = rp;
133 ri->task = current;
134 ri->ret_addr = (kprobe_opcode_t *)regs->link;
135
136 /* Replace the return addr with trampoline addr */
137 regs->link = (unsigned long)kretprobe_trampoline;
138 add_rp_inst(ri);
139 } else {
140 rp->nmissed++;
141 }
142 }
143
144 static int __kprobes kprobe_handler(struct pt_regs *regs)
145 {
146 struct kprobe *p;
147 int ret = 0;
148 unsigned int *addr = (unsigned int *)regs->nip;
149 struct kprobe_ctlblk *kcb;
150
151 /*
152 * We don't want to be preempted for the entire
153 * duration of kprobe processing
154 */
155 preempt_disable();
156 kcb = get_kprobe_ctlblk();
157
158 /* Check we're not actually recursing */
159 if (kprobe_running()) {
160 p = get_kprobe(addr);
161 if (p) {
162 kprobe_opcode_t insn = *p->ainsn.insn;
163 if (kcb->kprobe_status == KPROBE_HIT_SS &&
164 is_trap(insn)) {
165 regs->msr &= ~MSR_SE;
166 regs->msr |= kcb->kprobe_saved_msr;
167 goto no_kprobe;
168 }
169 /* We have reentered the kprobe_handler(), since
170 * another probe was hit while within the handler.
171 * We here save the original kprobes variables and
172 * just single step on the instruction of the new probe
173 * without calling any user handlers.
174 */
175 save_previous_kprobe(kcb);
176 set_current_kprobe(p, regs, kcb);
177 kcb->kprobe_saved_msr = regs->msr;
178 kprobes_inc_nmissed_count(p);
179 prepare_singlestep(p, regs);
180 kcb->kprobe_status = KPROBE_REENTER;
181 return 1;
182 } else {
183 if (*addr != BREAKPOINT_INSTRUCTION) {
184 /* If trap variant, then it belongs not to us */
185 kprobe_opcode_t cur_insn = *addr;
186 if (is_trap(cur_insn))
187 goto no_kprobe;
188 /* The breakpoint instruction was removed by
189 * another cpu right after we hit, no further
190 * handling of this interrupt is appropriate
191 */
192 ret = 1;
193 goto no_kprobe;
194 }
195 p = __get_cpu_var(current_kprobe);
196 if (p->break_handler && p->break_handler(p, regs)) {
197 goto ss_probe;
198 }
199 }
200 goto no_kprobe;
201 }
202
203 p = get_kprobe(addr);
204 if (!p) {
205 if (*addr != BREAKPOINT_INSTRUCTION) {
206 /*
207 * PowerPC has multiple variants of the "trap"
208 * instruction. If the current instruction is a
209 * trap variant, it could belong to someone else
210 */
211 kprobe_opcode_t cur_insn = *addr;
212 if (is_trap(cur_insn))
213 goto no_kprobe;
214 /*
215 * The breakpoint instruction was removed right
216 * after we hit it. Another cpu has removed
217 * either a probepoint or a debugger breakpoint
218 * at this address. In either case, no further
219 * handling of this interrupt is appropriate.
220 */
221 ret = 1;
222 }
223 /* Not one of ours: let kernel handle it */
224 goto no_kprobe;
225 }
226
227 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
228 set_current_kprobe(p, regs, kcb);
229 if (p->pre_handler && p->pre_handler(p, regs))
230 /* handler has already set things up, so skip ss setup */
231 return 1;
232
233 ss_probe:
234 prepare_singlestep(p, regs);
235 kcb->kprobe_status = KPROBE_HIT_SS;
236 return 1;
237
238 no_kprobe:
239 preempt_enable_no_resched();
240 return ret;
241 }
242
243 /*
244 * Function return probe trampoline:
245 * - init_kprobes() establishes a probepoint here
246 * - When the probed function returns, this probe
247 * causes the handlers to fire
248 */
249 void kretprobe_trampoline_holder(void)
250 {
251 asm volatile(".global kretprobe_trampoline\n"
252 "kretprobe_trampoline:\n"
253 "nop\n");
254 }
255
256 /*
257 * Called when the probe at kretprobe trampoline is hit
258 */
259 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
260 {
261 struct kretprobe_instance *ri = NULL;
262 struct hlist_head *head;
263 struct hlist_node *node, *tmp;
264 unsigned long flags, orig_ret_address = 0;
265 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
266
267 spin_lock_irqsave(&kretprobe_lock, flags);
268 head = kretprobe_inst_table_head(current);
269
270 /*
271 * It is possible to have multiple instances associated with a given
272 * task either because an multiple functions in the call path
273 * have a return probe installed on them, and/or more then one return
274 * return probe was registered for a target function.
275 *
276 * We can handle this because:
277 * - instances are always inserted at the head of the list
278 * - when multiple return probes are registered for the same
279 * function, the first instance's ret_addr will point to the
280 * real return address, and all the rest will point to
281 * kretprobe_trampoline
282 */
283 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
284 if (ri->task != current)
285 /* another task is sharing our hash bucket */
286 continue;
287
288 if (ri->rp && ri->rp->handler)
289 ri->rp->handler(ri, regs);
290
291 orig_ret_address = (unsigned long)ri->ret_addr;
292 recycle_rp_inst(ri);
293
294 if (orig_ret_address != trampoline_address)
295 /*
296 * This is the real return address. Any other
297 * instances associated with this task are for
298 * other calls deeper on the call stack
299 */
300 break;
301 }
302
303 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
304 regs->nip = orig_ret_address;
305
306 reset_current_kprobe();
307 spin_unlock_irqrestore(&kretprobe_lock, flags);
308 preempt_enable_no_resched();
309
310 /*
311 * By returning a non-zero value, we are telling
312 * kprobe_handler() that we don't want the post_handler
313 * to run (and have re-enabled preemption)
314 */
315 return 1;
316 }
317
318 /*
319 * Called after single-stepping. p->addr is the address of the
320 * instruction whose first byte has been replaced by the "breakpoint"
321 * instruction. To avoid the SMP problems that can occur when we
322 * temporarily put back the original opcode to single-step, we
323 * single-stepped a copy of the instruction. The address of this
324 * copy is p->ainsn.insn.
325 */
326 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
327 {
328 int ret;
329 unsigned int insn = *p->ainsn.insn;
330
331 regs->nip = (unsigned long)p->addr;
332 ret = emulate_step(regs, insn);
333 if (ret == 0)
334 regs->nip = (unsigned long)p->addr + 4;
335 }
336
337 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
338 {
339 struct kprobe *cur = kprobe_running();
340 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
341
342 if (!cur)
343 return 0;
344
345 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
346 kcb->kprobe_status = KPROBE_HIT_SSDONE;
347 cur->post_handler(cur, regs, 0);
348 }
349
350 resume_execution(cur, regs);
351 regs->msr |= kcb->kprobe_saved_msr;
352
353 /*Restore back the original saved kprobes variables and continue. */
354 if (kcb->kprobe_status == KPROBE_REENTER) {
355 restore_previous_kprobe(kcb);
356 goto out;
357 }
358 reset_current_kprobe();
359 out:
360 preempt_enable_no_resched();
361
362 /*
363 * if somebody else is singlestepping across a probe point, msr
364 * will have SE set, in which case, continue the remaining processing
365 * of do_debug, as if this is not a probe hit.
366 */
367 if (regs->msr & MSR_SE)
368 return 0;
369
370 return 1;
371 }
372
373 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
374 {
375 struct kprobe *cur = kprobe_running();
376 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
377 const struct exception_table_entry *entry;
378
379 switch(kcb->kprobe_status) {
380 case KPROBE_HIT_SS:
381 case KPROBE_REENTER:
382 /*
383 * We are here because the instruction being single
384 * stepped caused a page fault. We reset the current
385 * kprobe and the nip points back to the probe address
386 * and allow the page fault handler to continue as a
387 * normal page fault.
388 */
389 regs->nip = (unsigned long)cur->addr;
390 regs->msr &= ~MSR_SE;
391 regs->msr |= kcb->kprobe_saved_msr;
392 if (kcb->kprobe_status == KPROBE_REENTER)
393 restore_previous_kprobe(kcb);
394 else
395 reset_current_kprobe();
396 preempt_enable_no_resched();
397 break;
398 case KPROBE_HIT_ACTIVE:
399 case KPROBE_HIT_SSDONE:
400 /*
401 * We increment the nmissed count for accounting,
402 * we can also use npre/npostfault count for accouting
403 * these specific fault cases.
404 */
405 kprobes_inc_nmissed_count(cur);
406
407 /*
408 * We come here because instructions in the pre/post
409 * handler caused the page_fault, this could happen
410 * if handler tries to access user space by
411 * copy_from_user(), get_user() etc. Let the
412 * user-specified handler try to fix it first.
413 */
414 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
415 return 1;
416
417 /*
418 * In case the user-specified fault handler returned
419 * zero, try to fix up.
420 */
421 if ((entry = search_exception_tables(regs->nip)) != NULL) {
422 regs->nip = entry->fixup;
423 return 1;
424 }
425
426 /*
427 * fixup_exception() could not handle it,
428 * Let do_page_fault() fix it.
429 */
430 break;
431 default:
432 break;
433 }
434 return 0;
435 }
436
437 /*
438 * Wrapper routine to for handling exceptions.
439 */
440 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
441 unsigned long val, void *data)
442 {
443 struct die_args *args = (struct die_args *)data;
444 int ret = NOTIFY_DONE;
445
446 if (args->regs && user_mode(args->regs))
447 return ret;
448
449 switch (val) {
450 case DIE_BPT:
451 if (kprobe_handler(args->regs))
452 ret = NOTIFY_STOP;
453 break;
454 case DIE_SSTEP:
455 if (post_kprobe_handler(args->regs))
456 ret = NOTIFY_STOP;
457 break;
458 case DIE_PAGE_FAULT:
459 /* kprobe_running() needs smp_processor_id() */
460 preempt_disable();
461 if (kprobe_running() &&
462 kprobe_fault_handler(args->regs, args->trapnr))
463 ret = NOTIFY_STOP;
464 preempt_enable();
465 break;
466 default:
467 break;
468 }
469 return ret;
470 }
471
472 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
473 {
474 struct jprobe *jp = container_of(p, struct jprobe, kp);
475 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476
477 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
478
479 /* setup return addr to the jprobe handler routine */
480 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
481 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
482
483 return 1;
484 }
485
486 void __kprobes jprobe_return(void)
487 {
488 asm volatile("trap" ::: "memory");
489 }
490
491 void __kprobes jprobe_return_end(void)
492 {
493 };
494
495 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
496 {
497 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
498
499 /*
500 * FIXME - we should ideally be validating that we got here 'cos
501 * of the "trap" in jprobe_return() above, before restoring the
502 * saved regs...
503 */
504 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
505 preempt_enable_no_resched();
506 return 1;
507 }
508
509 static struct kprobe trampoline_p = {
510 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
511 .pre_handler = trampoline_probe_handler
512 };
513
514 int __init arch_init_kprobes(void)
515 {
516 return register_kprobe(&trampoline_p);
517 }
This page took 0.041532 seconds and 5 git commands to generate.