Merge commit 'v2.6.30-rc1' into perfcounters/core
[deliverable/linux.git] / arch / powerpc / kernel / perf_counter.c
1 /*
2 * Performance counter support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20
21 struct cpu_hw_counters {
22 int n_counters;
23 int n_percpu;
24 int disabled;
25 int n_added;
26 struct perf_counter *counter[MAX_HWCOUNTERS];
27 unsigned int events[MAX_HWCOUNTERS];
28 u64 mmcr[3];
29 u8 pmcs_enabled;
30 };
31 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
32
33 struct power_pmu *ppmu;
34
35 /*
36 * Normally, to ignore kernel events we set the FCS (freeze counters
37 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
38 * hypervisor bit set in the MSR, or if we are running on a processor
39 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
40 * then we need to use the FCHV bit to ignore kernel events.
41 */
42 static unsigned int freeze_counters_kernel = MMCR0_FCS;
43
44 static void perf_counter_interrupt(struct pt_regs *regs);
45
46 void perf_counter_print_debug(void)
47 {
48 }
49
50 /*
51 * Read one performance monitor counter (PMC).
52 */
53 static unsigned long read_pmc(int idx)
54 {
55 unsigned long val;
56
57 switch (idx) {
58 case 1:
59 val = mfspr(SPRN_PMC1);
60 break;
61 case 2:
62 val = mfspr(SPRN_PMC2);
63 break;
64 case 3:
65 val = mfspr(SPRN_PMC3);
66 break;
67 case 4:
68 val = mfspr(SPRN_PMC4);
69 break;
70 case 5:
71 val = mfspr(SPRN_PMC5);
72 break;
73 case 6:
74 val = mfspr(SPRN_PMC6);
75 break;
76 case 7:
77 val = mfspr(SPRN_PMC7);
78 break;
79 case 8:
80 val = mfspr(SPRN_PMC8);
81 break;
82 default:
83 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
84 val = 0;
85 }
86 return val;
87 }
88
89 /*
90 * Write one PMC.
91 */
92 static void write_pmc(int idx, unsigned long val)
93 {
94 switch (idx) {
95 case 1:
96 mtspr(SPRN_PMC1, val);
97 break;
98 case 2:
99 mtspr(SPRN_PMC2, val);
100 break;
101 case 3:
102 mtspr(SPRN_PMC3, val);
103 break;
104 case 4:
105 mtspr(SPRN_PMC4, val);
106 break;
107 case 5:
108 mtspr(SPRN_PMC5, val);
109 break;
110 case 6:
111 mtspr(SPRN_PMC6, val);
112 break;
113 case 7:
114 mtspr(SPRN_PMC7, val);
115 break;
116 case 8:
117 mtspr(SPRN_PMC8, val);
118 break;
119 default:
120 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
121 }
122 }
123
124 /*
125 * Check if a set of events can all go on the PMU at once.
126 * If they can't, this will look at alternative codes for the events
127 * and see if any combination of alternative codes is feasible.
128 * The feasible set is returned in event[].
129 */
130 static int power_check_constraints(unsigned int event[], int n_ev)
131 {
132 u64 mask, value, nv;
133 unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
134 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
135 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
136 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
137 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
138 int i, j;
139 u64 addf = ppmu->add_fields;
140 u64 tadd = ppmu->test_adder;
141
142 if (n_ev > ppmu->n_counter)
143 return -1;
144
145 /* First see if the events will go on as-is */
146 for (i = 0; i < n_ev; ++i) {
147 alternatives[i][0] = event[i];
148 if (ppmu->get_constraint(event[i], &amasks[i][0],
149 &avalues[i][0]))
150 return -1;
151 choice[i] = 0;
152 }
153 value = mask = 0;
154 for (i = 0; i < n_ev; ++i) {
155 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
156 if ((((nv + tadd) ^ value) & mask) != 0 ||
157 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
158 break;
159 value = nv;
160 mask |= amasks[i][0];
161 }
162 if (i == n_ev)
163 return 0; /* all OK */
164
165 /* doesn't work, gather alternatives... */
166 if (!ppmu->get_alternatives)
167 return -1;
168 for (i = 0; i < n_ev; ++i) {
169 n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
170 for (j = 1; j < n_alt[i]; ++j)
171 ppmu->get_constraint(alternatives[i][j],
172 &amasks[i][j], &avalues[i][j]);
173 }
174
175 /* enumerate all possibilities and see if any will work */
176 i = 0;
177 j = -1;
178 value = mask = nv = 0;
179 while (i < n_ev) {
180 if (j >= 0) {
181 /* we're backtracking, restore context */
182 value = svalues[i];
183 mask = smasks[i];
184 j = choice[i];
185 }
186 /*
187 * See if any alternative k for event i,
188 * where k > j, will satisfy the constraints.
189 */
190 while (++j < n_alt[i]) {
191 nv = (value | avalues[i][j]) +
192 (value & avalues[i][j] & addf);
193 if ((((nv + tadd) ^ value) & mask) == 0 &&
194 (((nv + tadd) ^ avalues[i][j])
195 & amasks[i][j]) == 0)
196 break;
197 }
198 if (j >= n_alt[i]) {
199 /*
200 * No feasible alternative, backtrack
201 * to event i-1 and continue enumerating its
202 * alternatives from where we got up to.
203 */
204 if (--i < 0)
205 return -1;
206 } else {
207 /*
208 * Found a feasible alternative for event i,
209 * remember where we got up to with this event,
210 * go on to the next event, and start with
211 * the first alternative for it.
212 */
213 choice[i] = j;
214 svalues[i] = value;
215 smasks[i] = mask;
216 value = nv;
217 mask |= amasks[i][j];
218 ++i;
219 j = -1;
220 }
221 }
222
223 /* OK, we have a feasible combination, tell the caller the solution */
224 for (i = 0; i < n_ev; ++i)
225 event[i] = alternatives[i][choice[i]];
226 return 0;
227 }
228
229 /*
230 * Check if newly-added counters have consistent settings for
231 * exclude_{user,kernel,hv} with each other and any previously
232 * added counters.
233 */
234 static int check_excludes(struct perf_counter **ctrs, int n_prev, int n_new)
235 {
236 int eu, ek, eh;
237 int i, n;
238 struct perf_counter *counter;
239
240 n = n_prev + n_new;
241 if (n <= 1)
242 return 0;
243
244 eu = ctrs[0]->hw_event.exclude_user;
245 ek = ctrs[0]->hw_event.exclude_kernel;
246 eh = ctrs[0]->hw_event.exclude_hv;
247 if (n_prev == 0)
248 n_prev = 1;
249 for (i = n_prev; i < n; ++i) {
250 counter = ctrs[i];
251 if (counter->hw_event.exclude_user != eu ||
252 counter->hw_event.exclude_kernel != ek ||
253 counter->hw_event.exclude_hv != eh)
254 return -EAGAIN;
255 }
256 return 0;
257 }
258
259 static void power_perf_read(struct perf_counter *counter)
260 {
261 long val, delta, prev;
262
263 if (!counter->hw.idx)
264 return;
265 /*
266 * Performance monitor interrupts come even when interrupts
267 * are soft-disabled, as long as interrupts are hard-enabled.
268 * Therefore we treat them like NMIs.
269 */
270 do {
271 prev = atomic64_read(&counter->hw.prev_count);
272 barrier();
273 val = read_pmc(counter->hw.idx);
274 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
275
276 /* The counters are only 32 bits wide */
277 delta = (val - prev) & 0xfffffffful;
278 atomic64_add(delta, &counter->count);
279 atomic64_sub(delta, &counter->hw.period_left);
280 }
281
282 /*
283 * Disable all counters to prevent PMU interrupts and to allow
284 * counters to be added or removed.
285 */
286 u64 hw_perf_save_disable(void)
287 {
288 struct cpu_hw_counters *cpuhw;
289 unsigned long ret;
290 unsigned long flags;
291
292 local_irq_save(flags);
293 cpuhw = &__get_cpu_var(cpu_hw_counters);
294
295 ret = cpuhw->disabled;
296 if (!ret) {
297 cpuhw->disabled = 1;
298 cpuhw->n_added = 0;
299
300 /*
301 * Check if we ever enabled the PMU on this cpu.
302 */
303 if (!cpuhw->pmcs_enabled) {
304 if (ppc_md.enable_pmcs)
305 ppc_md.enable_pmcs();
306 cpuhw->pmcs_enabled = 1;
307 }
308
309 /*
310 * Set the 'freeze counters' bit.
311 * The barrier is to make sure the mtspr has been
312 * executed and the PMU has frozen the counters
313 * before we return.
314 */
315 mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
316 mb();
317 }
318 local_irq_restore(flags);
319 return ret;
320 }
321
322 /*
323 * Re-enable all counters if disable == 0.
324 * If we were previously disabled and counters were added, then
325 * put the new config on the PMU.
326 */
327 void hw_perf_restore(u64 disable)
328 {
329 struct perf_counter *counter;
330 struct cpu_hw_counters *cpuhw;
331 unsigned long flags;
332 long i;
333 unsigned long val;
334 s64 left;
335 unsigned int hwc_index[MAX_HWCOUNTERS];
336
337 if (disable)
338 return;
339 local_irq_save(flags);
340 cpuhw = &__get_cpu_var(cpu_hw_counters);
341 cpuhw->disabled = 0;
342
343 /*
344 * If we didn't change anything, or only removed counters,
345 * no need to recalculate MMCR* settings and reset the PMCs.
346 * Just reenable the PMU with the current MMCR* settings
347 * (possibly updated for removal of counters).
348 */
349 if (!cpuhw->n_added) {
350 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
351 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
352 mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
353 if (cpuhw->n_counters == 0)
354 get_lppaca()->pmcregs_in_use = 0;
355 goto out;
356 }
357
358 /*
359 * Compute MMCR* values for the new set of counters
360 */
361 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
362 cpuhw->mmcr)) {
363 /* shouldn't ever get here */
364 printk(KERN_ERR "oops compute_mmcr failed\n");
365 goto out;
366 }
367
368 /*
369 * Add in MMCR0 freeze bits corresponding to the
370 * hw_event.exclude_* bits for the first counter.
371 * We have already checked that all counters have the
372 * same values for these bits as the first counter.
373 */
374 counter = cpuhw->counter[0];
375 if (counter->hw_event.exclude_user)
376 cpuhw->mmcr[0] |= MMCR0_FCP;
377 if (counter->hw_event.exclude_kernel)
378 cpuhw->mmcr[0] |= freeze_counters_kernel;
379 if (counter->hw_event.exclude_hv)
380 cpuhw->mmcr[0] |= MMCR0_FCHV;
381
382 /*
383 * Write the new configuration to MMCR* with the freeze
384 * bit set and set the hardware counters to their initial values.
385 * Then unfreeze the counters.
386 */
387 get_lppaca()->pmcregs_in_use = 1;
388 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
389 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
390 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
391 | MMCR0_FC);
392
393 /*
394 * Read off any pre-existing counters that need to move
395 * to another PMC.
396 */
397 for (i = 0; i < cpuhw->n_counters; ++i) {
398 counter = cpuhw->counter[i];
399 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
400 power_perf_read(counter);
401 write_pmc(counter->hw.idx, 0);
402 counter->hw.idx = 0;
403 }
404 }
405
406 /*
407 * Initialize the PMCs for all the new and moved counters.
408 */
409 for (i = 0; i < cpuhw->n_counters; ++i) {
410 counter = cpuhw->counter[i];
411 if (counter->hw.idx)
412 continue;
413 val = 0;
414 if (counter->hw_event.irq_period) {
415 left = atomic64_read(&counter->hw.period_left);
416 if (left < 0x80000000L)
417 val = 0x80000000L - left;
418 }
419 atomic64_set(&counter->hw.prev_count, val);
420 counter->hw.idx = hwc_index[i] + 1;
421 write_pmc(counter->hw.idx, val);
422 perf_counter_update_userpage(counter);
423 }
424 mb();
425 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
426 mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
427
428 out:
429 local_irq_restore(flags);
430 }
431
432 static int collect_events(struct perf_counter *group, int max_count,
433 struct perf_counter *ctrs[], unsigned int *events)
434 {
435 int n = 0;
436 struct perf_counter *counter;
437
438 if (!is_software_counter(group)) {
439 if (n >= max_count)
440 return -1;
441 ctrs[n] = group;
442 events[n++] = group->hw.config;
443 }
444 list_for_each_entry(counter, &group->sibling_list, list_entry) {
445 if (!is_software_counter(counter) &&
446 counter->state != PERF_COUNTER_STATE_OFF) {
447 if (n >= max_count)
448 return -1;
449 ctrs[n] = counter;
450 events[n++] = counter->hw.config;
451 }
452 }
453 return n;
454 }
455
456 static void counter_sched_in(struct perf_counter *counter, int cpu)
457 {
458 counter->state = PERF_COUNTER_STATE_ACTIVE;
459 counter->oncpu = cpu;
460 counter->tstamp_running += counter->ctx->time_now -
461 counter->tstamp_stopped;
462 if (is_software_counter(counter))
463 counter->hw_ops->enable(counter);
464 }
465
466 /*
467 * Called to enable a whole group of counters.
468 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
469 * Assumes the caller has disabled interrupts and has
470 * frozen the PMU with hw_perf_save_disable.
471 */
472 int hw_perf_group_sched_in(struct perf_counter *group_leader,
473 struct perf_cpu_context *cpuctx,
474 struct perf_counter_context *ctx, int cpu)
475 {
476 struct cpu_hw_counters *cpuhw;
477 long i, n, n0;
478 struct perf_counter *sub;
479
480 cpuhw = &__get_cpu_var(cpu_hw_counters);
481 n0 = cpuhw->n_counters;
482 n = collect_events(group_leader, ppmu->n_counter - n0,
483 &cpuhw->counter[n0], &cpuhw->events[n0]);
484 if (n < 0)
485 return -EAGAIN;
486 if (check_excludes(cpuhw->counter, n0, n))
487 return -EAGAIN;
488 if (power_check_constraints(cpuhw->events, n + n0))
489 return -EAGAIN;
490 cpuhw->n_counters = n0 + n;
491 cpuhw->n_added += n;
492
493 /*
494 * OK, this group can go on; update counter states etc.,
495 * and enable any software counters
496 */
497 for (i = n0; i < n0 + n; ++i)
498 cpuhw->counter[i]->hw.config = cpuhw->events[i];
499 cpuctx->active_oncpu += n;
500 n = 1;
501 counter_sched_in(group_leader, cpu);
502 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
503 if (sub->state != PERF_COUNTER_STATE_OFF) {
504 counter_sched_in(sub, cpu);
505 ++n;
506 }
507 }
508 ctx->nr_active += n;
509
510 return 1;
511 }
512
513 /*
514 * Add a counter to the PMU.
515 * If all counters are not already frozen, then we disable and
516 * re-enable the PMU in order to get hw_perf_restore to do the
517 * actual work of reconfiguring the PMU.
518 */
519 static int power_perf_enable(struct perf_counter *counter)
520 {
521 struct cpu_hw_counters *cpuhw;
522 unsigned long flags;
523 u64 pmudis;
524 int n0;
525 int ret = -EAGAIN;
526
527 local_irq_save(flags);
528 pmudis = hw_perf_save_disable();
529
530 /*
531 * Add the counter to the list (if there is room)
532 * and check whether the total set is still feasible.
533 */
534 cpuhw = &__get_cpu_var(cpu_hw_counters);
535 n0 = cpuhw->n_counters;
536 if (n0 >= ppmu->n_counter)
537 goto out;
538 cpuhw->counter[n0] = counter;
539 cpuhw->events[n0] = counter->hw.config;
540 if (check_excludes(cpuhw->counter, n0, 1))
541 goto out;
542 if (power_check_constraints(cpuhw->events, n0 + 1))
543 goto out;
544
545 counter->hw.config = cpuhw->events[n0];
546 ++cpuhw->n_counters;
547 ++cpuhw->n_added;
548
549 ret = 0;
550 out:
551 hw_perf_restore(pmudis);
552 local_irq_restore(flags);
553 return ret;
554 }
555
556 /*
557 * Remove a counter from the PMU.
558 */
559 static void power_perf_disable(struct perf_counter *counter)
560 {
561 struct cpu_hw_counters *cpuhw;
562 long i;
563 u64 pmudis;
564 unsigned long flags;
565
566 local_irq_save(flags);
567 pmudis = hw_perf_save_disable();
568
569 power_perf_read(counter);
570
571 cpuhw = &__get_cpu_var(cpu_hw_counters);
572 for (i = 0; i < cpuhw->n_counters; ++i) {
573 if (counter == cpuhw->counter[i]) {
574 while (++i < cpuhw->n_counters)
575 cpuhw->counter[i-1] = cpuhw->counter[i];
576 --cpuhw->n_counters;
577 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
578 write_pmc(counter->hw.idx, 0);
579 counter->hw.idx = 0;
580 perf_counter_update_userpage(counter);
581 break;
582 }
583 }
584 if (cpuhw->n_counters == 0) {
585 /* disable exceptions if no counters are running */
586 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
587 }
588
589 hw_perf_restore(pmudis);
590 local_irq_restore(flags);
591 }
592
593 struct hw_perf_counter_ops power_perf_ops = {
594 .enable = power_perf_enable,
595 .disable = power_perf_disable,
596 .read = power_perf_read
597 };
598
599 /* Number of perf_counters counting hardware events */
600 static atomic_t num_counters;
601 /* Used to avoid races in calling reserve/release_pmc_hardware */
602 static DEFINE_MUTEX(pmc_reserve_mutex);
603
604 /*
605 * Release the PMU if this is the last perf_counter.
606 */
607 static void hw_perf_counter_destroy(struct perf_counter *counter)
608 {
609 if (!atomic_add_unless(&num_counters, -1, 1)) {
610 mutex_lock(&pmc_reserve_mutex);
611 if (atomic_dec_return(&num_counters) == 0)
612 release_pmc_hardware();
613 mutex_unlock(&pmc_reserve_mutex);
614 }
615 }
616
617 const struct hw_perf_counter_ops *
618 hw_perf_counter_init(struct perf_counter *counter)
619 {
620 unsigned long ev;
621 struct perf_counter *ctrs[MAX_HWCOUNTERS];
622 unsigned int events[MAX_HWCOUNTERS];
623 int n;
624 int err;
625
626 if (!ppmu)
627 return ERR_PTR(-ENXIO);
628 if ((s64)counter->hw_event.irq_period < 0)
629 return ERR_PTR(-EINVAL);
630 if (!perf_event_raw(&counter->hw_event)) {
631 ev = perf_event_id(&counter->hw_event);
632 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
633 return ERR_PTR(-EOPNOTSUPP);
634 ev = ppmu->generic_events[ev];
635 } else {
636 ev = perf_event_config(&counter->hw_event);
637 }
638 counter->hw.config_base = ev;
639 counter->hw.idx = 0;
640
641 /*
642 * If we are not running on a hypervisor, force the
643 * exclude_hv bit to 0 so that we don't care what
644 * the user set it to.
645 */
646 if (!firmware_has_feature(FW_FEATURE_LPAR))
647 counter->hw_event.exclude_hv = 0;
648
649 /*
650 * If this is in a group, check if it can go on with all the
651 * other hardware counters in the group. We assume the counter
652 * hasn't been linked into its leader's sibling list at this point.
653 */
654 n = 0;
655 if (counter->group_leader != counter) {
656 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
657 ctrs, events);
658 if (n < 0)
659 return ERR_PTR(-EINVAL);
660 }
661 events[n] = ev;
662 ctrs[n] = counter;
663 if (check_excludes(ctrs, n, 1))
664 return ERR_PTR(-EINVAL);
665 if (power_check_constraints(events, n + 1))
666 return ERR_PTR(-EINVAL);
667
668 counter->hw.config = events[n];
669 atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
670
671 /*
672 * See if we need to reserve the PMU.
673 * If no counters are currently in use, then we have to take a
674 * mutex to ensure that we don't race with another task doing
675 * reserve_pmc_hardware or release_pmc_hardware.
676 */
677 err = 0;
678 if (!atomic_inc_not_zero(&num_counters)) {
679 mutex_lock(&pmc_reserve_mutex);
680 if (atomic_read(&num_counters) == 0 &&
681 reserve_pmc_hardware(perf_counter_interrupt))
682 err = -EBUSY;
683 else
684 atomic_inc(&num_counters);
685 mutex_unlock(&pmc_reserve_mutex);
686 }
687 counter->destroy = hw_perf_counter_destroy;
688
689 if (err)
690 return ERR_PTR(err);
691 return &power_perf_ops;
692 }
693
694 /*
695 * A counter has overflowed; update its count and record
696 * things if requested. Note that interrupts are hard-disabled
697 * here so there is no possibility of being interrupted.
698 */
699 static void record_and_restart(struct perf_counter *counter, long val,
700 struct pt_regs *regs)
701 {
702 s64 prev, delta, left;
703 int record = 0;
704
705 /* we don't have to worry about interrupts here */
706 prev = atomic64_read(&counter->hw.prev_count);
707 delta = (val - prev) & 0xfffffffful;
708 atomic64_add(delta, &counter->count);
709
710 /*
711 * See if the total period for this counter has expired,
712 * and update for the next period.
713 */
714 val = 0;
715 left = atomic64_read(&counter->hw.period_left) - delta;
716 if (counter->hw_event.irq_period) {
717 if (left <= 0) {
718 left += counter->hw_event.irq_period;
719 if (left <= 0)
720 left = counter->hw_event.irq_period;
721 record = 1;
722 }
723 if (left < 0x80000000L)
724 val = 0x80000000L - left;
725 }
726 write_pmc(counter->hw.idx, val);
727 atomic64_set(&counter->hw.prev_count, val);
728 atomic64_set(&counter->hw.period_left, left);
729 perf_counter_update_userpage(counter);
730
731 /*
732 * Finally record data if requested.
733 */
734 if (record)
735 perf_counter_overflow(counter, 1, regs);
736 }
737
738 /*
739 * Performance monitor interrupt stuff
740 */
741 static void perf_counter_interrupt(struct pt_regs *regs)
742 {
743 int i;
744 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
745 struct perf_counter *counter;
746 long val;
747 int found = 0;
748
749 for (i = 0; i < cpuhw->n_counters; ++i) {
750 counter = cpuhw->counter[i];
751 val = read_pmc(counter->hw.idx);
752 if ((int)val < 0) {
753 /* counter has overflowed */
754 found = 1;
755 record_and_restart(counter, val, regs);
756 }
757 }
758
759 /*
760 * In case we didn't find and reset the counter that caused
761 * the interrupt, scan all counters and reset any that are
762 * negative, to avoid getting continual interrupts.
763 * Any that we processed in the previous loop will not be negative.
764 */
765 if (!found) {
766 for (i = 0; i < ppmu->n_counter; ++i) {
767 val = read_pmc(i + 1);
768 if ((int)val < 0)
769 write_pmc(i + 1, 0);
770 }
771 }
772
773 /*
774 * Reset MMCR0 to its normal value. This will set PMXE and
775 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
776 * and thus allow interrupts to occur again.
777 * XXX might want to use MSR.PM to keep the counters frozen until
778 * we get back out of this interrupt.
779 */
780 mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
781
782 /*
783 * If we need a wakeup, check whether interrupts were soft-enabled
784 * when we took the interrupt. If they were, we can wake stuff up
785 * immediately; otherwise we'll have do the wakeup when interrupts
786 * get soft-enabled.
787 */
788 if (test_perf_counter_pending() && regs->softe) {
789 irq_enter();
790 clear_perf_counter_pending();
791 perf_counter_do_pending();
792 irq_exit();
793 }
794 }
795
796 void hw_perf_counter_setup(int cpu)
797 {
798 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
799
800 memset(cpuhw, 0, sizeof(*cpuhw));
801 cpuhw->mmcr[0] = MMCR0_FC;
802 }
803
804 extern struct power_pmu power4_pmu;
805 extern struct power_pmu ppc970_pmu;
806 extern struct power_pmu power5_pmu;
807 extern struct power_pmu power5p_pmu;
808 extern struct power_pmu power6_pmu;
809
810 static int init_perf_counters(void)
811 {
812 unsigned long pvr;
813
814 /* XXX should get this from cputable */
815 pvr = mfspr(SPRN_PVR);
816 switch (PVR_VER(pvr)) {
817 case PV_POWER4:
818 case PV_POWER4p:
819 ppmu = &power4_pmu;
820 break;
821 case PV_970:
822 case PV_970FX:
823 case PV_970MP:
824 ppmu = &ppc970_pmu;
825 break;
826 case PV_POWER5:
827 ppmu = &power5_pmu;
828 break;
829 case PV_POWER5p:
830 ppmu = &power5p_pmu;
831 break;
832 case 0x3e:
833 ppmu = &power6_pmu;
834 break;
835 }
836
837 /*
838 * Use FCHV to ignore kernel events if MSR.HV is set.
839 */
840 if (mfmsr() & MSR_HV)
841 freeze_counters_kernel = MMCR0_FCHV;
842
843 return 0;
844 }
845
846 arch_initcall(init_perf_counters);
This page took 0.048184 seconds and 6 git commands to generate.