Merge remote-tracking branch 'asoc/topic/rcar' into asoc-next
[deliverable/linux.git] / arch / powerpc / kernel / nvram_64.c
1 /*
2 * c 2001 PPC 64 Team, IBM Corp
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * /dev/nvram driver for PPC64
10 *
11 * This perhaps should live in drivers/char
12 *
13 * TODO: Split the /dev/nvram part (that one can use
14 * drivers/char/generic_nvram.c) from the arch & partition
15 * parsing code.
16 */
17
18 #include <linux/module.h>
19
20 #include <linux/types.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/miscdevice.h>
24 #include <linux/fcntl.h>
25 #include <linux/nvram.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/kmsg_dump.h>
30 #include <linux/pagemap.h>
31 #include <linux/pstore.h>
32 #include <linux/zlib.h>
33 #include <asm/uaccess.h>
34 #include <asm/nvram.h>
35 #include <asm/rtas.h>
36 #include <asm/prom.h>
37 #include <asm/machdep.h>
38
39 #undef DEBUG_NVRAM
40
41 #define NVRAM_HEADER_LEN sizeof(struct nvram_header)
42 #define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN
43
44 /* If change this size, then change the size of NVNAME_LEN */
45 struct nvram_header {
46 unsigned char signature;
47 unsigned char checksum;
48 unsigned short length;
49 /* Terminating null required only for names < 12 chars. */
50 char name[12];
51 };
52
53 struct nvram_partition {
54 struct list_head partition;
55 struct nvram_header header;
56 unsigned int index;
57 };
58
59 static LIST_HEAD(nvram_partitions);
60
61 #ifdef CONFIG_PPC_PSERIES
62 struct nvram_os_partition rtas_log_partition = {
63 .name = "ibm,rtas-log",
64 .req_size = 2079,
65 .min_size = 1055,
66 .index = -1,
67 .os_partition = true
68 };
69 #endif
70
71 struct nvram_os_partition oops_log_partition = {
72 .name = "lnx,oops-log",
73 .req_size = 4000,
74 .min_size = 2000,
75 .index = -1,
76 .os_partition = true
77 };
78
79 static const char *nvram_os_partitions[] = {
80 #ifdef CONFIG_PPC_PSERIES
81 "ibm,rtas-log",
82 #endif
83 "lnx,oops-log",
84 NULL
85 };
86
87 static void oops_to_nvram(struct kmsg_dumper *dumper,
88 enum kmsg_dump_reason reason);
89
90 static struct kmsg_dumper nvram_kmsg_dumper = {
91 .dump = oops_to_nvram
92 };
93
94 /*
95 * For capturing and compressing an oops or panic report...
96
97 * big_oops_buf[] holds the uncompressed text we're capturing.
98 *
99 * oops_buf[] holds the compressed text, preceded by a oops header.
100 * oops header has u16 holding the version of oops header (to differentiate
101 * between old and new format header) followed by u16 holding the length of
102 * the compressed* text (*Or uncompressed, if compression fails.) and u64
103 * holding the timestamp. oops_buf[] gets written to NVRAM.
104 *
105 * oops_log_info points to the header. oops_data points to the compressed text.
106 *
107 * +- oops_buf
108 * | +- oops_data
109 * v v
110 * +-----------+-----------+-----------+------------------------+
111 * | version | length | timestamp | text |
112 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
113 * +-----------+-----------+-----------+------------------------+
114 * ^
115 * +- oops_log_info
116 *
117 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
118 */
119 static size_t big_oops_buf_sz;
120 static char *big_oops_buf, *oops_buf;
121 static char *oops_data;
122 static size_t oops_data_sz;
123
124 /* Compression parameters */
125 #define COMPR_LEVEL 6
126 #define WINDOW_BITS 12
127 #define MEM_LEVEL 4
128 static struct z_stream_s stream;
129
130 #ifdef CONFIG_PSTORE
131 #ifdef CONFIG_PPC_POWERNV
132 static struct nvram_os_partition skiboot_partition = {
133 .name = "ibm,skiboot",
134 .index = -1,
135 .os_partition = false
136 };
137 #endif
138
139 #ifdef CONFIG_PPC_PSERIES
140 static struct nvram_os_partition of_config_partition = {
141 .name = "of-config",
142 .index = -1,
143 .os_partition = false
144 };
145 #endif
146
147 static struct nvram_os_partition common_partition = {
148 .name = "common",
149 .index = -1,
150 .os_partition = false
151 };
152
153 static enum pstore_type_id nvram_type_ids[] = {
154 PSTORE_TYPE_DMESG,
155 PSTORE_TYPE_PPC_COMMON,
156 -1,
157 -1,
158 -1
159 };
160 static int read_type;
161 #endif
162
163 /* nvram_write_os_partition
164 *
165 * We need to buffer the error logs into nvram to ensure that we have
166 * the failure information to decode. If we have a severe error there
167 * is no way to guarantee that the OS or the machine is in a state to
168 * get back to user land and write the error to disk. For example if
169 * the SCSI device driver causes a Machine Check by writing to a bad
170 * IO address, there is no way of guaranteeing that the device driver
171 * is in any state that is would also be able to write the error data
172 * captured to disk, thus we buffer it in NVRAM for analysis on the
173 * next boot.
174 *
175 * In NVRAM the partition containing the error log buffer will looks like:
176 * Header (in bytes):
177 * +-----------+----------+--------+------------+------------------+
178 * | signature | checksum | length | name | data |
179 * |0 |1 |2 3|4 15|16 length-1|
180 * +-----------+----------+--------+------------+------------------+
181 *
182 * The 'data' section would look like (in bytes):
183 * +--------------+------------+-----------------------------------+
184 * | event_logged | sequence # | error log |
185 * |0 3|4 7|8 error_log_size-1|
186 * +--------------+------------+-----------------------------------+
187 *
188 * event_logged: 0 if event has not been logged to syslog, 1 if it has
189 * sequence #: The unique sequence # for each event. (until it wraps)
190 * error log: The error log from event_scan
191 */
192 int nvram_write_os_partition(struct nvram_os_partition *part,
193 char *buff, int length,
194 unsigned int err_type,
195 unsigned int error_log_cnt)
196 {
197 int rc;
198 loff_t tmp_index;
199 struct err_log_info info;
200
201 if (part->index == -1)
202 return -ESPIPE;
203
204 if (length > part->size)
205 length = part->size;
206
207 info.error_type = cpu_to_be32(err_type);
208 info.seq_num = cpu_to_be32(error_log_cnt);
209
210 tmp_index = part->index;
211
212 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
213 &tmp_index);
214 if (rc <= 0) {
215 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
216 return rc;
217 }
218
219 rc = ppc_md.nvram_write(buff, length, &tmp_index);
220 if (rc <= 0) {
221 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
222 return rc;
223 }
224
225 return 0;
226 }
227
228 /* nvram_read_partition
229 *
230 * Reads nvram partition for at most 'length'
231 */
232 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
233 int length, unsigned int *err_type,
234 unsigned int *error_log_cnt)
235 {
236 int rc;
237 loff_t tmp_index;
238 struct err_log_info info;
239
240 if (part->index == -1)
241 return -1;
242
243 if (length > part->size)
244 length = part->size;
245
246 tmp_index = part->index;
247
248 if (part->os_partition) {
249 rc = ppc_md.nvram_read((char *)&info,
250 sizeof(struct err_log_info),
251 &tmp_index);
252 if (rc <= 0) {
253 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
254 return rc;
255 }
256 }
257
258 rc = ppc_md.nvram_read(buff, length, &tmp_index);
259 if (rc <= 0) {
260 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
261 return rc;
262 }
263
264 if (part->os_partition) {
265 *error_log_cnt = be32_to_cpu(info.seq_num);
266 *err_type = be32_to_cpu(info.error_type);
267 }
268
269 return 0;
270 }
271
272 /* nvram_init_os_partition
273 *
274 * This sets up a partition with an "OS" signature.
275 *
276 * The general strategy is the following:
277 * 1.) If a partition with the indicated name already exists...
278 * - If it's large enough, use it.
279 * - Otherwise, recycle it and keep going.
280 * 2.) Search for a free partition that is large enough.
281 * 3.) If there's not a free partition large enough, recycle any obsolete
282 * OS partitions and try again.
283 * 4.) Will first try getting a chunk that will satisfy the requested size.
284 * 5.) If a chunk of the requested size cannot be allocated, then try finding
285 * a chunk that will satisfy the minum needed.
286 *
287 * Returns 0 on success, else -1.
288 */
289 int __init nvram_init_os_partition(struct nvram_os_partition *part)
290 {
291 loff_t p;
292 int size;
293
294 /* Look for ours */
295 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
296
297 /* Found one but too small, remove it */
298 if (p && size < part->min_size) {
299 pr_info("nvram: Found too small %s partition,"
300 " removing it...\n", part->name);
301 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
302 p = 0;
303 }
304
305 /* Create one if we didn't find */
306 if (!p) {
307 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
308 part->req_size, part->min_size);
309 if (p == -ENOSPC) {
310 pr_info("nvram: No room to create %s partition, "
311 "deleting any obsolete OS partitions...\n",
312 part->name);
313 nvram_remove_partition(NULL, NVRAM_SIG_OS,
314 nvram_os_partitions);
315 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
316 part->req_size, part->min_size);
317 }
318 }
319
320 if (p <= 0) {
321 pr_err("nvram: Failed to find or create %s"
322 " partition, err %d\n", part->name, (int)p);
323 return -1;
324 }
325
326 part->index = p;
327 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
328
329 return 0;
330 }
331
332 /* Derived from logfs_compress() */
333 static int nvram_compress(const void *in, void *out, size_t inlen,
334 size_t outlen)
335 {
336 int err, ret;
337
338 ret = -EIO;
339 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
340 MEM_LEVEL, Z_DEFAULT_STRATEGY);
341 if (err != Z_OK)
342 goto error;
343
344 stream.next_in = in;
345 stream.avail_in = inlen;
346 stream.total_in = 0;
347 stream.next_out = out;
348 stream.avail_out = outlen;
349 stream.total_out = 0;
350
351 err = zlib_deflate(&stream, Z_FINISH);
352 if (err != Z_STREAM_END)
353 goto error;
354
355 err = zlib_deflateEnd(&stream);
356 if (err != Z_OK)
357 goto error;
358
359 if (stream.total_out >= stream.total_in)
360 goto error;
361
362 ret = stream.total_out;
363 error:
364 return ret;
365 }
366
367 /* Compress the text from big_oops_buf into oops_buf. */
368 static int zip_oops(size_t text_len)
369 {
370 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
371 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
372 oops_data_sz);
373 if (zipped_len < 0) {
374 pr_err("nvram: compression failed; returned %d\n", zipped_len);
375 pr_err("nvram: logging uncompressed oops/panic report\n");
376 return -1;
377 }
378 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
379 oops_hdr->report_length = cpu_to_be16(zipped_len);
380 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
381 return 0;
382 }
383
384 #ifdef CONFIG_PSTORE
385 static int nvram_pstore_open(struct pstore_info *psi)
386 {
387 /* Reset the iterator to start reading partitions again */
388 read_type = -1;
389 return 0;
390 }
391
392 /**
393 * nvram_pstore_write - pstore write callback for nvram
394 * @type: Type of message logged
395 * @reason: reason behind dump (oops/panic)
396 * @id: identifier to indicate the write performed
397 * @part: pstore writes data to registered buffer in parts,
398 * part number will indicate the same.
399 * @count: Indicates oops count
400 * @compressed: Flag to indicate the log is compressed
401 * @size: number of bytes written to the registered buffer
402 * @psi: registered pstore_info structure
403 *
404 * Called by pstore_dump() when an oops or panic report is logged in the
405 * printk buffer.
406 * Returns 0 on successful write.
407 */
408 static int nvram_pstore_write(enum pstore_type_id type,
409 enum kmsg_dump_reason reason,
410 u64 *id, unsigned int part, int count,
411 bool compressed, size_t size,
412 struct pstore_info *psi)
413 {
414 int rc;
415 unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
416 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
417
418 /* part 1 has the recent messages from printk buffer */
419 if (part > 1 || (type != PSTORE_TYPE_DMESG))
420 return -1;
421
422 if (clobbering_unread_rtas_event())
423 return -1;
424
425 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
426 oops_hdr->report_length = cpu_to_be16(size);
427 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
428
429 if (compressed)
430 err_type = ERR_TYPE_KERNEL_PANIC_GZ;
431
432 rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
433 (int) (sizeof(*oops_hdr) + size), err_type, count);
434
435 if (rc != 0)
436 return rc;
437
438 *id = part;
439 return 0;
440 }
441
442 /*
443 * Reads the oops/panic report, rtas, of-config and common partition.
444 * Returns the length of the data we read from each partition.
445 * Returns 0 if we've been called before.
446 */
447 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
448 int *count, struct timespec *time, char **buf,
449 bool *compressed, struct pstore_info *psi)
450 {
451 struct oops_log_info *oops_hdr;
452 unsigned int err_type, id_no, size = 0;
453 struct nvram_os_partition *part = NULL;
454 char *buff = NULL;
455 int sig = 0;
456 loff_t p;
457
458 read_type++;
459
460 switch (nvram_type_ids[read_type]) {
461 case PSTORE_TYPE_DMESG:
462 part = &oops_log_partition;
463 *type = PSTORE_TYPE_DMESG;
464 break;
465 case PSTORE_TYPE_PPC_COMMON:
466 sig = NVRAM_SIG_SYS;
467 part = &common_partition;
468 *type = PSTORE_TYPE_PPC_COMMON;
469 *id = PSTORE_TYPE_PPC_COMMON;
470 time->tv_sec = 0;
471 time->tv_nsec = 0;
472 break;
473 #ifdef CONFIG_PPC_PSERIES
474 case PSTORE_TYPE_PPC_RTAS:
475 part = &rtas_log_partition;
476 *type = PSTORE_TYPE_PPC_RTAS;
477 time->tv_sec = last_rtas_event;
478 time->tv_nsec = 0;
479 break;
480 case PSTORE_TYPE_PPC_OF:
481 sig = NVRAM_SIG_OF;
482 part = &of_config_partition;
483 *type = PSTORE_TYPE_PPC_OF;
484 *id = PSTORE_TYPE_PPC_OF;
485 time->tv_sec = 0;
486 time->tv_nsec = 0;
487 break;
488 #endif
489 #ifdef CONFIG_PPC_POWERNV
490 case PSTORE_TYPE_PPC_OPAL:
491 sig = NVRAM_SIG_FW;
492 part = &skiboot_partition;
493 *type = PSTORE_TYPE_PPC_OPAL;
494 *id = PSTORE_TYPE_PPC_OPAL;
495 time->tv_sec = 0;
496 time->tv_nsec = 0;
497 break;
498 #endif
499 default:
500 return 0;
501 }
502
503 if (!part->os_partition) {
504 p = nvram_find_partition(part->name, sig, &size);
505 if (p <= 0) {
506 pr_err("nvram: Failed to find partition %s, "
507 "err %d\n", part->name, (int)p);
508 return 0;
509 }
510 part->index = p;
511 part->size = size;
512 }
513
514 buff = kmalloc(part->size, GFP_KERNEL);
515
516 if (!buff)
517 return -ENOMEM;
518
519 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
520 kfree(buff);
521 return 0;
522 }
523
524 *count = 0;
525
526 if (part->os_partition)
527 *id = id_no;
528
529 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
530 size_t length, hdr_size;
531
532 oops_hdr = (struct oops_log_info *)buff;
533 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
534 /* Old format oops header had 2-byte record size */
535 hdr_size = sizeof(u16);
536 length = be16_to_cpu(oops_hdr->version);
537 time->tv_sec = 0;
538 time->tv_nsec = 0;
539 } else {
540 hdr_size = sizeof(*oops_hdr);
541 length = be16_to_cpu(oops_hdr->report_length);
542 time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
543 time->tv_nsec = 0;
544 }
545 *buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
546 if (*buf == NULL)
547 return -ENOMEM;
548 kfree(buff);
549
550 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
551 *compressed = true;
552 else
553 *compressed = false;
554 return length;
555 }
556
557 *buf = buff;
558 return part->size;
559 }
560
561 static struct pstore_info nvram_pstore_info = {
562 .owner = THIS_MODULE,
563 .name = "nvram",
564 .open = nvram_pstore_open,
565 .read = nvram_pstore_read,
566 .write = nvram_pstore_write,
567 };
568
569 static int nvram_pstore_init(void)
570 {
571 int rc = 0;
572
573 if (machine_is(pseries)) {
574 nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
575 nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
576 } else
577 nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
578
579 nvram_pstore_info.buf = oops_data;
580 nvram_pstore_info.bufsize = oops_data_sz;
581
582 spin_lock_init(&nvram_pstore_info.buf_lock);
583
584 rc = pstore_register(&nvram_pstore_info);
585 if (rc && (rc != -EPERM))
586 /* Print error only when pstore.backend == nvram */
587 pr_err("nvram: pstore_register() failed, returned %d. "
588 "Defaults to kmsg_dump\n", rc);
589
590 return rc;
591 }
592 #else
593 static int nvram_pstore_init(void)
594 {
595 return -1;
596 }
597 #endif
598
599 void __init nvram_init_oops_partition(int rtas_partition_exists)
600 {
601 int rc;
602
603 rc = nvram_init_os_partition(&oops_log_partition);
604 if (rc != 0) {
605 #ifdef CONFIG_PPC_PSERIES
606 if (!rtas_partition_exists) {
607 pr_err("nvram: Failed to initialize oops partition!");
608 return;
609 }
610 pr_notice("nvram: Using %s partition to log both"
611 " RTAS errors and oops/panic reports\n",
612 rtas_log_partition.name);
613 memcpy(&oops_log_partition, &rtas_log_partition,
614 sizeof(rtas_log_partition));
615 #else
616 pr_err("nvram: Failed to initialize oops partition!");
617 return;
618 #endif
619 }
620 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
621 if (!oops_buf) {
622 pr_err("nvram: No memory for %s partition\n",
623 oops_log_partition.name);
624 return;
625 }
626 oops_data = oops_buf + sizeof(struct oops_log_info);
627 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
628
629 rc = nvram_pstore_init();
630
631 if (!rc)
632 return;
633
634 /*
635 * Figure compression (preceded by elimination of each line's <n>
636 * severity prefix) will reduce the oops/panic report to at most
637 * 45% of its original size.
638 */
639 big_oops_buf_sz = (oops_data_sz * 100) / 45;
640 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
641 if (big_oops_buf) {
642 stream.workspace = kmalloc(zlib_deflate_workspacesize(
643 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
644 if (!stream.workspace) {
645 pr_err("nvram: No memory for compression workspace; "
646 "skipping compression of %s partition data\n",
647 oops_log_partition.name);
648 kfree(big_oops_buf);
649 big_oops_buf = NULL;
650 }
651 } else {
652 pr_err("No memory for uncompressed %s data; "
653 "skipping compression\n", oops_log_partition.name);
654 stream.workspace = NULL;
655 }
656
657 rc = kmsg_dump_register(&nvram_kmsg_dumper);
658 if (rc != 0) {
659 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
660 kfree(oops_buf);
661 kfree(big_oops_buf);
662 kfree(stream.workspace);
663 }
664 }
665
666 /*
667 * This is our kmsg_dump callback, called after an oops or panic report
668 * has been written to the printk buffer. We want to capture as much
669 * of the printk buffer as possible. First, capture as much as we can
670 * that we think will compress sufficiently to fit in the lnx,oops-log
671 * partition. If that's too much, go back and capture uncompressed text.
672 */
673 static void oops_to_nvram(struct kmsg_dumper *dumper,
674 enum kmsg_dump_reason reason)
675 {
676 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
677 static unsigned int oops_count = 0;
678 static bool panicking = false;
679 static DEFINE_SPINLOCK(lock);
680 unsigned long flags;
681 size_t text_len;
682 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
683 int rc = -1;
684
685 switch (reason) {
686 case KMSG_DUMP_RESTART:
687 case KMSG_DUMP_HALT:
688 case KMSG_DUMP_POWEROFF:
689 /* These are almost always orderly shutdowns. */
690 return;
691 case KMSG_DUMP_OOPS:
692 break;
693 case KMSG_DUMP_PANIC:
694 panicking = true;
695 break;
696 case KMSG_DUMP_EMERG:
697 if (panicking)
698 /* Panic report already captured. */
699 return;
700 break;
701 default:
702 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
703 __func__, (int) reason);
704 return;
705 }
706
707 if (clobbering_unread_rtas_event())
708 return;
709
710 if (!spin_trylock_irqsave(&lock, flags))
711 return;
712
713 if (big_oops_buf) {
714 kmsg_dump_get_buffer(dumper, false,
715 big_oops_buf, big_oops_buf_sz, &text_len);
716 rc = zip_oops(text_len);
717 }
718 if (rc != 0) {
719 kmsg_dump_rewind(dumper);
720 kmsg_dump_get_buffer(dumper, false,
721 oops_data, oops_data_sz, &text_len);
722 err_type = ERR_TYPE_KERNEL_PANIC;
723 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
724 oops_hdr->report_length = cpu_to_be16(text_len);
725 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
726 }
727
728 (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
729 (int) (sizeof(*oops_hdr) + text_len), err_type,
730 ++oops_count);
731
732 spin_unlock_irqrestore(&lock, flags);
733 }
734
735 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
736 {
737 if (ppc_md.nvram_size == NULL)
738 return -ENODEV;
739 return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE,
740 ppc_md.nvram_size());
741 }
742
743
744 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
745 size_t count, loff_t *ppos)
746 {
747 ssize_t ret;
748 char *tmp = NULL;
749 ssize_t size;
750
751 if (!ppc_md.nvram_size) {
752 ret = -ENODEV;
753 goto out;
754 }
755
756 size = ppc_md.nvram_size();
757 if (size < 0) {
758 ret = size;
759 goto out;
760 }
761
762 if (*ppos >= size) {
763 ret = 0;
764 goto out;
765 }
766
767 count = min_t(size_t, count, size - *ppos);
768 count = min(count, PAGE_SIZE);
769
770 tmp = kmalloc(count, GFP_KERNEL);
771 if (!tmp) {
772 ret = -ENOMEM;
773 goto out;
774 }
775
776 ret = ppc_md.nvram_read(tmp, count, ppos);
777 if (ret <= 0)
778 goto out;
779
780 if (copy_to_user(buf, tmp, ret))
781 ret = -EFAULT;
782
783 out:
784 kfree(tmp);
785 return ret;
786
787 }
788
789 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
790 size_t count, loff_t *ppos)
791 {
792 ssize_t ret;
793 char *tmp = NULL;
794 ssize_t size;
795
796 ret = -ENODEV;
797 if (!ppc_md.nvram_size)
798 goto out;
799
800 ret = 0;
801 size = ppc_md.nvram_size();
802 if (*ppos >= size || size < 0)
803 goto out;
804
805 count = min_t(size_t, count, size - *ppos);
806 count = min(count, PAGE_SIZE);
807
808 ret = -ENOMEM;
809 tmp = kmalloc(count, GFP_KERNEL);
810 if (!tmp)
811 goto out;
812
813 ret = -EFAULT;
814 if (copy_from_user(tmp, buf, count))
815 goto out;
816
817 ret = ppc_md.nvram_write(tmp, count, ppos);
818
819 out:
820 kfree(tmp);
821 return ret;
822
823 }
824
825 static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
826 unsigned long arg)
827 {
828 switch(cmd) {
829 #ifdef CONFIG_PPC_PMAC
830 case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
831 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
832 case IOC_NVRAM_GET_OFFSET: {
833 int part, offset;
834
835 if (!machine_is(powermac))
836 return -EINVAL;
837 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
838 return -EFAULT;
839 if (part < pmac_nvram_OF || part > pmac_nvram_NR)
840 return -EINVAL;
841 offset = pmac_get_partition(part);
842 if (offset < 0)
843 return offset;
844 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
845 return -EFAULT;
846 return 0;
847 }
848 #endif /* CONFIG_PPC_PMAC */
849 default:
850 return -EINVAL;
851 }
852 }
853
854 const struct file_operations nvram_fops = {
855 .owner = THIS_MODULE,
856 .llseek = dev_nvram_llseek,
857 .read = dev_nvram_read,
858 .write = dev_nvram_write,
859 .unlocked_ioctl = dev_nvram_ioctl,
860 };
861
862 static struct miscdevice nvram_dev = {
863 NVRAM_MINOR,
864 "nvram",
865 &nvram_fops
866 };
867
868
869 #ifdef DEBUG_NVRAM
870 static void __init nvram_print_partitions(char * label)
871 {
872 struct nvram_partition * tmp_part;
873
874 printk(KERN_WARNING "--------%s---------\n", label);
875 printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
876 list_for_each_entry(tmp_part, &nvram_partitions, partition) {
877 printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12.12s\n",
878 tmp_part->index, tmp_part->header.signature,
879 tmp_part->header.checksum, tmp_part->header.length,
880 tmp_part->header.name);
881 }
882 }
883 #endif
884
885
886 static int __init nvram_write_header(struct nvram_partition * part)
887 {
888 loff_t tmp_index;
889 int rc;
890 struct nvram_header phead;
891
892 memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
893 phead.length = cpu_to_be16(phead.length);
894
895 tmp_index = part->index;
896 rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
897
898 return rc;
899 }
900
901
902 static unsigned char __init nvram_checksum(struct nvram_header *p)
903 {
904 unsigned int c_sum, c_sum2;
905 unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
906 c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
907
908 /* The sum may have spilled into the 3rd byte. Fold it back. */
909 c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
910 /* The sum cannot exceed 2 bytes. Fold it into a checksum */
911 c_sum2 = (c_sum >> 8) + (c_sum << 8);
912 c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
913 return c_sum;
914 }
915
916 /*
917 * Per the criteria passed via nvram_remove_partition(), should this
918 * partition be removed? 1=remove, 0=keep
919 */
920 static int nvram_can_remove_partition(struct nvram_partition *part,
921 const char *name, int sig, const char *exceptions[])
922 {
923 if (part->header.signature != sig)
924 return 0;
925 if (name) {
926 if (strncmp(name, part->header.name, 12))
927 return 0;
928 } else if (exceptions) {
929 const char **except;
930 for (except = exceptions; *except; except++) {
931 if (!strncmp(*except, part->header.name, 12))
932 return 0;
933 }
934 }
935 return 1;
936 }
937
938 /**
939 * nvram_remove_partition - Remove one or more partitions in nvram
940 * @name: name of the partition to remove, or NULL for a
941 * signature only match
942 * @sig: signature of the partition(s) to remove
943 * @exceptions: When removing all partitions with a matching signature,
944 * leave these alone.
945 */
946
947 int __init nvram_remove_partition(const char *name, int sig,
948 const char *exceptions[])
949 {
950 struct nvram_partition *part, *prev, *tmp;
951 int rc;
952
953 list_for_each_entry(part, &nvram_partitions, partition) {
954 if (!nvram_can_remove_partition(part, name, sig, exceptions))
955 continue;
956
957 /* Make partition a free partition */
958 part->header.signature = NVRAM_SIG_FREE;
959 strncpy(part->header.name, "wwwwwwwwwwww", 12);
960 part->header.checksum = nvram_checksum(&part->header);
961 rc = nvram_write_header(part);
962 if (rc <= 0) {
963 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
964 return rc;
965 }
966 }
967
968 /* Merge contiguous ones */
969 prev = NULL;
970 list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
971 if (part->header.signature != NVRAM_SIG_FREE) {
972 prev = NULL;
973 continue;
974 }
975 if (prev) {
976 prev->header.length += part->header.length;
977 prev->header.checksum = nvram_checksum(&part->header);
978 rc = nvram_write_header(part);
979 if (rc <= 0) {
980 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
981 return rc;
982 }
983 list_del(&part->partition);
984 kfree(part);
985 } else
986 prev = part;
987 }
988
989 return 0;
990 }
991
992 /**
993 * nvram_create_partition - Create a partition in nvram
994 * @name: name of the partition to create
995 * @sig: signature of the partition to create
996 * @req_size: size of data to allocate in bytes
997 * @min_size: minimum acceptable size (0 means req_size)
998 *
999 * Returns a negative error code or a positive nvram index
1000 * of the beginning of the data area of the newly created
1001 * partition. If you provided a min_size smaller than req_size
1002 * you need to query for the actual size yourself after the
1003 * call using nvram_partition_get_size().
1004 */
1005 loff_t __init nvram_create_partition(const char *name, int sig,
1006 int req_size, int min_size)
1007 {
1008 struct nvram_partition *part;
1009 struct nvram_partition *new_part;
1010 struct nvram_partition *free_part = NULL;
1011 static char nv_init_vals[16];
1012 loff_t tmp_index;
1013 long size = 0;
1014 int rc;
1015
1016 /* Convert sizes from bytes to blocks */
1017 req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1018 min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1019
1020 /* If no minimum size specified, make it the same as the
1021 * requested size
1022 */
1023 if (min_size == 0)
1024 min_size = req_size;
1025 if (min_size > req_size)
1026 return -EINVAL;
1027
1028 /* Now add one block to each for the header */
1029 req_size += 1;
1030 min_size += 1;
1031
1032 /* Find a free partition that will give us the maximum needed size
1033 If can't find one that will give us the minimum size needed */
1034 list_for_each_entry(part, &nvram_partitions, partition) {
1035 if (part->header.signature != NVRAM_SIG_FREE)
1036 continue;
1037
1038 if (part->header.length >= req_size) {
1039 size = req_size;
1040 free_part = part;
1041 break;
1042 }
1043 if (part->header.length > size &&
1044 part->header.length >= min_size) {
1045 size = part->header.length;
1046 free_part = part;
1047 }
1048 }
1049 if (!size)
1050 return -ENOSPC;
1051
1052 /* Create our OS partition */
1053 new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1054 if (!new_part) {
1055 pr_err("%s: kmalloc failed\n", __func__);
1056 return -ENOMEM;
1057 }
1058
1059 new_part->index = free_part->index;
1060 new_part->header.signature = sig;
1061 new_part->header.length = size;
1062 strncpy(new_part->header.name, name, 12);
1063 new_part->header.checksum = nvram_checksum(&new_part->header);
1064
1065 rc = nvram_write_header(new_part);
1066 if (rc <= 0) {
1067 pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
1068 kfree(new_part);
1069 return rc;
1070 }
1071 list_add_tail(&new_part->partition, &free_part->partition);
1072
1073 /* Adjust or remove the partition we stole the space from */
1074 if (free_part->header.length > size) {
1075 free_part->index += size * NVRAM_BLOCK_LEN;
1076 free_part->header.length -= size;
1077 free_part->header.checksum = nvram_checksum(&free_part->header);
1078 rc = nvram_write_header(free_part);
1079 if (rc <= 0) {
1080 pr_err("%s: nvram_write_header failed (%d)\n",
1081 __func__, rc);
1082 return rc;
1083 }
1084 } else {
1085 list_del(&free_part->partition);
1086 kfree(free_part);
1087 }
1088
1089 /* Clear the new partition */
1090 for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1091 tmp_index < ((size - 1) * NVRAM_BLOCK_LEN);
1092 tmp_index += NVRAM_BLOCK_LEN) {
1093 rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1094 if (rc <= 0) {
1095 pr_err("%s: nvram_write failed (%d)\n",
1096 __func__, rc);
1097 return rc;
1098 }
1099 }
1100
1101 return new_part->index + NVRAM_HEADER_LEN;
1102 }
1103
1104 /**
1105 * nvram_get_partition_size - Get the data size of an nvram partition
1106 * @data_index: This is the offset of the start of the data of
1107 * the partition. The same value that is returned by
1108 * nvram_create_partition().
1109 */
1110 int nvram_get_partition_size(loff_t data_index)
1111 {
1112 struct nvram_partition *part;
1113
1114 list_for_each_entry(part, &nvram_partitions, partition) {
1115 if (part->index + NVRAM_HEADER_LEN == data_index)
1116 return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1117 }
1118 return -1;
1119 }
1120
1121
1122 /**
1123 * nvram_find_partition - Find an nvram partition by signature and name
1124 * @name: Name of the partition or NULL for any name
1125 * @sig: Signature to test against
1126 * @out_size: if non-NULL, returns the size of the data part of the partition
1127 */
1128 loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1129 {
1130 struct nvram_partition *p;
1131
1132 list_for_each_entry(p, &nvram_partitions, partition) {
1133 if (p->header.signature == sig &&
1134 (!name || !strncmp(p->header.name, name, 12))) {
1135 if (out_size)
1136 *out_size = (p->header.length - 1) *
1137 NVRAM_BLOCK_LEN;
1138 return p->index + NVRAM_HEADER_LEN;
1139 }
1140 }
1141 return 0;
1142 }
1143
1144 int __init nvram_scan_partitions(void)
1145 {
1146 loff_t cur_index = 0;
1147 struct nvram_header phead;
1148 struct nvram_partition * tmp_part;
1149 unsigned char c_sum;
1150 char * header;
1151 int total_size;
1152 int err;
1153
1154 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1155 return -ENODEV;
1156 total_size = ppc_md.nvram_size();
1157
1158 header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1159 if (!header) {
1160 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1161 return -ENOMEM;
1162 }
1163
1164 while (cur_index < total_size) {
1165
1166 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1167 if (err != NVRAM_HEADER_LEN) {
1168 printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1169 "nvram partitions\n");
1170 goto out;
1171 }
1172
1173 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1174
1175 memcpy(&phead, header, NVRAM_HEADER_LEN);
1176
1177 phead.length = be16_to_cpu(phead.length);
1178
1179 err = 0;
1180 c_sum = nvram_checksum(&phead);
1181 if (c_sum != phead.checksum) {
1182 printk(KERN_WARNING "WARNING: nvram partition checksum"
1183 " was %02x, should be %02x!\n",
1184 phead.checksum, c_sum);
1185 printk(KERN_WARNING "Terminating nvram partition scan\n");
1186 goto out;
1187 }
1188 if (!phead.length) {
1189 printk(KERN_WARNING "WARNING: nvram corruption "
1190 "detected: 0-length partition\n");
1191 goto out;
1192 }
1193 tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1194 err = -ENOMEM;
1195 if (!tmp_part) {
1196 printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1197 goto out;
1198 }
1199
1200 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1201 tmp_part->index = cur_index;
1202 list_add_tail(&tmp_part->partition, &nvram_partitions);
1203
1204 cur_index += phead.length * NVRAM_BLOCK_LEN;
1205 }
1206 err = 0;
1207
1208 #ifdef DEBUG_NVRAM
1209 nvram_print_partitions("NVRAM Partitions");
1210 #endif
1211
1212 out:
1213 kfree(header);
1214 return err;
1215 }
1216
1217 static int __init nvram_init(void)
1218 {
1219 int rc;
1220
1221 BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1222
1223 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1224 return -ENODEV;
1225
1226 rc = misc_register(&nvram_dev);
1227 if (rc != 0) {
1228 printk(KERN_ERR "nvram_init: failed to register device\n");
1229 return rc;
1230 }
1231
1232 return rc;
1233 }
1234
1235 static void __exit nvram_cleanup(void)
1236 {
1237 misc_deregister( &nvram_dev );
1238 }
1239
1240 module_init(nvram_init);
1241 module_exit(nvram_cleanup);
1242 MODULE_LICENSE("GPL");
This page took 0.060686 seconds and 5 git commands to generate.