perf_counter: Rename perf_counter_hw_event => perf_counter_attr
[deliverable/linux.git] / arch / powerpc / kernel / perf_counter.c
1 /*
2 * Performance counter support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_counters {
23 int n_counters;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_counter *counter[MAX_HWCOUNTERS];
30 u64 events[MAX_HWCOUNTERS];
31 unsigned int flags[MAX_HWCOUNTERS];
32 u64 mmcr[3];
33 struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 };
36 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
37
38 struct power_pmu *ppmu;
39
40 /*
41 * Normally, to ignore kernel events we set the FCS (freeze counters
42 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43 * hypervisor bit set in the MSR, or if we are running on a processor
44 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45 * then we need to use the FCHV bit to ignore kernel events.
46 */
47 static unsigned int freeze_counters_kernel = MMCR0_FCS;
48
49 static void perf_counter_interrupt(struct pt_regs *regs);
50
51 void perf_counter_print_debug(void)
52 {
53 }
54
55 /*
56 * Read one performance monitor counter (PMC).
57 */
58 static unsigned long read_pmc(int idx)
59 {
60 unsigned long val;
61
62 switch (idx) {
63 case 1:
64 val = mfspr(SPRN_PMC1);
65 break;
66 case 2:
67 val = mfspr(SPRN_PMC2);
68 break;
69 case 3:
70 val = mfspr(SPRN_PMC3);
71 break;
72 case 4:
73 val = mfspr(SPRN_PMC4);
74 break;
75 case 5:
76 val = mfspr(SPRN_PMC5);
77 break;
78 case 6:
79 val = mfspr(SPRN_PMC6);
80 break;
81 case 7:
82 val = mfspr(SPRN_PMC7);
83 break;
84 case 8:
85 val = mfspr(SPRN_PMC8);
86 break;
87 default:
88 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
89 val = 0;
90 }
91 return val;
92 }
93
94 /*
95 * Write one PMC.
96 */
97 static void write_pmc(int idx, unsigned long val)
98 {
99 switch (idx) {
100 case 1:
101 mtspr(SPRN_PMC1, val);
102 break;
103 case 2:
104 mtspr(SPRN_PMC2, val);
105 break;
106 case 3:
107 mtspr(SPRN_PMC3, val);
108 break;
109 case 4:
110 mtspr(SPRN_PMC4, val);
111 break;
112 case 5:
113 mtspr(SPRN_PMC5, val);
114 break;
115 case 6:
116 mtspr(SPRN_PMC6, val);
117 break;
118 case 7:
119 mtspr(SPRN_PMC7, val);
120 break;
121 case 8:
122 mtspr(SPRN_PMC8, val);
123 break;
124 default:
125 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
126 }
127 }
128
129 /*
130 * Check if a set of events can all go on the PMU at once.
131 * If they can't, this will look at alternative codes for the events
132 * and see if any combination of alternative codes is feasible.
133 * The feasible set is returned in event[].
134 */
135 static int power_check_constraints(u64 event[], unsigned int cflags[],
136 int n_ev)
137 {
138 u64 mask, value, nv;
139 u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
142 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
143 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
144 int i, j;
145 u64 addf = ppmu->add_fields;
146 u64 tadd = ppmu->test_adder;
147
148 if (n_ev > ppmu->n_counter)
149 return -1;
150
151 /* First see if the events will go on as-is */
152 for (i = 0; i < n_ev; ++i) {
153 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
154 && !ppmu->limited_pmc_event(event[i])) {
155 ppmu->get_alternatives(event[i], cflags[i],
156 alternatives[i]);
157 event[i] = alternatives[i][0];
158 }
159 if (ppmu->get_constraint(event[i], &amasks[i][0],
160 &avalues[i][0]))
161 return -1;
162 }
163 value = mask = 0;
164 for (i = 0; i < n_ev; ++i) {
165 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
166 if ((((nv + tadd) ^ value) & mask) != 0 ||
167 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
168 break;
169 value = nv;
170 mask |= amasks[i][0];
171 }
172 if (i == n_ev)
173 return 0; /* all OK */
174
175 /* doesn't work, gather alternatives... */
176 if (!ppmu->get_alternatives)
177 return -1;
178 for (i = 0; i < n_ev; ++i) {
179 choice[i] = 0;
180 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
181 alternatives[i]);
182 for (j = 1; j < n_alt[i]; ++j)
183 ppmu->get_constraint(alternatives[i][j],
184 &amasks[i][j], &avalues[i][j]);
185 }
186
187 /* enumerate all possibilities and see if any will work */
188 i = 0;
189 j = -1;
190 value = mask = nv = 0;
191 while (i < n_ev) {
192 if (j >= 0) {
193 /* we're backtracking, restore context */
194 value = svalues[i];
195 mask = smasks[i];
196 j = choice[i];
197 }
198 /*
199 * See if any alternative k for event i,
200 * where k > j, will satisfy the constraints.
201 */
202 while (++j < n_alt[i]) {
203 nv = (value | avalues[i][j]) +
204 (value & avalues[i][j] & addf);
205 if ((((nv + tadd) ^ value) & mask) == 0 &&
206 (((nv + tadd) ^ avalues[i][j])
207 & amasks[i][j]) == 0)
208 break;
209 }
210 if (j >= n_alt[i]) {
211 /*
212 * No feasible alternative, backtrack
213 * to event i-1 and continue enumerating its
214 * alternatives from where we got up to.
215 */
216 if (--i < 0)
217 return -1;
218 } else {
219 /*
220 * Found a feasible alternative for event i,
221 * remember where we got up to with this event,
222 * go on to the next event, and start with
223 * the first alternative for it.
224 */
225 choice[i] = j;
226 svalues[i] = value;
227 smasks[i] = mask;
228 value = nv;
229 mask |= amasks[i][j];
230 ++i;
231 j = -1;
232 }
233 }
234
235 /* OK, we have a feasible combination, tell the caller the solution */
236 for (i = 0; i < n_ev; ++i)
237 event[i] = alternatives[i][choice[i]];
238 return 0;
239 }
240
241 /*
242 * Check if newly-added counters have consistent settings for
243 * exclude_{user,kernel,hv} with each other and any previously
244 * added counters.
245 */
246 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
247 int n_prev, int n_new)
248 {
249 int eu = 0, ek = 0, eh = 0;
250 int i, n, first;
251 struct perf_counter *counter;
252
253 n = n_prev + n_new;
254 if (n <= 1)
255 return 0;
256
257 first = 1;
258 for (i = 0; i < n; ++i) {
259 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
260 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
261 continue;
262 }
263 counter = ctrs[i];
264 if (first) {
265 eu = counter->attr.exclude_user;
266 ek = counter->attr.exclude_kernel;
267 eh = counter->attr.exclude_hv;
268 first = 0;
269 } else if (counter->attr.exclude_user != eu ||
270 counter->attr.exclude_kernel != ek ||
271 counter->attr.exclude_hv != eh) {
272 return -EAGAIN;
273 }
274 }
275
276 if (eu || ek || eh)
277 for (i = 0; i < n; ++i)
278 if (cflags[i] & PPMU_LIMITED_PMC_OK)
279 cflags[i] |= PPMU_LIMITED_PMC_REQD;
280
281 return 0;
282 }
283
284 static void power_pmu_read(struct perf_counter *counter)
285 {
286 long val, delta, prev;
287
288 if (!counter->hw.idx)
289 return;
290 /*
291 * Performance monitor interrupts come even when interrupts
292 * are soft-disabled, as long as interrupts are hard-enabled.
293 * Therefore we treat them like NMIs.
294 */
295 do {
296 prev = atomic64_read(&counter->hw.prev_count);
297 barrier();
298 val = read_pmc(counter->hw.idx);
299 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
300
301 /* The counters are only 32 bits wide */
302 delta = (val - prev) & 0xfffffffful;
303 atomic64_add(delta, &counter->count);
304 atomic64_sub(delta, &counter->hw.period_left);
305 }
306
307 /*
308 * On some machines, PMC5 and PMC6 can't be written, don't respect
309 * the freeze conditions, and don't generate interrupts. This tells
310 * us if `counter' is using such a PMC.
311 */
312 static int is_limited_pmc(int pmcnum)
313 {
314 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
315 && (pmcnum == 5 || pmcnum == 6);
316 }
317
318 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
319 unsigned long pmc5, unsigned long pmc6)
320 {
321 struct perf_counter *counter;
322 u64 val, prev, delta;
323 int i;
324
325 for (i = 0; i < cpuhw->n_limited; ++i) {
326 counter = cpuhw->limited_counter[i];
327 if (!counter->hw.idx)
328 continue;
329 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
330 prev = atomic64_read(&counter->hw.prev_count);
331 counter->hw.idx = 0;
332 delta = (val - prev) & 0xfffffffful;
333 atomic64_add(delta, &counter->count);
334 }
335 }
336
337 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
338 unsigned long pmc5, unsigned long pmc6)
339 {
340 struct perf_counter *counter;
341 u64 val;
342 int i;
343
344 for (i = 0; i < cpuhw->n_limited; ++i) {
345 counter = cpuhw->limited_counter[i];
346 counter->hw.idx = cpuhw->limited_hwidx[i];
347 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
348 atomic64_set(&counter->hw.prev_count, val);
349 perf_counter_update_userpage(counter);
350 }
351 }
352
353 /*
354 * Since limited counters don't respect the freeze conditions, we
355 * have to read them immediately after freezing or unfreezing the
356 * other counters. We try to keep the values from the limited
357 * counters as consistent as possible by keeping the delay (in
358 * cycles and instructions) between freezing/unfreezing and reading
359 * the limited counters as small and consistent as possible.
360 * Therefore, if any limited counters are in use, we read them
361 * both, and always in the same order, to minimize variability,
362 * and do it inside the same asm that writes MMCR0.
363 */
364 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
365 {
366 unsigned long pmc5, pmc6;
367
368 if (!cpuhw->n_limited) {
369 mtspr(SPRN_MMCR0, mmcr0);
370 return;
371 }
372
373 /*
374 * Write MMCR0, then read PMC5 and PMC6 immediately.
375 */
376 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
377 : "=&r" (pmc5), "=&r" (pmc6)
378 : "r" (mmcr0), "i" (SPRN_MMCR0),
379 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
380
381 if (mmcr0 & MMCR0_FC)
382 freeze_limited_counters(cpuhw, pmc5, pmc6);
383 else
384 thaw_limited_counters(cpuhw, pmc5, pmc6);
385 }
386
387 /*
388 * Disable all counters to prevent PMU interrupts and to allow
389 * counters to be added or removed.
390 */
391 void hw_perf_disable(void)
392 {
393 struct cpu_hw_counters *cpuhw;
394 unsigned long ret;
395 unsigned long flags;
396
397 local_irq_save(flags);
398 cpuhw = &__get_cpu_var(cpu_hw_counters);
399
400 ret = cpuhw->disabled;
401 if (!ret) {
402 cpuhw->disabled = 1;
403 cpuhw->n_added = 0;
404
405 /*
406 * Check if we ever enabled the PMU on this cpu.
407 */
408 if (!cpuhw->pmcs_enabled) {
409 if (ppc_md.enable_pmcs)
410 ppc_md.enable_pmcs();
411 cpuhw->pmcs_enabled = 1;
412 }
413
414 /*
415 * Disable instruction sampling if it was enabled
416 */
417 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
418 mtspr(SPRN_MMCRA,
419 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
420 mb();
421 }
422
423 /*
424 * Set the 'freeze counters' bit.
425 * The barrier is to make sure the mtspr has been
426 * executed and the PMU has frozen the counters
427 * before we return.
428 */
429 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
430 mb();
431 }
432 local_irq_restore(flags);
433 }
434
435 /*
436 * Re-enable all counters if disable == 0.
437 * If we were previously disabled and counters were added, then
438 * put the new config on the PMU.
439 */
440 void hw_perf_enable(void)
441 {
442 struct perf_counter *counter;
443 struct cpu_hw_counters *cpuhw;
444 unsigned long flags;
445 long i;
446 unsigned long val;
447 s64 left;
448 unsigned int hwc_index[MAX_HWCOUNTERS];
449 int n_lim;
450 int idx;
451
452 local_irq_save(flags);
453 cpuhw = &__get_cpu_var(cpu_hw_counters);
454 if (!cpuhw->disabled) {
455 local_irq_restore(flags);
456 return;
457 }
458 cpuhw->disabled = 0;
459
460 /*
461 * If we didn't change anything, or only removed counters,
462 * no need to recalculate MMCR* settings and reset the PMCs.
463 * Just reenable the PMU with the current MMCR* settings
464 * (possibly updated for removal of counters).
465 */
466 if (!cpuhw->n_added) {
467 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
468 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
469 if (cpuhw->n_counters == 0)
470 get_lppaca()->pmcregs_in_use = 0;
471 goto out_enable;
472 }
473
474 /*
475 * Compute MMCR* values for the new set of counters
476 */
477 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
478 cpuhw->mmcr)) {
479 /* shouldn't ever get here */
480 printk(KERN_ERR "oops compute_mmcr failed\n");
481 goto out;
482 }
483
484 /*
485 * Add in MMCR0 freeze bits corresponding to the
486 * attr.exclude_* bits for the first counter.
487 * We have already checked that all counters have the
488 * same values for these bits as the first counter.
489 */
490 counter = cpuhw->counter[0];
491 if (counter->attr.exclude_user)
492 cpuhw->mmcr[0] |= MMCR0_FCP;
493 if (counter->attr.exclude_kernel)
494 cpuhw->mmcr[0] |= freeze_counters_kernel;
495 if (counter->attr.exclude_hv)
496 cpuhw->mmcr[0] |= MMCR0_FCHV;
497
498 /*
499 * Write the new configuration to MMCR* with the freeze
500 * bit set and set the hardware counters to their initial values.
501 * Then unfreeze the counters.
502 */
503 get_lppaca()->pmcregs_in_use = 1;
504 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
505 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
506 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
507 | MMCR0_FC);
508
509 /*
510 * Read off any pre-existing counters that need to move
511 * to another PMC.
512 */
513 for (i = 0; i < cpuhw->n_counters; ++i) {
514 counter = cpuhw->counter[i];
515 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
516 power_pmu_read(counter);
517 write_pmc(counter->hw.idx, 0);
518 counter->hw.idx = 0;
519 }
520 }
521
522 /*
523 * Initialize the PMCs for all the new and moved counters.
524 */
525 cpuhw->n_limited = n_lim = 0;
526 for (i = 0; i < cpuhw->n_counters; ++i) {
527 counter = cpuhw->counter[i];
528 if (counter->hw.idx)
529 continue;
530 idx = hwc_index[i] + 1;
531 if (is_limited_pmc(idx)) {
532 cpuhw->limited_counter[n_lim] = counter;
533 cpuhw->limited_hwidx[n_lim] = idx;
534 ++n_lim;
535 continue;
536 }
537 val = 0;
538 if (counter->hw.sample_period) {
539 left = atomic64_read(&counter->hw.period_left);
540 if (left < 0x80000000L)
541 val = 0x80000000L - left;
542 }
543 atomic64_set(&counter->hw.prev_count, val);
544 counter->hw.idx = idx;
545 write_pmc(idx, val);
546 perf_counter_update_userpage(counter);
547 }
548 cpuhw->n_limited = n_lim;
549 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
550
551 out_enable:
552 mb();
553 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
554
555 /*
556 * Enable instruction sampling if necessary
557 */
558 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
559 mb();
560 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
561 }
562
563 out:
564 local_irq_restore(flags);
565 }
566
567 static int collect_events(struct perf_counter *group, int max_count,
568 struct perf_counter *ctrs[], u64 *events,
569 unsigned int *flags)
570 {
571 int n = 0;
572 struct perf_counter *counter;
573
574 if (!is_software_counter(group)) {
575 if (n >= max_count)
576 return -1;
577 ctrs[n] = group;
578 flags[n] = group->hw.counter_base;
579 events[n++] = group->hw.config;
580 }
581 list_for_each_entry(counter, &group->sibling_list, list_entry) {
582 if (!is_software_counter(counter) &&
583 counter->state != PERF_COUNTER_STATE_OFF) {
584 if (n >= max_count)
585 return -1;
586 ctrs[n] = counter;
587 flags[n] = counter->hw.counter_base;
588 events[n++] = counter->hw.config;
589 }
590 }
591 return n;
592 }
593
594 static void counter_sched_in(struct perf_counter *counter, int cpu)
595 {
596 counter->state = PERF_COUNTER_STATE_ACTIVE;
597 counter->oncpu = cpu;
598 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
599 if (is_software_counter(counter))
600 counter->pmu->enable(counter);
601 }
602
603 /*
604 * Called to enable a whole group of counters.
605 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
606 * Assumes the caller has disabled interrupts and has
607 * frozen the PMU with hw_perf_save_disable.
608 */
609 int hw_perf_group_sched_in(struct perf_counter *group_leader,
610 struct perf_cpu_context *cpuctx,
611 struct perf_counter_context *ctx, int cpu)
612 {
613 struct cpu_hw_counters *cpuhw;
614 long i, n, n0;
615 struct perf_counter *sub;
616
617 cpuhw = &__get_cpu_var(cpu_hw_counters);
618 n0 = cpuhw->n_counters;
619 n = collect_events(group_leader, ppmu->n_counter - n0,
620 &cpuhw->counter[n0], &cpuhw->events[n0],
621 &cpuhw->flags[n0]);
622 if (n < 0)
623 return -EAGAIN;
624 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
625 return -EAGAIN;
626 i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
627 if (i < 0)
628 return -EAGAIN;
629 cpuhw->n_counters = n0 + n;
630 cpuhw->n_added += n;
631
632 /*
633 * OK, this group can go on; update counter states etc.,
634 * and enable any software counters
635 */
636 for (i = n0; i < n0 + n; ++i)
637 cpuhw->counter[i]->hw.config = cpuhw->events[i];
638 cpuctx->active_oncpu += n;
639 n = 1;
640 counter_sched_in(group_leader, cpu);
641 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
642 if (sub->state != PERF_COUNTER_STATE_OFF) {
643 counter_sched_in(sub, cpu);
644 ++n;
645 }
646 }
647 ctx->nr_active += n;
648
649 return 1;
650 }
651
652 /*
653 * Add a counter to the PMU.
654 * If all counters are not already frozen, then we disable and
655 * re-enable the PMU in order to get hw_perf_enable to do the
656 * actual work of reconfiguring the PMU.
657 */
658 static int power_pmu_enable(struct perf_counter *counter)
659 {
660 struct cpu_hw_counters *cpuhw;
661 unsigned long flags;
662 int n0;
663 int ret = -EAGAIN;
664
665 local_irq_save(flags);
666 perf_disable();
667
668 /*
669 * Add the counter to the list (if there is room)
670 * and check whether the total set is still feasible.
671 */
672 cpuhw = &__get_cpu_var(cpu_hw_counters);
673 n0 = cpuhw->n_counters;
674 if (n0 >= ppmu->n_counter)
675 goto out;
676 cpuhw->counter[n0] = counter;
677 cpuhw->events[n0] = counter->hw.config;
678 cpuhw->flags[n0] = counter->hw.counter_base;
679 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
680 goto out;
681 if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
682 goto out;
683
684 counter->hw.config = cpuhw->events[n0];
685 ++cpuhw->n_counters;
686 ++cpuhw->n_added;
687
688 ret = 0;
689 out:
690 perf_enable();
691 local_irq_restore(flags);
692 return ret;
693 }
694
695 /*
696 * Remove a counter from the PMU.
697 */
698 static void power_pmu_disable(struct perf_counter *counter)
699 {
700 struct cpu_hw_counters *cpuhw;
701 long i;
702 unsigned long flags;
703
704 local_irq_save(flags);
705 perf_disable();
706
707 power_pmu_read(counter);
708
709 cpuhw = &__get_cpu_var(cpu_hw_counters);
710 for (i = 0; i < cpuhw->n_counters; ++i) {
711 if (counter == cpuhw->counter[i]) {
712 while (++i < cpuhw->n_counters)
713 cpuhw->counter[i-1] = cpuhw->counter[i];
714 --cpuhw->n_counters;
715 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
716 if (counter->hw.idx) {
717 write_pmc(counter->hw.idx, 0);
718 counter->hw.idx = 0;
719 }
720 perf_counter_update_userpage(counter);
721 break;
722 }
723 }
724 for (i = 0; i < cpuhw->n_limited; ++i)
725 if (counter == cpuhw->limited_counter[i])
726 break;
727 if (i < cpuhw->n_limited) {
728 while (++i < cpuhw->n_limited) {
729 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
730 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
731 }
732 --cpuhw->n_limited;
733 }
734 if (cpuhw->n_counters == 0) {
735 /* disable exceptions if no counters are running */
736 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
737 }
738
739 perf_enable();
740 local_irq_restore(flags);
741 }
742
743 /*
744 * Re-enable interrupts on a counter after they were throttled
745 * because they were coming too fast.
746 */
747 static void power_pmu_unthrottle(struct perf_counter *counter)
748 {
749 s64 val, left;
750 unsigned long flags;
751
752 if (!counter->hw.idx || !counter->hw.sample_period)
753 return;
754 local_irq_save(flags);
755 perf_disable();
756 power_pmu_read(counter);
757 left = counter->hw.sample_period;
758 val = 0;
759 if (left < 0x80000000L)
760 val = 0x80000000L - left;
761 write_pmc(counter->hw.idx, val);
762 atomic64_set(&counter->hw.prev_count, val);
763 atomic64_set(&counter->hw.period_left, left);
764 perf_counter_update_userpage(counter);
765 perf_enable();
766 local_irq_restore(flags);
767 }
768
769 struct pmu power_pmu = {
770 .enable = power_pmu_enable,
771 .disable = power_pmu_disable,
772 .read = power_pmu_read,
773 .unthrottle = power_pmu_unthrottle,
774 };
775
776 /*
777 * Return 1 if we might be able to put counter on a limited PMC,
778 * or 0 if not.
779 * A counter can only go on a limited PMC if it counts something
780 * that a limited PMC can count, doesn't require interrupts, and
781 * doesn't exclude any processor mode.
782 */
783 static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
784 unsigned int flags)
785 {
786 int n;
787 u64 alt[MAX_EVENT_ALTERNATIVES];
788
789 if (counter->attr.exclude_user
790 || counter->attr.exclude_kernel
791 || counter->attr.exclude_hv
792 || counter->attr.sample_period)
793 return 0;
794
795 if (ppmu->limited_pmc_event(ev))
796 return 1;
797
798 /*
799 * The requested event isn't on a limited PMC already;
800 * see if any alternative code goes on a limited PMC.
801 */
802 if (!ppmu->get_alternatives)
803 return 0;
804
805 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
806 n = ppmu->get_alternatives(ev, flags, alt);
807
808 return n > 0;
809 }
810
811 /*
812 * Find an alternative event that goes on a normal PMC, if possible,
813 * and return the event code, or 0 if there is no such alternative.
814 * (Note: event code 0 is "don't count" on all machines.)
815 */
816 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
817 {
818 u64 alt[MAX_EVENT_ALTERNATIVES];
819 int n;
820
821 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
822 n = ppmu->get_alternatives(ev, flags, alt);
823 if (!n)
824 return 0;
825 return alt[0];
826 }
827
828 /* Number of perf_counters counting hardware events */
829 static atomic_t num_counters;
830 /* Used to avoid races in calling reserve/release_pmc_hardware */
831 static DEFINE_MUTEX(pmc_reserve_mutex);
832
833 /*
834 * Release the PMU if this is the last perf_counter.
835 */
836 static void hw_perf_counter_destroy(struct perf_counter *counter)
837 {
838 if (!atomic_add_unless(&num_counters, -1, 1)) {
839 mutex_lock(&pmc_reserve_mutex);
840 if (atomic_dec_return(&num_counters) == 0)
841 release_pmc_hardware();
842 mutex_unlock(&pmc_reserve_mutex);
843 }
844 }
845
846 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
847 {
848 u64 ev;
849 unsigned long flags;
850 struct perf_counter *ctrs[MAX_HWCOUNTERS];
851 u64 events[MAX_HWCOUNTERS];
852 unsigned int cflags[MAX_HWCOUNTERS];
853 int n;
854 int err;
855
856 if (!ppmu)
857 return ERR_PTR(-ENXIO);
858 if (!perf_event_raw(&counter->attr)) {
859 ev = perf_event_id(&counter->attr);
860 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
861 return ERR_PTR(-EOPNOTSUPP);
862 ev = ppmu->generic_events[ev];
863 } else {
864 ev = perf_event_config(&counter->attr);
865 }
866 counter->hw.config_base = ev;
867 counter->hw.idx = 0;
868
869 /*
870 * If we are not running on a hypervisor, force the
871 * exclude_hv bit to 0 so that we don't care what
872 * the user set it to.
873 */
874 if (!firmware_has_feature(FW_FEATURE_LPAR))
875 counter->attr.exclude_hv = 0;
876
877 /*
878 * If this is a per-task counter, then we can use
879 * PM_RUN_* events interchangeably with their non RUN_*
880 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
881 * XXX we should check if the task is an idle task.
882 */
883 flags = 0;
884 if (counter->ctx->task)
885 flags |= PPMU_ONLY_COUNT_RUN;
886
887 /*
888 * If this machine has limited counters, check whether this
889 * event could go on a limited counter.
890 */
891 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
892 if (can_go_on_limited_pmc(counter, ev, flags)) {
893 flags |= PPMU_LIMITED_PMC_OK;
894 } else if (ppmu->limited_pmc_event(ev)) {
895 /*
896 * The requested event is on a limited PMC,
897 * but we can't use a limited PMC; see if any
898 * alternative goes on a normal PMC.
899 */
900 ev = normal_pmc_alternative(ev, flags);
901 if (!ev)
902 return ERR_PTR(-EINVAL);
903 }
904 }
905
906 /*
907 * If this is in a group, check if it can go on with all the
908 * other hardware counters in the group. We assume the counter
909 * hasn't been linked into its leader's sibling list at this point.
910 */
911 n = 0;
912 if (counter->group_leader != counter) {
913 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
914 ctrs, events, cflags);
915 if (n < 0)
916 return ERR_PTR(-EINVAL);
917 }
918 events[n] = ev;
919 ctrs[n] = counter;
920 cflags[n] = flags;
921 if (check_excludes(ctrs, cflags, n, 1))
922 return ERR_PTR(-EINVAL);
923 if (power_check_constraints(events, cflags, n + 1))
924 return ERR_PTR(-EINVAL);
925
926 counter->hw.config = events[n];
927 counter->hw.counter_base = cflags[n];
928 atomic64_set(&counter->hw.period_left, counter->hw.sample_period);
929
930 /*
931 * See if we need to reserve the PMU.
932 * If no counters are currently in use, then we have to take a
933 * mutex to ensure that we don't race with another task doing
934 * reserve_pmc_hardware or release_pmc_hardware.
935 */
936 err = 0;
937 if (!atomic_inc_not_zero(&num_counters)) {
938 mutex_lock(&pmc_reserve_mutex);
939 if (atomic_read(&num_counters) == 0 &&
940 reserve_pmc_hardware(perf_counter_interrupt))
941 err = -EBUSY;
942 else
943 atomic_inc(&num_counters);
944 mutex_unlock(&pmc_reserve_mutex);
945 }
946 counter->destroy = hw_perf_counter_destroy;
947
948 if (err)
949 return ERR_PTR(err);
950 return &power_pmu;
951 }
952
953 /*
954 * A counter has overflowed; update its count and record
955 * things if requested. Note that interrupts are hard-disabled
956 * here so there is no possibility of being interrupted.
957 */
958 static void record_and_restart(struct perf_counter *counter, long val,
959 struct pt_regs *regs, int nmi)
960 {
961 u64 period = counter->hw.sample_period;
962 s64 prev, delta, left;
963 int record = 0;
964 u64 addr, mmcra, sdsync;
965
966 /* we don't have to worry about interrupts here */
967 prev = atomic64_read(&counter->hw.prev_count);
968 delta = (val - prev) & 0xfffffffful;
969 atomic64_add(delta, &counter->count);
970
971 /*
972 * See if the total period for this counter has expired,
973 * and update for the next period.
974 */
975 val = 0;
976 left = atomic64_read(&counter->hw.period_left) - delta;
977 if (period) {
978 if (left <= 0) {
979 left += period;
980 if (left <= 0)
981 left = period;
982 record = 1;
983 }
984 if (left < 0x80000000L)
985 val = 0x80000000L - left;
986 }
987
988 /*
989 * Finally record data if requested.
990 */
991 if (record) {
992 addr = 0;
993 if (counter->attr.record_type & PERF_RECORD_ADDR) {
994 /*
995 * The user wants a data address recorded.
996 * If we're not doing instruction sampling,
997 * give them the SDAR (sampled data address).
998 * If we are doing instruction sampling, then only
999 * give them the SDAR if it corresponds to the
1000 * instruction pointed to by SIAR; this is indicated
1001 * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA.
1002 */
1003 mmcra = regs->dsisr;
1004 sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
1005 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
1006 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
1007 addr = mfspr(SPRN_SDAR);
1008 }
1009 if (perf_counter_overflow(counter, nmi, regs, addr)) {
1010 /*
1011 * Interrupts are coming too fast - throttle them
1012 * by setting the counter to 0, so it will be
1013 * at least 2^30 cycles until the next interrupt
1014 * (assuming each counter counts at most 2 counts
1015 * per cycle).
1016 */
1017 val = 0;
1018 left = ~0ULL >> 1;
1019 }
1020 }
1021
1022 write_pmc(counter->hw.idx, val);
1023 atomic64_set(&counter->hw.prev_count, val);
1024 atomic64_set(&counter->hw.period_left, left);
1025 perf_counter_update_userpage(counter);
1026 }
1027
1028 /*
1029 * Called from generic code to get the misc flags (i.e. processor mode)
1030 * for an event.
1031 */
1032 unsigned long perf_misc_flags(struct pt_regs *regs)
1033 {
1034 unsigned long mmcra;
1035
1036 if (TRAP(regs) != 0xf00) {
1037 /* not a PMU interrupt */
1038 return user_mode(regs) ? PERF_EVENT_MISC_USER :
1039 PERF_EVENT_MISC_KERNEL;
1040 }
1041
1042 mmcra = regs->dsisr;
1043 if (ppmu->flags & PPMU_ALT_SIPR) {
1044 if (mmcra & POWER6_MMCRA_SIHV)
1045 return PERF_EVENT_MISC_HYPERVISOR;
1046 return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1047 PERF_EVENT_MISC_KERNEL;
1048 }
1049 if (mmcra & MMCRA_SIHV)
1050 return PERF_EVENT_MISC_HYPERVISOR;
1051 return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1052 PERF_EVENT_MISC_KERNEL;
1053 }
1054
1055 /*
1056 * Called from generic code to get the instruction pointer
1057 * for an event.
1058 */
1059 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1060 {
1061 unsigned long mmcra;
1062 unsigned long ip;
1063 unsigned long slot;
1064
1065 if (TRAP(regs) != 0xf00)
1066 return regs->nip; /* not a PMU interrupt */
1067
1068 ip = mfspr(SPRN_SIAR);
1069 mmcra = regs->dsisr;
1070 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
1071 slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
1072 if (slot > 1)
1073 ip += 4 * (slot - 1);
1074 }
1075 return ip;
1076 }
1077
1078 /*
1079 * Performance monitor interrupt stuff
1080 */
1081 static void perf_counter_interrupt(struct pt_regs *regs)
1082 {
1083 int i;
1084 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1085 struct perf_counter *counter;
1086 long val;
1087 int found = 0;
1088 int nmi;
1089
1090 if (cpuhw->n_limited)
1091 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1092 mfspr(SPRN_PMC6));
1093
1094 /*
1095 * Overload regs->dsisr to store MMCRA so we only need to read it once.
1096 */
1097 regs->dsisr = mfspr(SPRN_MMCRA);
1098
1099 /*
1100 * If interrupts were soft-disabled when this PMU interrupt
1101 * occurred, treat it as an NMI.
1102 */
1103 nmi = !regs->softe;
1104 if (nmi)
1105 nmi_enter();
1106 else
1107 irq_enter();
1108
1109 for (i = 0; i < cpuhw->n_counters; ++i) {
1110 counter = cpuhw->counter[i];
1111 if (is_limited_pmc(counter->hw.idx))
1112 continue;
1113 val = read_pmc(counter->hw.idx);
1114 if ((int)val < 0) {
1115 /* counter has overflowed */
1116 found = 1;
1117 record_and_restart(counter, val, regs, nmi);
1118 }
1119 }
1120
1121 /*
1122 * In case we didn't find and reset the counter that caused
1123 * the interrupt, scan all counters and reset any that are
1124 * negative, to avoid getting continual interrupts.
1125 * Any that we processed in the previous loop will not be negative.
1126 */
1127 if (!found) {
1128 for (i = 0; i < ppmu->n_counter; ++i) {
1129 if (is_limited_pmc(i + 1))
1130 continue;
1131 val = read_pmc(i + 1);
1132 if ((int)val < 0)
1133 write_pmc(i + 1, 0);
1134 }
1135 }
1136
1137 /*
1138 * Reset MMCR0 to its normal value. This will set PMXE and
1139 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1140 * and thus allow interrupts to occur again.
1141 * XXX might want to use MSR.PM to keep the counters frozen until
1142 * we get back out of this interrupt.
1143 */
1144 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1145
1146 if (nmi)
1147 nmi_exit();
1148 else
1149 irq_exit();
1150 }
1151
1152 void hw_perf_counter_setup(int cpu)
1153 {
1154 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1155
1156 memset(cpuhw, 0, sizeof(*cpuhw));
1157 cpuhw->mmcr[0] = MMCR0_FC;
1158 }
1159
1160 extern struct power_pmu power4_pmu;
1161 extern struct power_pmu ppc970_pmu;
1162 extern struct power_pmu power5_pmu;
1163 extern struct power_pmu power5p_pmu;
1164 extern struct power_pmu power6_pmu;
1165
1166 static int init_perf_counters(void)
1167 {
1168 unsigned long pvr;
1169
1170 /* XXX should get this from cputable */
1171 pvr = mfspr(SPRN_PVR);
1172 switch (PVR_VER(pvr)) {
1173 case PV_POWER4:
1174 case PV_POWER4p:
1175 ppmu = &power4_pmu;
1176 break;
1177 case PV_970:
1178 case PV_970FX:
1179 case PV_970MP:
1180 ppmu = &ppc970_pmu;
1181 break;
1182 case PV_POWER5:
1183 ppmu = &power5_pmu;
1184 break;
1185 case PV_POWER5p:
1186 ppmu = &power5p_pmu;
1187 break;
1188 case 0x3e:
1189 ppmu = &power6_pmu;
1190 break;
1191 }
1192
1193 /*
1194 * Use FCHV to ignore kernel events if MSR.HV is set.
1195 */
1196 if (mfmsr() & MSR_HV)
1197 freeze_counters_kernel = MMCR0_FCHV;
1198
1199 return 0;
1200 }
1201
1202 arch_initcall(init_perf_counters);
This page took 0.057119 seconds and 5 git commands to generate.