perf_counter: frequency based adaptive irq_period, 32-bit fix
[deliverable/linux.git] / arch / powerpc / kernel / perf_counter.c
1 /*
2 * Performance counter support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20
21 struct cpu_hw_counters {
22 int n_counters;
23 int n_percpu;
24 int disabled;
25 int n_added;
26 int n_limited;
27 u8 pmcs_enabled;
28 struct perf_counter *counter[MAX_HWCOUNTERS];
29 unsigned int events[MAX_HWCOUNTERS];
30 unsigned int flags[MAX_HWCOUNTERS];
31 u64 mmcr[3];
32 struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
33 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
34 };
35 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
36
37 struct power_pmu *ppmu;
38
39 /*
40 * Normally, to ignore kernel events we set the FCS (freeze counters
41 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
42 * hypervisor bit set in the MSR, or if we are running on a processor
43 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
44 * then we need to use the FCHV bit to ignore kernel events.
45 */
46 static unsigned int freeze_counters_kernel = MMCR0_FCS;
47
48 static void perf_counter_interrupt(struct pt_regs *regs);
49
50 void perf_counter_print_debug(void)
51 {
52 }
53
54 /*
55 * Read one performance monitor counter (PMC).
56 */
57 static unsigned long read_pmc(int idx)
58 {
59 unsigned long val;
60
61 switch (idx) {
62 case 1:
63 val = mfspr(SPRN_PMC1);
64 break;
65 case 2:
66 val = mfspr(SPRN_PMC2);
67 break;
68 case 3:
69 val = mfspr(SPRN_PMC3);
70 break;
71 case 4:
72 val = mfspr(SPRN_PMC4);
73 break;
74 case 5:
75 val = mfspr(SPRN_PMC5);
76 break;
77 case 6:
78 val = mfspr(SPRN_PMC6);
79 break;
80 case 7:
81 val = mfspr(SPRN_PMC7);
82 break;
83 case 8:
84 val = mfspr(SPRN_PMC8);
85 break;
86 default:
87 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
88 val = 0;
89 }
90 return val;
91 }
92
93 /*
94 * Write one PMC.
95 */
96 static void write_pmc(int idx, unsigned long val)
97 {
98 switch (idx) {
99 case 1:
100 mtspr(SPRN_PMC1, val);
101 break;
102 case 2:
103 mtspr(SPRN_PMC2, val);
104 break;
105 case 3:
106 mtspr(SPRN_PMC3, val);
107 break;
108 case 4:
109 mtspr(SPRN_PMC4, val);
110 break;
111 case 5:
112 mtspr(SPRN_PMC5, val);
113 break;
114 case 6:
115 mtspr(SPRN_PMC6, val);
116 break;
117 case 7:
118 mtspr(SPRN_PMC7, val);
119 break;
120 case 8:
121 mtspr(SPRN_PMC8, val);
122 break;
123 default:
124 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
125 }
126 }
127
128 /*
129 * Check if a set of events can all go on the PMU at once.
130 * If they can't, this will look at alternative codes for the events
131 * and see if any combination of alternative codes is feasible.
132 * The feasible set is returned in event[].
133 */
134 static int power_check_constraints(unsigned int event[], unsigned int cflags[],
135 int n_ev)
136 {
137 u64 mask, value, nv;
138 unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
139 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
142 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
143 int i, j;
144 u64 addf = ppmu->add_fields;
145 u64 tadd = ppmu->test_adder;
146
147 if (n_ev > ppmu->n_counter)
148 return -1;
149
150 /* First see if the events will go on as-is */
151 for (i = 0; i < n_ev; ++i) {
152 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
153 && !ppmu->limited_pmc_event(event[i])) {
154 ppmu->get_alternatives(event[i], cflags[i],
155 alternatives[i]);
156 event[i] = alternatives[i][0];
157 }
158 if (ppmu->get_constraint(event[i], &amasks[i][0],
159 &avalues[i][0]))
160 return -1;
161 }
162 value = mask = 0;
163 for (i = 0; i < n_ev; ++i) {
164 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
165 if ((((nv + tadd) ^ value) & mask) != 0 ||
166 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
167 break;
168 value = nv;
169 mask |= amasks[i][0];
170 }
171 if (i == n_ev)
172 return 0; /* all OK */
173
174 /* doesn't work, gather alternatives... */
175 if (!ppmu->get_alternatives)
176 return -1;
177 for (i = 0; i < n_ev; ++i) {
178 choice[i] = 0;
179 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
180 alternatives[i]);
181 for (j = 1; j < n_alt[i]; ++j)
182 ppmu->get_constraint(alternatives[i][j],
183 &amasks[i][j], &avalues[i][j]);
184 }
185
186 /* enumerate all possibilities and see if any will work */
187 i = 0;
188 j = -1;
189 value = mask = nv = 0;
190 while (i < n_ev) {
191 if (j >= 0) {
192 /* we're backtracking, restore context */
193 value = svalues[i];
194 mask = smasks[i];
195 j = choice[i];
196 }
197 /*
198 * See if any alternative k for event i,
199 * where k > j, will satisfy the constraints.
200 */
201 while (++j < n_alt[i]) {
202 nv = (value | avalues[i][j]) +
203 (value & avalues[i][j] & addf);
204 if ((((nv + tadd) ^ value) & mask) == 0 &&
205 (((nv + tadd) ^ avalues[i][j])
206 & amasks[i][j]) == 0)
207 break;
208 }
209 if (j >= n_alt[i]) {
210 /*
211 * No feasible alternative, backtrack
212 * to event i-1 and continue enumerating its
213 * alternatives from where we got up to.
214 */
215 if (--i < 0)
216 return -1;
217 } else {
218 /*
219 * Found a feasible alternative for event i,
220 * remember where we got up to with this event,
221 * go on to the next event, and start with
222 * the first alternative for it.
223 */
224 choice[i] = j;
225 svalues[i] = value;
226 smasks[i] = mask;
227 value = nv;
228 mask |= amasks[i][j];
229 ++i;
230 j = -1;
231 }
232 }
233
234 /* OK, we have a feasible combination, tell the caller the solution */
235 for (i = 0; i < n_ev; ++i)
236 event[i] = alternatives[i][choice[i]];
237 return 0;
238 }
239
240 /*
241 * Check if newly-added counters have consistent settings for
242 * exclude_{user,kernel,hv} with each other and any previously
243 * added counters.
244 */
245 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
246 int n_prev, int n_new)
247 {
248 int eu = 0, ek = 0, eh = 0;
249 int i, n, first;
250 struct perf_counter *counter;
251
252 n = n_prev + n_new;
253 if (n <= 1)
254 return 0;
255
256 first = 1;
257 for (i = 0; i < n; ++i) {
258 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
259 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
260 continue;
261 }
262 counter = ctrs[i];
263 if (first) {
264 eu = counter->hw_event.exclude_user;
265 ek = counter->hw_event.exclude_kernel;
266 eh = counter->hw_event.exclude_hv;
267 first = 0;
268 } else if (counter->hw_event.exclude_user != eu ||
269 counter->hw_event.exclude_kernel != ek ||
270 counter->hw_event.exclude_hv != eh) {
271 return -EAGAIN;
272 }
273 }
274
275 if (eu || ek || eh)
276 for (i = 0; i < n; ++i)
277 if (cflags[i] & PPMU_LIMITED_PMC_OK)
278 cflags[i] |= PPMU_LIMITED_PMC_REQD;
279
280 return 0;
281 }
282
283 static void power_pmu_read(struct perf_counter *counter)
284 {
285 long val, delta, prev;
286
287 if (!counter->hw.idx)
288 return;
289 /*
290 * Performance monitor interrupts come even when interrupts
291 * are soft-disabled, as long as interrupts are hard-enabled.
292 * Therefore we treat them like NMIs.
293 */
294 do {
295 prev = atomic64_read(&counter->hw.prev_count);
296 barrier();
297 val = read_pmc(counter->hw.idx);
298 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
299
300 /* The counters are only 32 bits wide */
301 delta = (val - prev) & 0xfffffffful;
302 atomic64_add(delta, &counter->count);
303 atomic64_sub(delta, &counter->hw.period_left);
304 }
305
306 /*
307 * On some machines, PMC5 and PMC6 can't be written, don't respect
308 * the freeze conditions, and don't generate interrupts. This tells
309 * us if `counter' is using such a PMC.
310 */
311 static int is_limited_pmc(int pmcnum)
312 {
313 return ppmu->limited_pmc5_6 && (pmcnum == 5 || pmcnum == 6);
314 }
315
316 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
317 unsigned long pmc5, unsigned long pmc6)
318 {
319 struct perf_counter *counter;
320 u64 val, prev, delta;
321 int i;
322
323 for (i = 0; i < cpuhw->n_limited; ++i) {
324 counter = cpuhw->limited_counter[i];
325 if (!counter->hw.idx)
326 continue;
327 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
328 prev = atomic64_read(&counter->hw.prev_count);
329 counter->hw.idx = 0;
330 delta = (val - prev) & 0xfffffffful;
331 atomic64_add(delta, &counter->count);
332 }
333 }
334
335 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
336 unsigned long pmc5, unsigned long pmc6)
337 {
338 struct perf_counter *counter;
339 u64 val;
340 int i;
341
342 for (i = 0; i < cpuhw->n_limited; ++i) {
343 counter = cpuhw->limited_counter[i];
344 counter->hw.idx = cpuhw->limited_hwidx[i];
345 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
346 atomic64_set(&counter->hw.prev_count, val);
347 perf_counter_update_userpage(counter);
348 }
349 }
350
351 /*
352 * Since limited counters don't respect the freeze conditions, we
353 * have to read them immediately after freezing or unfreezing the
354 * other counters. We try to keep the values from the limited
355 * counters as consistent as possible by keeping the delay (in
356 * cycles and instructions) between freezing/unfreezing and reading
357 * the limited counters as small and consistent as possible.
358 * Therefore, if any limited counters are in use, we read them
359 * both, and always in the same order, to minimize variability,
360 * and do it inside the same asm that writes MMCR0.
361 */
362 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
363 {
364 unsigned long pmc5, pmc6;
365
366 if (!cpuhw->n_limited) {
367 mtspr(SPRN_MMCR0, mmcr0);
368 return;
369 }
370
371 /*
372 * Write MMCR0, then read PMC5 and PMC6 immediately.
373 */
374 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
375 : "=&r" (pmc5), "=&r" (pmc6)
376 : "r" (mmcr0), "i" (SPRN_MMCR0),
377 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
378
379 if (mmcr0 & MMCR0_FC)
380 freeze_limited_counters(cpuhw, pmc5, pmc6);
381 else
382 thaw_limited_counters(cpuhw, pmc5, pmc6);
383 }
384
385 /*
386 * Disable all counters to prevent PMU interrupts and to allow
387 * counters to be added or removed.
388 */
389 void hw_perf_disable(void)
390 {
391 struct cpu_hw_counters *cpuhw;
392 unsigned long ret;
393 unsigned long flags;
394
395 local_irq_save(flags);
396 cpuhw = &__get_cpu_var(cpu_hw_counters);
397
398 ret = cpuhw->disabled;
399 if (!ret) {
400 cpuhw->disabled = 1;
401 cpuhw->n_added = 0;
402
403 /*
404 * Check if we ever enabled the PMU on this cpu.
405 */
406 if (!cpuhw->pmcs_enabled) {
407 if (ppc_md.enable_pmcs)
408 ppc_md.enable_pmcs();
409 cpuhw->pmcs_enabled = 1;
410 }
411
412 /*
413 * Disable instruction sampling if it was enabled
414 */
415 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
416 mtspr(SPRN_MMCRA,
417 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
418 mb();
419 }
420
421 /*
422 * Set the 'freeze counters' bit.
423 * The barrier is to make sure the mtspr has been
424 * executed and the PMU has frozen the counters
425 * before we return.
426 */
427 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
428 mb();
429 }
430 local_irq_restore(flags);
431 }
432
433 /*
434 * Re-enable all counters if disable == 0.
435 * If we were previously disabled and counters were added, then
436 * put the new config on the PMU.
437 */
438 void hw_perf_enable(void)
439 {
440 struct perf_counter *counter;
441 struct cpu_hw_counters *cpuhw;
442 unsigned long flags;
443 long i;
444 unsigned long val;
445 s64 left;
446 unsigned int hwc_index[MAX_HWCOUNTERS];
447 int n_lim;
448 int idx;
449
450 local_irq_save(flags);
451 if (!cpuhw->disabled) {
452 local_irq_restore(flags);
453 return;
454 }
455
456 cpuhw = &__get_cpu_var(cpu_hw_counters);
457 cpuhw->disabled = 0;
458
459 /*
460 * If we didn't change anything, or only removed counters,
461 * no need to recalculate MMCR* settings and reset the PMCs.
462 * Just reenable the PMU with the current MMCR* settings
463 * (possibly updated for removal of counters).
464 */
465 if (!cpuhw->n_added) {
466 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
467 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
468 if (cpuhw->n_counters == 0)
469 get_lppaca()->pmcregs_in_use = 0;
470 goto out_enable;
471 }
472
473 /*
474 * Compute MMCR* values for the new set of counters
475 */
476 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
477 cpuhw->mmcr)) {
478 /* shouldn't ever get here */
479 printk(KERN_ERR "oops compute_mmcr failed\n");
480 goto out;
481 }
482
483 /*
484 * Add in MMCR0 freeze bits corresponding to the
485 * hw_event.exclude_* bits for the first counter.
486 * We have already checked that all counters have the
487 * same values for these bits as the first counter.
488 */
489 counter = cpuhw->counter[0];
490 if (counter->hw_event.exclude_user)
491 cpuhw->mmcr[0] |= MMCR0_FCP;
492 if (counter->hw_event.exclude_kernel)
493 cpuhw->mmcr[0] |= freeze_counters_kernel;
494 if (counter->hw_event.exclude_hv)
495 cpuhw->mmcr[0] |= MMCR0_FCHV;
496
497 /*
498 * Write the new configuration to MMCR* with the freeze
499 * bit set and set the hardware counters to their initial values.
500 * Then unfreeze the counters.
501 */
502 get_lppaca()->pmcregs_in_use = 1;
503 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
504 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
505 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
506 | MMCR0_FC);
507
508 /*
509 * Read off any pre-existing counters that need to move
510 * to another PMC.
511 */
512 for (i = 0; i < cpuhw->n_counters; ++i) {
513 counter = cpuhw->counter[i];
514 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
515 power_pmu_read(counter);
516 write_pmc(counter->hw.idx, 0);
517 counter->hw.idx = 0;
518 }
519 }
520
521 /*
522 * Initialize the PMCs for all the new and moved counters.
523 */
524 cpuhw->n_limited = n_lim = 0;
525 for (i = 0; i < cpuhw->n_counters; ++i) {
526 counter = cpuhw->counter[i];
527 if (counter->hw.idx)
528 continue;
529 idx = hwc_index[i] + 1;
530 if (is_limited_pmc(idx)) {
531 cpuhw->limited_counter[n_lim] = counter;
532 cpuhw->limited_hwidx[n_lim] = idx;
533 ++n_lim;
534 continue;
535 }
536 val = 0;
537 if (counter->hw.irq_period) {
538 left = atomic64_read(&counter->hw.period_left);
539 if (left < 0x80000000L)
540 val = 0x80000000L - left;
541 }
542 atomic64_set(&counter->hw.prev_count, val);
543 counter->hw.idx = idx;
544 write_pmc(idx, val);
545 perf_counter_update_userpage(counter);
546 }
547 cpuhw->n_limited = n_lim;
548 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
549
550 out_enable:
551 mb();
552 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
553
554 /*
555 * Enable instruction sampling if necessary
556 */
557 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
558 mb();
559 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
560 }
561
562 out:
563 local_irq_restore(flags);
564 }
565
566 static int collect_events(struct perf_counter *group, int max_count,
567 struct perf_counter *ctrs[], unsigned int *events,
568 unsigned int *flags)
569 {
570 int n = 0;
571 struct perf_counter *counter;
572
573 if (!is_software_counter(group)) {
574 if (n >= max_count)
575 return -1;
576 ctrs[n] = group;
577 flags[n] = group->hw.counter_base;
578 events[n++] = group->hw.config;
579 }
580 list_for_each_entry(counter, &group->sibling_list, list_entry) {
581 if (!is_software_counter(counter) &&
582 counter->state != PERF_COUNTER_STATE_OFF) {
583 if (n >= max_count)
584 return -1;
585 ctrs[n] = counter;
586 flags[n] = counter->hw.counter_base;
587 events[n++] = counter->hw.config;
588 }
589 }
590 return n;
591 }
592
593 static void counter_sched_in(struct perf_counter *counter, int cpu)
594 {
595 counter->state = PERF_COUNTER_STATE_ACTIVE;
596 counter->oncpu = cpu;
597 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
598 if (is_software_counter(counter))
599 counter->pmu->enable(counter);
600 }
601
602 /*
603 * Called to enable a whole group of counters.
604 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
605 * Assumes the caller has disabled interrupts and has
606 * frozen the PMU with hw_perf_save_disable.
607 */
608 int hw_perf_group_sched_in(struct perf_counter *group_leader,
609 struct perf_cpu_context *cpuctx,
610 struct perf_counter_context *ctx, int cpu)
611 {
612 struct cpu_hw_counters *cpuhw;
613 long i, n, n0;
614 struct perf_counter *sub;
615
616 cpuhw = &__get_cpu_var(cpu_hw_counters);
617 n0 = cpuhw->n_counters;
618 n = collect_events(group_leader, ppmu->n_counter - n0,
619 &cpuhw->counter[n0], &cpuhw->events[n0],
620 &cpuhw->flags[n0]);
621 if (n < 0)
622 return -EAGAIN;
623 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
624 return -EAGAIN;
625 i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
626 if (i < 0)
627 return -EAGAIN;
628 cpuhw->n_counters = n0 + n;
629 cpuhw->n_added += n;
630
631 /*
632 * OK, this group can go on; update counter states etc.,
633 * and enable any software counters
634 */
635 for (i = n0; i < n0 + n; ++i)
636 cpuhw->counter[i]->hw.config = cpuhw->events[i];
637 cpuctx->active_oncpu += n;
638 n = 1;
639 counter_sched_in(group_leader, cpu);
640 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
641 if (sub->state != PERF_COUNTER_STATE_OFF) {
642 counter_sched_in(sub, cpu);
643 ++n;
644 }
645 }
646 ctx->nr_active += n;
647
648 return 1;
649 }
650
651 /*
652 * Add a counter to the PMU.
653 * If all counters are not already frozen, then we disable and
654 * re-enable the PMU in order to get hw_perf_enable to do the
655 * actual work of reconfiguring the PMU.
656 */
657 static int power_pmu_enable(struct perf_counter *counter)
658 {
659 struct cpu_hw_counters *cpuhw;
660 unsigned long flags;
661 int n0;
662 int ret = -EAGAIN;
663
664 local_irq_save(flags);
665 perf_disable();
666
667 /*
668 * Add the counter to the list (if there is room)
669 * and check whether the total set is still feasible.
670 */
671 cpuhw = &__get_cpu_var(cpu_hw_counters);
672 n0 = cpuhw->n_counters;
673 if (n0 >= ppmu->n_counter)
674 goto out;
675 cpuhw->counter[n0] = counter;
676 cpuhw->events[n0] = counter->hw.config;
677 cpuhw->flags[n0] = counter->hw.counter_base;
678 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
679 goto out;
680 if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
681 goto out;
682
683 counter->hw.config = cpuhw->events[n0];
684 ++cpuhw->n_counters;
685 ++cpuhw->n_added;
686
687 ret = 0;
688 out:
689 perf_enable();
690 local_irq_restore(flags);
691 return ret;
692 }
693
694 /*
695 * Remove a counter from the PMU.
696 */
697 static void power_pmu_disable(struct perf_counter *counter)
698 {
699 struct cpu_hw_counters *cpuhw;
700 long i;
701 unsigned long flags;
702
703 local_irq_save(flags);
704 perf_disable();
705
706 power_pmu_read(counter);
707
708 cpuhw = &__get_cpu_var(cpu_hw_counters);
709 for (i = 0; i < cpuhw->n_counters; ++i) {
710 if (counter == cpuhw->counter[i]) {
711 while (++i < cpuhw->n_counters)
712 cpuhw->counter[i-1] = cpuhw->counter[i];
713 --cpuhw->n_counters;
714 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
715 if (counter->hw.idx) {
716 write_pmc(counter->hw.idx, 0);
717 counter->hw.idx = 0;
718 }
719 perf_counter_update_userpage(counter);
720 break;
721 }
722 }
723 for (i = 0; i < cpuhw->n_limited; ++i)
724 if (counter == cpuhw->limited_counter[i])
725 break;
726 if (i < cpuhw->n_limited) {
727 while (++i < cpuhw->n_limited) {
728 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
729 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
730 }
731 --cpuhw->n_limited;
732 }
733 if (cpuhw->n_counters == 0) {
734 /* disable exceptions if no counters are running */
735 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
736 }
737
738 perf_enable();
739 local_irq_restore(flags);
740 }
741
742 struct pmu power_pmu = {
743 .enable = power_pmu_enable,
744 .disable = power_pmu_disable,
745 .read = power_pmu_read,
746 };
747
748 /*
749 * Return 1 if we might be able to put counter on a limited PMC,
750 * or 0 if not.
751 * A counter can only go on a limited PMC if it counts something
752 * that a limited PMC can count, doesn't require interrupts, and
753 * doesn't exclude any processor mode.
754 */
755 static int can_go_on_limited_pmc(struct perf_counter *counter, unsigned int ev,
756 unsigned int flags)
757 {
758 int n;
759 unsigned int alt[MAX_EVENT_ALTERNATIVES];
760
761 if (counter->hw_event.exclude_user
762 || counter->hw_event.exclude_kernel
763 || counter->hw_event.exclude_hv
764 || counter->hw_event.irq_period)
765 return 0;
766
767 if (ppmu->limited_pmc_event(ev))
768 return 1;
769
770 /*
771 * The requested event isn't on a limited PMC already;
772 * see if any alternative code goes on a limited PMC.
773 */
774 if (!ppmu->get_alternatives)
775 return 0;
776
777 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
778 n = ppmu->get_alternatives(ev, flags, alt);
779 if (n)
780 return alt[0];
781
782 return 0;
783 }
784
785 /*
786 * Find an alternative event that goes on a normal PMC, if possible,
787 * and return the event code, or 0 if there is no such alternative.
788 * (Note: event code 0 is "don't count" on all machines.)
789 */
790 static unsigned long normal_pmc_alternative(unsigned long ev,
791 unsigned long flags)
792 {
793 unsigned int alt[MAX_EVENT_ALTERNATIVES];
794 int n;
795
796 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
797 n = ppmu->get_alternatives(ev, flags, alt);
798 if (!n)
799 return 0;
800 return alt[0];
801 }
802
803 /* Number of perf_counters counting hardware events */
804 static atomic_t num_counters;
805 /* Used to avoid races in calling reserve/release_pmc_hardware */
806 static DEFINE_MUTEX(pmc_reserve_mutex);
807
808 /*
809 * Release the PMU if this is the last perf_counter.
810 */
811 static void hw_perf_counter_destroy(struct perf_counter *counter)
812 {
813 if (!atomic_add_unless(&num_counters, -1, 1)) {
814 mutex_lock(&pmc_reserve_mutex);
815 if (atomic_dec_return(&num_counters) == 0)
816 release_pmc_hardware();
817 mutex_unlock(&pmc_reserve_mutex);
818 }
819 }
820
821 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
822 {
823 unsigned long ev, flags;
824 struct perf_counter *ctrs[MAX_HWCOUNTERS];
825 unsigned int events[MAX_HWCOUNTERS];
826 unsigned int cflags[MAX_HWCOUNTERS];
827 int n;
828 int err;
829
830 if (!ppmu)
831 return ERR_PTR(-ENXIO);
832 if (!perf_event_raw(&counter->hw_event)) {
833 ev = perf_event_id(&counter->hw_event);
834 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
835 return ERR_PTR(-EOPNOTSUPP);
836 ev = ppmu->generic_events[ev];
837 } else {
838 ev = perf_event_config(&counter->hw_event);
839 }
840 counter->hw.config_base = ev;
841 counter->hw.idx = 0;
842
843 /*
844 * If we are not running on a hypervisor, force the
845 * exclude_hv bit to 0 so that we don't care what
846 * the user set it to.
847 */
848 if (!firmware_has_feature(FW_FEATURE_LPAR))
849 counter->hw_event.exclude_hv = 0;
850
851 /*
852 * If this is a per-task counter, then we can use
853 * PM_RUN_* events interchangeably with their non RUN_*
854 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
855 * XXX we should check if the task is an idle task.
856 */
857 flags = 0;
858 if (counter->ctx->task)
859 flags |= PPMU_ONLY_COUNT_RUN;
860
861 /*
862 * If this machine has limited counters, check whether this
863 * event could go on a limited counter.
864 */
865 if (ppmu->limited_pmc5_6) {
866 if (can_go_on_limited_pmc(counter, ev, flags)) {
867 flags |= PPMU_LIMITED_PMC_OK;
868 } else if (ppmu->limited_pmc_event(ev)) {
869 /*
870 * The requested event is on a limited PMC,
871 * but we can't use a limited PMC; see if any
872 * alternative goes on a normal PMC.
873 */
874 ev = normal_pmc_alternative(ev, flags);
875 if (!ev)
876 return ERR_PTR(-EINVAL);
877 }
878 }
879
880 /*
881 * If this is in a group, check if it can go on with all the
882 * other hardware counters in the group. We assume the counter
883 * hasn't been linked into its leader's sibling list at this point.
884 */
885 n = 0;
886 if (counter->group_leader != counter) {
887 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
888 ctrs, events, cflags);
889 if (n < 0)
890 return ERR_PTR(-EINVAL);
891 }
892 events[n] = ev;
893 ctrs[n] = counter;
894 cflags[n] = flags;
895 if (check_excludes(ctrs, cflags, n, 1))
896 return ERR_PTR(-EINVAL);
897 if (power_check_constraints(events, cflags, n + 1))
898 return ERR_PTR(-EINVAL);
899
900 counter->hw.config = events[n];
901 counter->hw.counter_base = cflags[n];
902 atomic64_set(&counter->hw.period_left, counter->hw.irq_period);
903
904 /*
905 * See if we need to reserve the PMU.
906 * If no counters are currently in use, then we have to take a
907 * mutex to ensure that we don't race with another task doing
908 * reserve_pmc_hardware or release_pmc_hardware.
909 */
910 err = 0;
911 if (!atomic_inc_not_zero(&num_counters)) {
912 mutex_lock(&pmc_reserve_mutex);
913 if (atomic_read(&num_counters) == 0 &&
914 reserve_pmc_hardware(perf_counter_interrupt))
915 err = -EBUSY;
916 else
917 atomic_inc(&num_counters);
918 mutex_unlock(&pmc_reserve_mutex);
919 }
920 counter->destroy = hw_perf_counter_destroy;
921
922 if (err)
923 return ERR_PTR(err);
924 return &power_pmu;
925 }
926
927 /*
928 * A counter has overflowed; update its count and record
929 * things if requested. Note that interrupts are hard-disabled
930 * here so there is no possibility of being interrupted.
931 */
932 static void record_and_restart(struct perf_counter *counter, long val,
933 struct pt_regs *regs, int nmi)
934 {
935 u64 period = counter->hw.irq_period;
936 s64 prev, delta, left;
937 int record = 0;
938
939 /* we don't have to worry about interrupts here */
940 prev = atomic64_read(&counter->hw.prev_count);
941 delta = (val - prev) & 0xfffffffful;
942 atomic64_add(delta, &counter->count);
943
944 /*
945 * See if the total period for this counter has expired,
946 * and update for the next period.
947 */
948 val = 0;
949 left = atomic64_read(&counter->hw.period_left) - delta;
950 if (period) {
951 if (left <= 0) {
952 left += period;
953 if (left <= 0)
954 left = period;
955 record = 1;
956 }
957 if (left < 0x80000000L)
958 val = 0x80000000L - left;
959 }
960 write_pmc(counter->hw.idx, val);
961 atomic64_set(&counter->hw.prev_count, val);
962 atomic64_set(&counter->hw.period_left, left);
963 perf_counter_update_userpage(counter);
964
965 /*
966 * Finally record data if requested.
967 */
968 if (record)
969 perf_counter_overflow(counter, nmi, regs, 0);
970 }
971
972 /*
973 * Performance monitor interrupt stuff
974 */
975 static void perf_counter_interrupt(struct pt_regs *regs)
976 {
977 int i;
978 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
979 struct perf_counter *counter;
980 long val;
981 int found = 0;
982 int nmi;
983
984 if (cpuhw->n_limited)
985 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
986 mfspr(SPRN_PMC6));
987
988 /*
989 * If interrupts were soft-disabled when this PMU interrupt
990 * occurred, treat it as an NMI.
991 */
992 nmi = !regs->softe;
993 if (nmi)
994 nmi_enter();
995 else
996 irq_enter();
997
998 for (i = 0; i < cpuhw->n_counters; ++i) {
999 counter = cpuhw->counter[i];
1000 if (is_limited_pmc(counter->hw.idx))
1001 continue;
1002 val = read_pmc(counter->hw.idx);
1003 if ((int)val < 0) {
1004 /* counter has overflowed */
1005 found = 1;
1006 record_and_restart(counter, val, regs, nmi);
1007 }
1008 }
1009
1010 /*
1011 * In case we didn't find and reset the counter that caused
1012 * the interrupt, scan all counters and reset any that are
1013 * negative, to avoid getting continual interrupts.
1014 * Any that we processed in the previous loop will not be negative.
1015 */
1016 if (!found) {
1017 for (i = 0; i < ppmu->n_counter; ++i) {
1018 if (is_limited_pmc(i + 1))
1019 continue;
1020 val = read_pmc(i + 1);
1021 if ((int)val < 0)
1022 write_pmc(i + 1, 0);
1023 }
1024 }
1025
1026 /*
1027 * Reset MMCR0 to its normal value. This will set PMXE and
1028 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1029 * and thus allow interrupts to occur again.
1030 * XXX might want to use MSR.PM to keep the counters frozen until
1031 * we get back out of this interrupt.
1032 */
1033 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1034
1035 if (nmi)
1036 nmi_exit();
1037 else
1038 irq_exit();
1039 }
1040
1041 void hw_perf_counter_setup(int cpu)
1042 {
1043 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1044
1045 memset(cpuhw, 0, sizeof(*cpuhw));
1046 cpuhw->mmcr[0] = MMCR0_FC;
1047 }
1048
1049 extern struct power_pmu power4_pmu;
1050 extern struct power_pmu ppc970_pmu;
1051 extern struct power_pmu power5_pmu;
1052 extern struct power_pmu power5p_pmu;
1053 extern struct power_pmu power6_pmu;
1054
1055 static int init_perf_counters(void)
1056 {
1057 unsigned long pvr;
1058
1059 /* XXX should get this from cputable */
1060 pvr = mfspr(SPRN_PVR);
1061 switch (PVR_VER(pvr)) {
1062 case PV_POWER4:
1063 case PV_POWER4p:
1064 ppmu = &power4_pmu;
1065 break;
1066 case PV_970:
1067 case PV_970FX:
1068 case PV_970MP:
1069 ppmu = &ppc970_pmu;
1070 break;
1071 case PV_POWER5:
1072 ppmu = &power5_pmu;
1073 break;
1074 case PV_POWER5p:
1075 ppmu = &power5p_pmu;
1076 break;
1077 case 0x3e:
1078 ppmu = &power6_pmu;
1079 break;
1080 }
1081
1082 /*
1083 * Use FCHV to ignore kernel events if MSR.HV is set.
1084 */
1085 if (mfmsr() & MSR_HV)
1086 freeze_counters_kernel = MMCR0_FCHV;
1087
1088 return 0;
1089 }
1090
1091 arch_initcall(init_perf_counters);
This page took 0.111503 seconds and 6 git commands to generate.