powerpc/pseries/lparcfg: Fix possible overflow are more than 1026
[deliverable/linux.git] / arch / powerpc / kernel / lparcfg.c
1 /*
2 * PowerPC64 LPAR Configuration Information Driver
3 *
4 * Dave Engebretsen engebret@us.ibm.com
5 * Copyright (c) 2003 Dave Engebretsen
6 * Will Schmidt willschm@us.ibm.com
7 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
8 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
9 * Nathan Lynch nathanl@austin.ibm.com
10 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * This driver creates a proc file at /proc/ppc64/lparcfg which contains
18 * keyword - value pairs that specify the configuration of the partition.
19 */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/errno.h>
24 #include <linux/proc_fs.h>
25 #include <linux/init.h>
26 #include <linux/seq_file.h>
27 #include <linux/slab.h>
28 #include <asm/uaccess.h>
29 #include <asm/lppaca.h>
30 #include <asm/hvcall.h>
31 #include <asm/firmware.h>
32 #include <asm/rtas.h>
33 #include <asm/time.h>
34 #include <asm/prom.h>
35 #include <asm/vdso_datapage.h>
36 #include <asm/vio.h>
37 #include <asm/mmu.h>
38
39 #define MODULE_VERS "1.9"
40 #define MODULE_NAME "lparcfg"
41
42 /* #define LPARCFG_DEBUG */
43
44 static struct proc_dir_entry *proc_ppc64_lparcfg;
45
46 /*
47 * Track sum of all purrs across all processors. This is used to further
48 * calculate usage values by different applications
49 */
50 static unsigned long get_purr(void)
51 {
52 unsigned long sum_purr = 0;
53 int cpu;
54
55 for_each_possible_cpu(cpu) {
56 struct cpu_usage *cu;
57
58 cu = &per_cpu(cpu_usage_array, cpu);
59 sum_purr += cu->current_tb;
60 }
61 return sum_purr;
62 }
63
64 /*
65 * Methods used to fetch LPAR data when running on a pSeries platform.
66 */
67
68 struct hvcall_ppp_data {
69 u64 entitlement;
70 u64 unallocated_entitlement;
71 u16 group_num;
72 u16 pool_num;
73 u8 capped;
74 u8 weight;
75 u8 unallocated_weight;
76 u16 active_procs_in_pool;
77 u16 active_system_procs;
78 u16 phys_platform_procs;
79 u32 max_proc_cap_avail;
80 u32 entitled_proc_cap_avail;
81 };
82
83 /*
84 * H_GET_PPP hcall returns info in 4 parms.
85 * entitled_capacity,unallocated_capacity,
86 * aggregation, resource_capability).
87 *
88 * R4 = Entitled Processor Capacity Percentage.
89 * R5 = Unallocated Processor Capacity Percentage.
90 * R6 (AABBCCDDEEFFGGHH).
91 * XXXX - reserved (0)
92 * XXXX - reserved (0)
93 * XXXX - Group Number
94 * XXXX - Pool Number.
95 * R7 (IIJJKKLLMMNNOOPP).
96 * XX - reserved. (0)
97 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
98 * XX - variable processor Capacity Weight
99 * XX - Unallocated Variable Processor Capacity Weight.
100 * XXXX - Active processors in Physical Processor Pool.
101 * XXXX - Processors active on platform.
102 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
103 * XXXX - Physical platform procs allocated to virtualization.
104 * XXXXXX - Max procs capacity % available to the partitions pool.
105 * XXXXXX - Entitled procs capacity % available to the
106 * partitions pool.
107 */
108 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
109 {
110 unsigned long rc;
111 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
112
113 rc = plpar_hcall9(H_GET_PPP, retbuf);
114
115 ppp_data->entitlement = retbuf[0];
116 ppp_data->unallocated_entitlement = retbuf[1];
117
118 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
119 ppp_data->pool_num = retbuf[2] & 0xffff;
120
121 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
122 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
123 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
124 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
125 ppp_data->active_system_procs = retbuf[3] & 0xffff;
126
127 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
128 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
129 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
130
131 return rc;
132 }
133
134 static unsigned h_pic(unsigned long *pool_idle_time,
135 unsigned long *num_procs)
136 {
137 unsigned long rc;
138 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
139
140 rc = plpar_hcall(H_PIC, retbuf);
141
142 *pool_idle_time = retbuf[0];
143 *num_procs = retbuf[1];
144
145 return rc;
146 }
147
148 /*
149 * parse_ppp_data
150 * Parse out the data returned from h_get_ppp and h_pic
151 */
152 static void parse_ppp_data(struct seq_file *m)
153 {
154 struct hvcall_ppp_data ppp_data;
155 struct device_node *root;
156 const int *perf_level;
157 int rc;
158
159 rc = h_get_ppp(&ppp_data);
160 if (rc)
161 return;
162
163 seq_printf(m, "partition_entitled_capacity=%lld\n",
164 ppp_data.entitlement);
165 seq_printf(m, "group=%d\n", ppp_data.group_num);
166 seq_printf(m, "system_active_processors=%d\n",
167 ppp_data.active_system_procs);
168
169 /* pool related entries are appropriate for shared configs */
170 if (lppaca_of(0).shared_proc) {
171 unsigned long pool_idle_time, pool_procs;
172
173 seq_printf(m, "pool=%d\n", ppp_data.pool_num);
174
175 /* report pool_capacity in percentage */
176 seq_printf(m, "pool_capacity=%d\n",
177 ppp_data.active_procs_in_pool * 100);
178
179 h_pic(&pool_idle_time, &pool_procs);
180 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
181 seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
182 }
183
184 seq_printf(m, "unallocated_capacity_weight=%d\n",
185 ppp_data.unallocated_weight);
186 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
187 seq_printf(m, "capped=%d\n", ppp_data.capped);
188 seq_printf(m, "unallocated_capacity=%lld\n",
189 ppp_data.unallocated_entitlement);
190
191 /* The last bits of information returned from h_get_ppp are only
192 * valid if the ibm,partition-performance-parameters-level
193 * property is >= 1.
194 */
195 root = of_find_node_by_path("/");
196 if (root) {
197 perf_level = of_get_property(root,
198 "ibm,partition-performance-parameters-level",
199 NULL);
200 if (perf_level && (*perf_level >= 1)) {
201 seq_printf(m,
202 "physical_procs_allocated_to_virtualization=%d\n",
203 ppp_data.phys_platform_procs);
204 seq_printf(m, "max_proc_capacity_available=%d\n",
205 ppp_data.max_proc_cap_avail);
206 seq_printf(m, "entitled_proc_capacity_available=%d\n",
207 ppp_data.entitled_proc_cap_avail);
208 }
209
210 of_node_put(root);
211 }
212 }
213
214 /**
215 * parse_mpp_data
216 * Parse out data returned from h_get_mpp
217 */
218 static void parse_mpp_data(struct seq_file *m)
219 {
220 struct hvcall_mpp_data mpp_data;
221 int rc;
222
223 rc = h_get_mpp(&mpp_data);
224 if (rc)
225 return;
226
227 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
228
229 if (mpp_data.mapped_mem != -1)
230 seq_printf(m, "mapped_entitled_memory=%ld\n",
231 mpp_data.mapped_mem);
232
233 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
234 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
235
236 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
237 seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
238 mpp_data.unallocated_mem_weight);
239 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
240 mpp_data.unallocated_entitlement);
241
242 if (mpp_data.pool_size != -1)
243 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
244 mpp_data.pool_size);
245
246 seq_printf(m, "entitled_memory_loan_request=%ld\n",
247 mpp_data.loan_request);
248
249 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
250 }
251
252 /**
253 * parse_mpp_x_data
254 * Parse out data returned from h_get_mpp_x
255 */
256 static void parse_mpp_x_data(struct seq_file *m)
257 {
258 struct hvcall_mpp_x_data mpp_x_data;
259
260 if (!firmware_has_feature(FW_FEATURE_XCMO))
261 return;
262 if (h_get_mpp_x(&mpp_x_data))
263 return;
264
265 seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
266
267 if (mpp_x_data.pool_coalesced_bytes)
268 seq_printf(m, "pool_coalesced_bytes=%ld\n",
269 mpp_x_data.pool_coalesced_bytes);
270 if (mpp_x_data.pool_purr_cycles)
271 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
272 if (mpp_x_data.pool_spurr_cycles)
273 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
274 }
275
276 #define SPLPAR_CHARACTERISTICS_TOKEN 20
277 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
278
279 /*
280 * parse_system_parameter_string()
281 * Retrieve the potential_processors, max_entitled_capacity and friends
282 * through the get-system-parameter rtas call. Replace keyword strings as
283 * necessary.
284 */
285 static void parse_system_parameter_string(struct seq_file *m)
286 {
287 int call_status;
288
289 unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
290 if (!local_buffer) {
291 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
292 __FILE__, __func__, __LINE__);
293 return;
294 }
295
296 spin_lock(&rtas_data_buf_lock);
297 memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
298 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
299 NULL,
300 SPLPAR_CHARACTERISTICS_TOKEN,
301 __pa(rtas_data_buf),
302 RTAS_DATA_BUF_SIZE);
303 memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
304 local_buffer[SPLPAR_MAXLENGTH - 1] = '\0';
305 spin_unlock(&rtas_data_buf_lock);
306
307 if (call_status != 0) {
308 printk(KERN_INFO
309 "%s %s Error calling get-system-parameter (0x%x)\n",
310 __FILE__, __func__, call_status);
311 } else {
312 int splpar_strlen;
313 int idx, w_idx;
314 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
315 if (!workbuffer) {
316 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
317 __FILE__, __func__, __LINE__);
318 kfree(local_buffer);
319 return;
320 }
321 #ifdef LPARCFG_DEBUG
322 printk(KERN_INFO "success calling get-system-parameter\n");
323 #endif
324 splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
325 local_buffer += 2; /* step over strlen value */
326
327 w_idx = 0;
328 idx = 0;
329 while ((*local_buffer) && (idx < splpar_strlen)) {
330 workbuffer[w_idx++] = local_buffer[idx++];
331 if ((local_buffer[idx] == ',')
332 || (local_buffer[idx] == '\0')) {
333 workbuffer[w_idx] = '\0';
334 if (w_idx) {
335 /* avoid the empty string */
336 seq_printf(m, "%s\n", workbuffer);
337 }
338 memset(workbuffer, 0, SPLPAR_MAXLENGTH);
339 idx++; /* skip the comma */
340 w_idx = 0;
341 } else if (local_buffer[idx] == '=') {
342 /* code here to replace workbuffer contents
343 with different keyword strings */
344 if (0 == strcmp(workbuffer, "MaxEntCap")) {
345 strcpy(workbuffer,
346 "partition_max_entitled_capacity");
347 w_idx = strlen(workbuffer);
348 }
349 if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
350 strcpy(workbuffer,
351 "system_potential_processors");
352 w_idx = strlen(workbuffer);
353 }
354 }
355 }
356 kfree(workbuffer);
357 local_buffer -= 2; /* back up over strlen value */
358 }
359 kfree(local_buffer);
360 }
361
362 /* Return the number of processors in the system.
363 * This function reads through the device tree and counts
364 * the virtual processors, this does not include threads.
365 */
366 static int lparcfg_count_active_processors(void)
367 {
368 struct device_node *cpus_dn = NULL;
369 int count = 0;
370
371 while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
372 #ifdef LPARCFG_DEBUG
373 printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
374 #endif
375 count++;
376 }
377 return count;
378 }
379
380 static void pseries_cmo_data(struct seq_file *m)
381 {
382 int cpu;
383 unsigned long cmo_faults = 0;
384 unsigned long cmo_fault_time = 0;
385
386 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
387
388 if (!firmware_has_feature(FW_FEATURE_CMO))
389 return;
390
391 for_each_possible_cpu(cpu) {
392 cmo_faults += lppaca_of(cpu).cmo_faults;
393 cmo_fault_time += lppaca_of(cpu).cmo_fault_time;
394 }
395
396 seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
397 seq_printf(m, "cmo_fault_time_usec=%lu\n",
398 cmo_fault_time / tb_ticks_per_usec);
399 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
400 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
401 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
402 }
403
404 static void splpar_dispatch_data(struct seq_file *m)
405 {
406 int cpu;
407 unsigned long dispatches = 0;
408 unsigned long dispatch_dispersions = 0;
409
410 for_each_possible_cpu(cpu) {
411 dispatches += lppaca_of(cpu).yield_count;
412 dispatch_dispersions += lppaca_of(cpu).dispersion_count;
413 }
414
415 seq_printf(m, "dispatches=%lu\n", dispatches);
416 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
417 }
418
419 static void parse_em_data(struct seq_file *m)
420 {
421 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
422
423 if (plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
424 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
425 }
426
427 static int pseries_lparcfg_data(struct seq_file *m, void *v)
428 {
429 int partition_potential_processors;
430 int partition_active_processors;
431 struct device_node *rtas_node;
432 const int *lrdrp = NULL;
433
434 rtas_node = of_find_node_by_path("/rtas");
435 if (rtas_node)
436 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
437
438 if (lrdrp == NULL) {
439 partition_potential_processors = vdso_data->processorCount;
440 } else {
441 partition_potential_processors = *(lrdrp + 4);
442 }
443 of_node_put(rtas_node);
444
445 partition_active_processors = lparcfg_count_active_processors();
446
447 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
448 /* this call handles the ibm,get-system-parameter contents */
449 parse_system_parameter_string(m);
450 parse_ppp_data(m);
451 parse_mpp_data(m);
452 parse_mpp_x_data(m);
453 pseries_cmo_data(m);
454 splpar_dispatch_data(m);
455
456 seq_printf(m, "purr=%ld\n", get_purr());
457 } else { /* non SPLPAR case */
458
459 seq_printf(m, "system_active_processors=%d\n",
460 partition_potential_processors);
461
462 seq_printf(m, "system_potential_processors=%d\n",
463 partition_potential_processors);
464
465 seq_printf(m, "partition_max_entitled_capacity=%d\n",
466 partition_potential_processors * 100);
467
468 seq_printf(m, "partition_entitled_capacity=%d\n",
469 partition_active_processors * 100);
470 }
471
472 seq_printf(m, "partition_active_processors=%d\n",
473 partition_active_processors);
474
475 seq_printf(m, "partition_potential_processors=%d\n",
476 partition_potential_processors);
477
478 seq_printf(m, "shared_processor_mode=%d\n", lppaca_of(0).shared_proc);
479
480 seq_printf(m, "slb_size=%d\n", mmu_slb_size);
481
482 parse_em_data(m);
483
484 return 0;
485 }
486
487 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
488 {
489 struct hvcall_ppp_data ppp_data;
490 u8 new_weight;
491 u64 new_entitled;
492 ssize_t retval;
493
494 /* Get our current parameters */
495 retval = h_get_ppp(&ppp_data);
496 if (retval)
497 return retval;
498
499 if (entitlement) {
500 new_weight = ppp_data.weight;
501 new_entitled = *entitlement;
502 } else if (weight) {
503 new_weight = *weight;
504 new_entitled = ppp_data.entitlement;
505 } else
506 return -EINVAL;
507
508 pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
509 __func__, ppp_data.entitlement, ppp_data.weight);
510
511 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
512 __func__, new_entitled, new_weight);
513
514 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
515 return retval;
516 }
517
518 /**
519 * update_mpp
520 *
521 * Update the memory entitlement and weight for the partition. Caller must
522 * specify either a new entitlement or weight, not both, to be updated
523 * since the h_set_mpp call takes both entitlement and weight as parameters.
524 */
525 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
526 {
527 struct hvcall_mpp_data mpp_data;
528 u64 new_entitled;
529 u8 new_weight;
530 ssize_t rc;
531
532 if (entitlement) {
533 /* Check with vio to ensure the new memory entitlement
534 * can be handled.
535 */
536 rc = vio_cmo_entitlement_update(*entitlement);
537 if (rc)
538 return rc;
539 }
540
541 rc = h_get_mpp(&mpp_data);
542 if (rc)
543 return rc;
544
545 if (entitlement) {
546 new_weight = mpp_data.mem_weight;
547 new_entitled = *entitlement;
548 } else if (weight) {
549 new_weight = *weight;
550 new_entitled = mpp_data.entitled_mem;
551 } else
552 return -EINVAL;
553
554 pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
555 __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
556
557 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
558 __func__, new_entitled, new_weight);
559
560 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
561 return rc;
562 }
563
564 /*
565 * Interface for changing system parameters (variable capacity weight
566 * and entitled capacity). Format of input is "param_name=value";
567 * anything after value is ignored. Valid parameters at this time are
568 * "partition_entitled_capacity" and "capacity_weight". We use
569 * H_SET_PPP to alter parameters.
570 *
571 * This function should be invoked only on systems with
572 * FW_FEATURE_SPLPAR.
573 */
574 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
575 size_t count, loff_t * off)
576 {
577 int kbuf_sz = 64;
578 char kbuf[kbuf_sz];
579 char *tmp;
580 u64 new_entitled, *new_entitled_ptr = &new_entitled;
581 u8 new_weight, *new_weight_ptr = &new_weight;
582 ssize_t retval;
583
584 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
585 return -EINVAL;
586
587 if (count > kbuf_sz)
588 return -EINVAL;
589
590 if (copy_from_user(kbuf, buf, count))
591 return -EFAULT;
592
593 kbuf[count - 1] = '\0';
594 tmp = strchr(kbuf, '=');
595 if (!tmp)
596 return -EINVAL;
597
598 *tmp++ = '\0';
599
600 if (!strcmp(kbuf, "partition_entitled_capacity")) {
601 char *endp;
602 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
603 if (endp == tmp)
604 return -EINVAL;
605
606 retval = update_ppp(new_entitled_ptr, NULL);
607 } else if (!strcmp(kbuf, "capacity_weight")) {
608 char *endp;
609 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
610 if (endp == tmp)
611 return -EINVAL;
612
613 retval = update_ppp(NULL, new_weight_ptr);
614 } else if (!strcmp(kbuf, "entitled_memory")) {
615 char *endp;
616 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
617 if (endp == tmp)
618 return -EINVAL;
619
620 retval = update_mpp(new_entitled_ptr, NULL);
621 } else if (!strcmp(kbuf, "entitled_memory_weight")) {
622 char *endp;
623 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
624 if (endp == tmp)
625 return -EINVAL;
626
627 retval = update_mpp(NULL, new_weight_ptr);
628 } else
629 return -EINVAL;
630
631 if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
632 retval = count;
633 } else if (retval == H_BUSY) {
634 retval = -EBUSY;
635 } else if (retval == H_HARDWARE) {
636 retval = -EIO;
637 } else if (retval == H_PARAMETER) {
638 retval = -EINVAL;
639 }
640
641 return retval;
642 }
643
644 static int lparcfg_data(struct seq_file *m, void *v)
645 {
646 struct device_node *rootdn;
647 const char *model = "";
648 const char *system_id = "";
649 const char *tmp;
650 const unsigned int *lp_index_ptr;
651 unsigned int lp_index = 0;
652
653 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
654
655 rootdn = of_find_node_by_path("/");
656 if (rootdn) {
657 tmp = of_get_property(rootdn, "model", NULL);
658 if (tmp)
659 model = tmp;
660 tmp = of_get_property(rootdn, "system-id", NULL);
661 if (tmp)
662 system_id = tmp;
663 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
664 NULL);
665 if (lp_index_ptr)
666 lp_index = *lp_index_ptr;
667 of_node_put(rootdn);
668 }
669 seq_printf(m, "serial_number=%s\n", system_id);
670 seq_printf(m, "system_type=%s\n", model);
671 seq_printf(m, "partition_id=%d\n", (int)lp_index);
672
673 return pseries_lparcfg_data(m, v);
674 }
675
676 static int lparcfg_open(struct inode *inode, struct file *file)
677 {
678 return single_open(file, lparcfg_data, NULL);
679 }
680
681 static const struct file_operations lparcfg_fops = {
682 .owner = THIS_MODULE,
683 .read = seq_read,
684 .write = lparcfg_write,
685 .open = lparcfg_open,
686 .release = single_release,
687 .llseek = seq_lseek,
688 };
689
690 static int __init lparcfg_init(void)
691 {
692 struct proc_dir_entry *ent;
693 umode_t mode = S_IRUSR | S_IRGRP | S_IROTH;
694
695 /* Allow writing if we have FW_FEATURE_SPLPAR */
696 if (firmware_has_feature(FW_FEATURE_SPLPAR))
697 mode |= S_IWUSR;
698
699 ent = proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops);
700 if (!ent) {
701 printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
702 return -EIO;
703 }
704
705 proc_ppc64_lparcfg = ent;
706 return 0;
707 }
708
709 static void __exit lparcfg_cleanup(void)
710 {
711 if (proc_ppc64_lparcfg)
712 remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
713 }
714
715 module_init(lparcfg_init);
716 module_exit(lparcfg_cleanup);
717 MODULE_DESCRIPTION("Interface for LPAR configuration data");
718 MODULE_AUTHOR("Dave Engebretsen");
719 MODULE_LICENSE("GPL");
This page took 0.0579499999999999 seconds and 5 git commands to generate.