perf_counter: powerpc: set sample enable bit for marked instruction events
[deliverable/linux.git] / arch / powerpc / kernel / perf_counter.c
1 /*
2 * Performance counter support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20
21 struct cpu_hw_counters {
22 int n_counters;
23 int n_percpu;
24 int disabled;
25 int n_added;
26 struct perf_counter *counter[MAX_HWCOUNTERS];
27 unsigned int events[MAX_HWCOUNTERS];
28 u64 mmcr[3];
29 u8 pmcs_enabled;
30 };
31 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
32
33 struct power_pmu *ppmu;
34
35 /*
36 * Normally, to ignore kernel events we set the FCS (freeze counters
37 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
38 * hypervisor bit set in the MSR, or if we are running on a processor
39 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
40 * then we need to use the FCHV bit to ignore kernel events.
41 */
42 static unsigned int freeze_counters_kernel = MMCR0_FCS;
43
44 static void perf_counter_interrupt(struct pt_regs *regs);
45
46 void perf_counter_print_debug(void)
47 {
48 }
49
50 /*
51 * Read one performance monitor counter (PMC).
52 */
53 static unsigned long read_pmc(int idx)
54 {
55 unsigned long val;
56
57 switch (idx) {
58 case 1:
59 val = mfspr(SPRN_PMC1);
60 break;
61 case 2:
62 val = mfspr(SPRN_PMC2);
63 break;
64 case 3:
65 val = mfspr(SPRN_PMC3);
66 break;
67 case 4:
68 val = mfspr(SPRN_PMC4);
69 break;
70 case 5:
71 val = mfspr(SPRN_PMC5);
72 break;
73 case 6:
74 val = mfspr(SPRN_PMC6);
75 break;
76 case 7:
77 val = mfspr(SPRN_PMC7);
78 break;
79 case 8:
80 val = mfspr(SPRN_PMC8);
81 break;
82 default:
83 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
84 val = 0;
85 }
86 return val;
87 }
88
89 /*
90 * Write one PMC.
91 */
92 static void write_pmc(int idx, unsigned long val)
93 {
94 switch (idx) {
95 case 1:
96 mtspr(SPRN_PMC1, val);
97 break;
98 case 2:
99 mtspr(SPRN_PMC2, val);
100 break;
101 case 3:
102 mtspr(SPRN_PMC3, val);
103 break;
104 case 4:
105 mtspr(SPRN_PMC4, val);
106 break;
107 case 5:
108 mtspr(SPRN_PMC5, val);
109 break;
110 case 6:
111 mtspr(SPRN_PMC6, val);
112 break;
113 case 7:
114 mtspr(SPRN_PMC7, val);
115 break;
116 case 8:
117 mtspr(SPRN_PMC8, val);
118 break;
119 default:
120 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
121 }
122 }
123
124 /*
125 * Check if a set of events can all go on the PMU at once.
126 * If they can't, this will look at alternative codes for the events
127 * and see if any combination of alternative codes is feasible.
128 * The feasible set is returned in event[].
129 */
130 static int power_check_constraints(unsigned int event[], int n_ev)
131 {
132 u64 mask, value, nv;
133 unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
134 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
135 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
136 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
137 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
138 int i, j;
139 u64 addf = ppmu->add_fields;
140 u64 tadd = ppmu->test_adder;
141
142 if (n_ev > ppmu->n_counter)
143 return -1;
144
145 /* First see if the events will go on as-is */
146 for (i = 0; i < n_ev; ++i) {
147 alternatives[i][0] = event[i];
148 if (ppmu->get_constraint(event[i], &amasks[i][0],
149 &avalues[i][0]))
150 return -1;
151 choice[i] = 0;
152 }
153 value = mask = 0;
154 for (i = 0; i < n_ev; ++i) {
155 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
156 if ((((nv + tadd) ^ value) & mask) != 0 ||
157 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
158 break;
159 value = nv;
160 mask |= amasks[i][0];
161 }
162 if (i == n_ev)
163 return 0; /* all OK */
164
165 /* doesn't work, gather alternatives... */
166 if (!ppmu->get_alternatives)
167 return -1;
168 for (i = 0; i < n_ev; ++i) {
169 n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
170 for (j = 1; j < n_alt[i]; ++j)
171 ppmu->get_constraint(alternatives[i][j],
172 &amasks[i][j], &avalues[i][j]);
173 }
174
175 /* enumerate all possibilities and see if any will work */
176 i = 0;
177 j = -1;
178 value = mask = nv = 0;
179 while (i < n_ev) {
180 if (j >= 0) {
181 /* we're backtracking, restore context */
182 value = svalues[i];
183 mask = smasks[i];
184 j = choice[i];
185 }
186 /*
187 * See if any alternative k for event i,
188 * where k > j, will satisfy the constraints.
189 */
190 while (++j < n_alt[i]) {
191 nv = (value | avalues[i][j]) +
192 (value & avalues[i][j] & addf);
193 if ((((nv + tadd) ^ value) & mask) == 0 &&
194 (((nv + tadd) ^ avalues[i][j])
195 & amasks[i][j]) == 0)
196 break;
197 }
198 if (j >= n_alt[i]) {
199 /*
200 * No feasible alternative, backtrack
201 * to event i-1 and continue enumerating its
202 * alternatives from where we got up to.
203 */
204 if (--i < 0)
205 return -1;
206 } else {
207 /*
208 * Found a feasible alternative for event i,
209 * remember where we got up to with this event,
210 * go on to the next event, and start with
211 * the first alternative for it.
212 */
213 choice[i] = j;
214 svalues[i] = value;
215 smasks[i] = mask;
216 value = nv;
217 mask |= amasks[i][j];
218 ++i;
219 j = -1;
220 }
221 }
222
223 /* OK, we have a feasible combination, tell the caller the solution */
224 for (i = 0; i < n_ev; ++i)
225 event[i] = alternatives[i][choice[i]];
226 return 0;
227 }
228
229 /*
230 * Check if newly-added counters have consistent settings for
231 * exclude_{user,kernel,hv} with each other and any previously
232 * added counters.
233 */
234 static int check_excludes(struct perf_counter **ctrs, int n_prev, int n_new)
235 {
236 int eu, ek, eh;
237 int i, n;
238 struct perf_counter *counter;
239
240 n = n_prev + n_new;
241 if (n <= 1)
242 return 0;
243
244 eu = ctrs[0]->hw_event.exclude_user;
245 ek = ctrs[0]->hw_event.exclude_kernel;
246 eh = ctrs[0]->hw_event.exclude_hv;
247 if (n_prev == 0)
248 n_prev = 1;
249 for (i = n_prev; i < n; ++i) {
250 counter = ctrs[i];
251 if (counter->hw_event.exclude_user != eu ||
252 counter->hw_event.exclude_kernel != ek ||
253 counter->hw_event.exclude_hv != eh)
254 return -EAGAIN;
255 }
256 return 0;
257 }
258
259 static void power_perf_read(struct perf_counter *counter)
260 {
261 long val, delta, prev;
262
263 if (!counter->hw.idx)
264 return;
265 /*
266 * Performance monitor interrupts come even when interrupts
267 * are soft-disabled, as long as interrupts are hard-enabled.
268 * Therefore we treat them like NMIs.
269 */
270 do {
271 prev = atomic64_read(&counter->hw.prev_count);
272 barrier();
273 val = read_pmc(counter->hw.idx);
274 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
275
276 /* The counters are only 32 bits wide */
277 delta = (val - prev) & 0xfffffffful;
278 atomic64_add(delta, &counter->count);
279 atomic64_sub(delta, &counter->hw.period_left);
280 }
281
282 /*
283 * Disable all counters to prevent PMU interrupts and to allow
284 * counters to be added or removed.
285 */
286 u64 hw_perf_save_disable(void)
287 {
288 struct cpu_hw_counters *cpuhw;
289 unsigned long ret;
290 unsigned long flags;
291
292 local_irq_save(flags);
293 cpuhw = &__get_cpu_var(cpu_hw_counters);
294
295 ret = cpuhw->disabled;
296 if (!ret) {
297 cpuhw->disabled = 1;
298 cpuhw->n_added = 0;
299
300 /*
301 * Check if we ever enabled the PMU on this cpu.
302 */
303 if (!cpuhw->pmcs_enabled) {
304 if (ppc_md.enable_pmcs)
305 ppc_md.enable_pmcs();
306 cpuhw->pmcs_enabled = 1;
307 }
308
309 /*
310 * Disable instruction sampling if it was enabled
311 */
312 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
313 mtspr(SPRN_MMCRA,
314 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
315 mb();
316 }
317
318 /*
319 * Set the 'freeze counters' bit.
320 * The barrier is to make sure the mtspr has been
321 * executed and the PMU has frozen the counters
322 * before we return.
323 */
324 mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
325 mb();
326 }
327 local_irq_restore(flags);
328 return ret;
329 }
330
331 /*
332 * Re-enable all counters if disable == 0.
333 * If we were previously disabled and counters were added, then
334 * put the new config on the PMU.
335 */
336 void hw_perf_restore(u64 disable)
337 {
338 struct perf_counter *counter;
339 struct cpu_hw_counters *cpuhw;
340 unsigned long flags;
341 long i;
342 unsigned long val;
343 s64 left;
344 unsigned int hwc_index[MAX_HWCOUNTERS];
345
346 if (disable)
347 return;
348 local_irq_save(flags);
349 cpuhw = &__get_cpu_var(cpu_hw_counters);
350 cpuhw->disabled = 0;
351
352 /*
353 * If we didn't change anything, or only removed counters,
354 * no need to recalculate MMCR* settings and reset the PMCs.
355 * Just reenable the PMU with the current MMCR* settings
356 * (possibly updated for removal of counters).
357 */
358 if (!cpuhw->n_added) {
359 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
360 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
361 if (cpuhw->n_counters == 0)
362 get_lppaca()->pmcregs_in_use = 0;
363 goto out_enable;
364 }
365
366 /*
367 * Compute MMCR* values for the new set of counters
368 */
369 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
370 cpuhw->mmcr)) {
371 /* shouldn't ever get here */
372 printk(KERN_ERR "oops compute_mmcr failed\n");
373 goto out;
374 }
375
376 /*
377 * Add in MMCR0 freeze bits corresponding to the
378 * hw_event.exclude_* bits for the first counter.
379 * We have already checked that all counters have the
380 * same values for these bits as the first counter.
381 */
382 counter = cpuhw->counter[0];
383 if (counter->hw_event.exclude_user)
384 cpuhw->mmcr[0] |= MMCR0_FCP;
385 if (counter->hw_event.exclude_kernel)
386 cpuhw->mmcr[0] |= freeze_counters_kernel;
387 if (counter->hw_event.exclude_hv)
388 cpuhw->mmcr[0] |= MMCR0_FCHV;
389
390 /*
391 * Write the new configuration to MMCR* with the freeze
392 * bit set and set the hardware counters to their initial values.
393 * Then unfreeze the counters.
394 */
395 get_lppaca()->pmcregs_in_use = 1;
396 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
397 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
398 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
399 | MMCR0_FC);
400
401 /*
402 * Read off any pre-existing counters that need to move
403 * to another PMC.
404 */
405 for (i = 0; i < cpuhw->n_counters; ++i) {
406 counter = cpuhw->counter[i];
407 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
408 power_perf_read(counter);
409 write_pmc(counter->hw.idx, 0);
410 counter->hw.idx = 0;
411 }
412 }
413
414 /*
415 * Initialize the PMCs for all the new and moved counters.
416 */
417 for (i = 0; i < cpuhw->n_counters; ++i) {
418 counter = cpuhw->counter[i];
419 if (counter->hw.idx)
420 continue;
421 val = 0;
422 if (counter->hw_event.irq_period) {
423 left = atomic64_read(&counter->hw.period_left);
424 if (left < 0x80000000L)
425 val = 0x80000000L - left;
426 }
427 atomic64_set(&counter->hw.prev_count, val);
428 counter->hw.idx = hwc_index[i] + 1;
429 write_pmc(counter->hw.idx, val);
430 perf_counter_update_userpage(counter);
431 }
432 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
433
434 out_enable:
435 mb();
436 mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
437
438 /*
439 * Enable instruction sampling if necessary
440 */
441 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
442 mb();
443 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
444 }
445
446 out:
447 local_irq_restore(flags);
448 }
449
450 static int collect_events(struct perf_counter *group, int max_count,
451 struct perf_counter *ctrs[], unsigned int *events)
452 {
453 int n = 0;
454 struct perf_counter *counter;
455
456 if (!is_software_counter(group)) {
457 if (n >= max_count)
458 return -1;
459 ctrs[n] = group;
460 events[n++] = group->hw.config;
461 }
462 list_for_each_entry(counter, &group->sibling_list, list_entry) {
463 if (!is_software_counter(counter) &&
464 counter->state != PERF_COUNTER_STATE_OFF) {
465 if (n >= max_count)
466 return -1;
467 ctrs[n] = counter;
468 events[n++] = counter->hw.config;
469 }
470 }
471 return n;
472 }
473
474 static void counter_sched_in(struct perf_counter *counter, int cpu)
475 {
476 counter->state = PERF_COUNTER_STATE_ACTIVE;
477 counter->oncpu = cpu;
478 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
479 if (is_software_counter(counter))
480 counter->hw_ops->enable(counter);
481 }
482
483 /*
484 * Called to enable a whole group of counters.
485 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
486 * Assumes the caller has disabled interrupts and has
487 * frozen the PMU with hw_perf_save_disable.
488 */
489 int hw_perf_group_sched_in(struct perf_counter *group_leader,
490 struct perf_cpu_context *cpuctx,
491 struct perf_counter_context *ctx, int cpu)
492 {
493 struct cpu_hw_counters *cpuhw;
494 long i, n, n0;
495 struct perf_counter *sub;
496
497 cpuhw = &__get_cpu_var(cpu_hw_counters);
498 n0 = cpuhw->n_counters;
499 n = collect_events(group_leader, ppmu->n_counter - n0,
500 &cpuhw->counter[n0], &cpuhw->events[n0]);
501 if (n < 0)
502 return -EAGAIN;
503 if (check_excludes(cpuhw->counter, n0, n))
504 return -EAGAIN;
505 if (power_check_constraints(cpuhw->events, n + n0))
506 return -EAGAIN;
507 cpuhw->n_counters = n0 + n;
508 cpuhw->n_added += n;
509
510 /*
511 * OK, this group can go on; update counter states etc.,
512 * and enable any software counters
513 */
514 for (i = n0; i < n0 + n; ++i)
515 cpuhw->counter[i]->hw.config = cpuhw->events[i];
516 cpuctx->active_oncpu += n;
517 n = 1;
518 counter_sched_in(group_leader, cpu);
519 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
520 if (sub->state != PERF_COUNTER_STATE_OFF) {
521 counter_sched_in(sub, cpu);
522 ++n;
523 }
524 }
525 ctx->nr_active += n;
526
527 return 1;
528 }
529
530 /*
531 * Add a counter to the PMU.
532 * If all counters are not already frozen, then we disable and
533 * re-enable the PMU in order to get hw_perf_restore to do the
534 * actual work of reconfiguring the PMU.
535 */
536 static int power_perf_enable(struct perf_counter *counter)
537 {
538 struct cpu_hw_counters *cpuhw;
539 unsigned long flags;
540 u64 pmudis;
541 int n0;
542 int ret = -EAGAIN;
543
544 local_irq_save(flags);
545 pmudis = hw_perf_save_disable();
546
547 /*
548 * Add the counter to the list (if there is room)
549 * and check whether the total set is still feasible.
550 */
551 cpuhw = &__get_cpu_var(cpu_hw_counters);
552 n0 = cpuhw->n_counters;
553 if (n0 >= ppmu->n_counter)
554 goto out;
555 cpuhw->counter[n0] = counter;
556 cpuhw->events[n0] = counter->hw.config;
557 if (check_excludes(cpuhw->counter, n0, 1))
558 goto out;
559 if (power_check_constraints(cpuhw->events, n0 + 1))
560 goto out;
561
562 counter->hw.config = cpuhw->events[n0];
563 ++cpuhw->n_counters;
564 ++cpuhw->n_added;
565
566 ret = 0;
567 out:
568 hw_perf_restore(pmudis);
569 local_irq_restore(flags);
570 return ret;
571 }
572
573 /*
574 * Remove a counter from the PMU.
575 */
576 static void power_perf_disable(struct perf_counter *counter)
577 {
578 struct cpu_hw_counters *cpuhw;
579 long i;
580 u64 pmudis;
581 unsigned long flags;
582
583 local_irq_save(flags);
584 pmudis = hw_perf_save_disable();
585
586 power_perf_read(counter);
587
588 cpuhw = &__get_cpu_var(cpu_hw_counters);
589 for (i = 0; i < cpuhw->n_counters; ++i) {
590 if (counter == cpuhw->counter[i]) {
591 while (++i < cpuhw->n_counters)
592 cpuhw->counter[i-1] = cpuhw->counter[i];
593 --cpuhw->n_counters;
594 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
595 write_pmc(counter->hw.idx, 0);
596 counter->hw.idx = 0;
597 perf_counter_update_userpage(counter);
598 break;
599 }
600 }
601 if (cpuhw->n_counters == 0) {
602 /* disable exceptions if no counters are running */
603 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
604 }
605
606 hw_perf_restore(pmudis);
607 local_irq_restore(flags);
608 }
609
610 struct hw_perf_counter_ops power_perf_ops = {
611 .enable = power_perf_enable,
612 .disable = power_perf_disable,
613 .read = power_perf_read
614 };
615
616 /* Number of perf_counters counting hardware events */
617 static atomic_t num_counters;
618 /* Used to avoid races in calling reserve/release_pmc_hardware */
619 static DEFINE_MUTEX(pmc_reserve_mutex);
620
621 /*
622 * Release the PMU if this is the last perf_counter.
623 */
624 static void hw_perf_counter_destroy(struct perf_counter *counter)
625 {
626 if (!atomic_add_unless(&num_counters, -1, 1)) {
627 mutex_lock(&pmc_reserve_mutex);
628 if (atomic_dec_return(&num_counters) == 0)
629 release_pmc_hardware();
630 mutex_unlock(&pmc_reserve_mutex);
631 }
632 }
633
634 const struct hw_perf_counter_ops *
635 hw_perf_counter_init(struct perf_counter *counter)
636 {
637 unsigned long ev;
638 struct perf_counter *ctrs[MAX_HWCOUNTERS];
639 unsigned int events[MAX_HWCOUNTERS];
640 int n;
641 int err;
642
643 if (!ppmu)
644 return ERR_PTR(-ENXIO);
645 if ((s64)counter->hw_event.irq_period < 0)
646 return ERR_PTR(-EINVAL);
647 if (!perf_event_raw(&counter->hw_event)) {
648 ev = perf_event_id(&counter->hw_event);
649 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
650 return ERR_PTR(-EOPNOTSUPP);
651 ev = ppmu->generic_events[ev];
652 } else {
653 ev = perf_event_config(&counter->hw_event);
654 }
655 counter->hw.config_base = ev;
656 counter->hw.idx = 0;
657
658 /*
659 * If we are not running on a hypervisor, force the
660 * exclude_hv bit to 0 so that we don't care what
661 * the user set it to.
662 */
663 if (!firmware_has_feature(FW_FEATURE_LPAR))
664 counter->hw_event.exclude_hv = 0;
665
666 /*
667 * If this is in a group, check if it can go on with all the
668 * other hardware counters in the group. We assume the counter
669 * hasn't been linked into its leader's sibling list at this point.
670 */
671 n = 0;
672 if (counter->group_leader != counter) {
673 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
674 ctrs, events);
675 if (n < 0)
676 return ERR_PTR(-EINVAL);
677 }
678 events[n] = ev;
679 ctrs[n] = counter;
680 if (check_excludes(ctrs, n, 1))
681 return ERR_PTR(-EINVAL);
682 if (power_check_constraints(events, n + 1))
683 return ERR_PTR(-EINVAL);
684
685 counter->hw.config = events[n];
686 atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
687
688 /*
689 * See if we need to reserve the PMU.
690 * If no counters are currently in use, then we have to take a
691 * mutex to ensure that we don't race with another task doing
692 * reserve_pmc_hardware or release_pmc_hardware.
693 */
694 err = 0;
695 if (!atomic_inc_not_zero(&num_counters)) {
696 mutex_lock(&pmc_reserve_mutex);
697 if (atomic_read(&num_counters) == 0 &&
698 reserve_pmc_hardware(perf_counter_interrupt))
699 err = -EBUSY;
700 else
701 atomic_inc(&num_counters);
702 mutex_unlock(&pmc_reserve_mutex);
703 }
704 counter->destroy = hw_perf_counter_destroy;
705
706 if (err)
707 return ERR_PTR(err);
708 return &power_perf_ops;
709 }
710
711 /*
712 * A counter has overflowed; update its count and record
713 * things if requested. Note that interrupts are hard-disabled
714 * here so there is no possibility of being interrupted.
715 */
716 static void record_and_restart(struct perf_counter *counter, long val,
717 struct pt_regs *regs)
718 {
719 s64 prev, delta, left;
720 int record = 0;
721
722 /* we don't have to worry about interrupts here */
723 prev = atomic64_read(&counter->hw.prev_count);
724 delta = (val - prev) & 0xfffffffful;
725 atomic64_add(delta, &counter->count);
726
727 /*
728 * See if the total period for this counter has expired,
729 * and update for the next period.
730 */
731 val = 0;
732 left = atomic64_read(&counter->hw.period_left) - delta;
733 if (counter->hw_event.irq_period) {
734 if (left <= 0) {
735 left += counter->hw_event.irq_period;
736 if (left <= 0)
737 left = counter->hw_event.irq_period;
738 record = 1;
739 }
740 if (left < 0x80000000L)
741 val = 0x80000000L - left;
742 }
743 write_pmc(counter->hw.idx, val);
744 atomic64_set(&counter->hw.prev_count, val);
745 atomic64_set(&counter->hw.period_left, left);
746 perf_counter_update_userpage(counter);
747
748 /*
749 * Finally record data if requested.
750 */
751 if (record)
752 perf_counter_overflow(counter, 1, regs);
753 }
754
755 /*
756 * Performance monitor interrupt stuff
757 */
758 static void perf_counter_interrupt(struct pt_regs *regs)
759 {
760 int i;
761 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
762 struct perf_counter *counter;
763 long val;
764 int found = 0;
765
766 for (i = 0; i < cpuhw->n_counters; ++i) {
767 counter = cpuhw->counter[i];
768 val = read_pmc(counter->hw.idx);
769 if ((int)val < 0) {
770 /* counter has overflowed */
771 found = 1;
772 record_and_restart(counter, val, regs);
773 }
774 }
775
776 /*
777 * In case we didn't find and reset the counter that caused
778 * the interrupt, scan all counters and reset any that are
779 * negative, to avoid getting continual interrupts.
780 * Any that we processed in the previous loop will not be negative.
781 */
782 if (!found) {
783 for (i = 0; i < ppmu->n_counter; ++i) {
784 val = read_pmc(i + 1);
785 if ((int)val < 0)
786 write_pmc(i + 1, 0);
787 }
788 }
789
790 /*
791 * Reset MMCR0 to its normal value. This will set PMXE and
792 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
793 * and thus allow interrupts to occur again.
794 * XXX might want to use MSR.PM to keep the counters frozen until
795 * we get back out of this interrupt.
796 */
797 mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
798
799 /*
800 * If we need a wakeup, check whether interrupts were soft-enabled
801 * when we took the interrupt. If they were, we can wake stuff up
802 * immediately; otherwise we'll have do the wakeup when interrupts
803 * get soft-enabled.
804 */
805 if (test_perf_counter_pending() && regs->softe) {
806 irq_enter();
807 clear_perf_counter_pending();
808 perf_counter_do_pending();
809 irq_exit();
810 }
811 }
812
813 void hw_perf_counter_setup(int cpu)
814 {
815 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
816
817 memset(cpuhw, 0, sizeof(*cpuhw));
818 cpuhw->mmcr[0] = MMCR0_FC;
819 }
820
821 extern struct power_pmu power4_pmu;
822 extern struct power_pmu ppc970_pmu;
823 extern struct power_pmu power5_pmu;
824 extern struct power_pmu power5p_pmu;
825 extern struct power_pmu power6_pmu;
826
827 static int init_perf_counters(void)
828 {
829 unsigned long pvr;
830
831 /* XXX should get this from cputable */
832 pvr = mfspr(SPRN_PVR);
833 switch (PVR_VER(pvr)) {
834 case PV_POWER4:
835 case PV_POWER4p:
836 ppmu = &power4_pmu;
837 break;
838 case PV_970:
839 case PV_970FX:
840 case PV_970MP:
841 ppmu = &ppc970_pmu;
842 break;
843 case PV_POWER5:
844 ppmu = &power5_pmu;
845 break;
846 case PV_POWER5p:
847 ppmu = &power5p_pmu;
848 break;
849 case 0x3e:
850 ppmu = &power6_pmu;
851 break;
852 }
853
854 /*
855 * Use FCHV to ignore kernel events if MSR.HV is set.
856 */
857 if (mfmsr() & MSR_HV)
858 freeze_counters_kernel = MMCR0_FCHV;
859
860 return 0;
861 }
862
863 arch_initcall(init_perf_counters);
This page took 0.130511 seconds and 5 git commands to generate.