perf_counter: fix powerpc build
[deliverable/linux.git] / arch / powerpc / kernel / perf_counter.c
1 /*
2 * Performance counter support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20
21 struct cpu_hw_counters {
22 int n_counters;
23 int n_percpu;
24 int disabled;
25 int n_added;
26 struct perf_counter *counter[MAX_HWCOUNTERS];
27 unsigned int events[MAX_HWCOUNTERS];
28 u64 mmcr[3];
29 u8 pmcs_enabled;
30 };
31 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
32
33 struct power_pmu *ppmu;
34
35 /*
36 * Normally, to ignore kernel events we set the FCS (freeze counters
37 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
38 * hypervisor bit set in the MSR, or if we are running on a processor
39 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
40 * then we need to use the FCHV bit to ignore kernel events.
41 */
42 static unsigned int freeze_counters_kernel = MMCR0_FCS;
43
44 static void perf_counter_interrupt(struct pt_regs *regs);
45
46 void perf_counter_print_debug(void)
47 {
48 }
49
50 /*
51 * Read one performance monitor counter (PMC).
52 */
53 static unsigned long read_pmc(int idx)
54 {
55 unsigned long val;
56
57 switch (idx) {
58 case 1:
59 val = mfspr(SPRN_PMC1);
60 break;
61 case 2:
62 val = mfspr(SPRN_PMC2);
63 break;
64 case 3:
65 val = mfspr(SPRN_PMC3);
66 break;
67 case 4:
68 val = mfspr(SPRN_PMC4);
69 break;
70 case 5:
71 val = mfspr(SPRN_PMC5);
72 break;
73 case 6:
74 val = mfspr(SPRN_PMC6);
75 break;
76 case 7:
77 val = mfspr(SPRN_PMC7);
78 break;
79 case 8:
80 val = mfspr(SPRN_PMC8);
81 break;
82 default:
83 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
84 val = 0;
85 }
86 return val;
87 }
88
89 /*
90 * Write one PMC.
91 */
92 static void write_pmc(int idx, unsigned long val)
93 {
94 switch (idx) {
95 case 1:
96 mtspr(SPRN_PMC1, val);
97 break;
98 case 2:
99 mtspr(SPRN_PMC2, val);
100 break;
101 case 3:
102 mtspr(SPRN_PMC3, val);
103 break;
104 case 4:
105 mtspr(SPRN_PMC4, val);
106 break;
107 case 5:
108 mtspr(SPRN_PMC5, val);
109 break;
110 case 6:
111 mtspr(SPRN_PMC6, val);
112 break;
113 case 7:
114 mtspr(SPRN_PMC7, val);
115 break;
116 case 8:
117 mtspr(SPRN_PMC8, val);
118 break;
119 default:
120 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
121 }
122 }
123
124 /*
125 * Check if a set of events can all go on the PMU at once.
126 * If they can't, this will look at alternative codes for the events
127 * and see if any combination of alternative codes is feasible.
128 * The feasible set is returned in event[].
129 */
130 static int power_check_constraints(unsigned int event[], int n_ev)
131 {
132 u64 mask, value, nv;
133 unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
134 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
135 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
136 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
137 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
138 int i, j;
139 u64 addf = ppmu->add_fields;
140 u64 tadd = ppmu->test_adder;
141
142 if (n_ev > ppmu->n_counter)
143 return -1;
144
145 /* First see if the events will go on as-is */
146 for (i = 0; i < n_ev; ++i) {
147 alternatives[i][0] = event[i];
148 if (ppmu->get_constraint(event[i], &amasks[i][0],
149 &avalues[i][0]))
150 return -1;
151 choice[i] = 0;
152 }
153 value = mask = 0;
154 for (i = 0; i < n_ev; ++i) {
155 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
156 if ((((nv + tadd) ^ value) & mask) != 0 ||
157 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
158 break;
159 value = nv;
160 mask |= amasks[i][0];
161 }
162 if (i == n_ev)
163 return 0; /* all OK */
164
165 /* doesn't work, gather alternatives... */
166 if (!ppmu->get_alternatives)
167 return -1;
168 for (i = 0; i < n_ev; ++i) {
169 n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
170 for (j = 1; j < n_alt[i]; ++j)
171 ppmu->get_constraint(alternatives[i][j],
172 &amasks[i][j], &avalues[i][j]);
173 }
174
175 /* enumerate all possibilities and see if any will work */
176 i = 0;
177 j = -1;
178 value = mask = nv = 0;
179 while (i < n_ev) {
180 if (j >= 0) {
181 /* we're backtracking, restore context */
182 value = svalues[i];
183 mask = smasks[i];
184 j = choice[i];
185 }
186 /*
187 * See if any alternative k for event i,
188 * where k > j, will satisfy the constraints.
189 */
190 while (++j < n_alt[i]) {
191 nv = (value | avalues[i][j]) +
192 (value & avalues[i][j] & addf);
193 if ((((nv + tadd) ^ value) & mask) == 0 &&
194 (((nv + tadd) ^ avalues[i][j])
195 & amasks[i][j]) == 0)
196 break;
197 }
198 if (j >= n_alt[i]) {
199 /*
200 * No feasible alternative, backtrack
201 * to event i-1 and continue enumerating its
202 * alternatives from where we got up to.
203 */
204 if (--i < 0)
205 return -1;
206 } else {
207 /*
208 * Found a feasible alternative for event i,
209 * remember where we got up to with this event,
210 * go on to the next event, and start with
211 * the first alternative for it.
212 */
213 choice[i] = j;
214 svalues[i] = value;
215 smasks[i] = mask;
216 value = nv;
217 mask |= amasks[i][j];
218 ++i;
219 j = -1;
220 }
221 }
222
223 /* OK, we have a feasible combination, tell the caller the solution */
224 for (i = 0; i < n_ev; ++i)
225 event[i] = alternatives[i][choice[i]];
226 return 0;
227 }
228
229 /*
230 * Check if newly-added counters have consistent settings for
231 * exclude_{user,kernel,hv} with each other and any previously
232 * added counters.
233 */
234 static int check_excludes(struct perf_counter **ctrs, int n_prev, int n_new)
235 {
236 int eu, ek, eh;
237 int i, n;
238 struct perf_counter *counter;
239
240 n = n_prev + n_new;
241 if (n <= 1)
242 return 0;
243
244 eu = ctrs[0]->hw_event.exclude_user;
245 ek = ctrs[0]->hw_event.exclude_kernel;
246 eh = ctrs[0]->hw_event.exclude_hv;
247 if (n_prev == 0)
248 n_prev = 1;
249 for (i = n_prev; i < n; ++i) {
250 counter = ctrs[i];
251 if (counter->hw_event.exclude_user != eu ||
252 counter->hw_event.exclude_kernel != ek ||
253 counter->hw_event.exclude_hv != eh)
254 return -EAGAIN;
255 }
256 return 0;
257 }
258
259 static void power_perf_read(struct perf_counter *counter)
260 {
261 long val, delta, prev;
262
263 if (!counter->hw.idx)
264 return;
265 /*
266 * Performance monitor interrupts come even when interrupts
267 * are soft-disabled, as long as interrupts are hard-enabled.
268 * Therefore we treat them like NMIs.
269 */
270 do {
271 prev = atomic64_read(&counter->hw.prev_count);
272 barrier();
273 val = read_pmc(counter->hw.idx);
274 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
275
276 /* The counters are only 32 bits wide */
277 delta = (val - prev) & 0xfffffffful;
278 atomic64_add(delta, &counter->count);
279 atomic64_sub(delta, &counter->hw.period_left);
280 }
281
282 /*
283 * Disable all counters to prevent PMU interrupts and to allow
284 * counters to be added or removed.
285 */
286 u64 hw_perf_save_disable(void)
287 {
288 struct cpu_hw_counters *cpuhw;
289 unsigned long ret;
290 unsigned long flags;
291
292 local_irq_save(flags);
293 cpuhw = &__get_cpu_var(cpu_hw_counters);
294
295 ret = cpuhw->disabled;
296 if (!ret) {
297 cpuhw->disabled = 1;
298 cpuhw->n_added = 0;
299
300 /*
301 * Check if we ever enabled the PMU on this cpu.
302 */
303 if (!cpuhw->pmcs_enabled) {
304 if (ppc_md.enable_pmcs)
305 ppc_md.enable_pmcs();
306 cpuhw->pmcs_enabled = 1;
307 }
308
309 /*
310 * Set the 'freeze counters' bit.
311 * The barrier is to make sure the mtspr has been
312 * executed and the PMU has frozen the counters
313 * before we return.
314 */
315 mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
316 mb();
317 }
318 local_irq_restore(flags);
319 return ret;
320 }
321
322 /*
323 * Re-enable all counters if disable == 0.
324 * If we were previously disabled and counters were added, then
325 * put the new config on the PMU.
326 */
327 void hw_perf_restore(u64 disable)
328 {
329 struct perf_counter *counter;
330 struct cpu_hw_counters *cpuhw;
331 unsigned long flags;
332 long i;
333 unsigned long val;
334 s64 left;
335 unsigned int hwc_index[MAX_HWCOUNTERS];
336
337 if (disable)
338 return;
339 local_irq_save(flags);
340 cpuhw = &__get_cpu_var(cpu_hw_counters);
341 cpuhw->disabled = 0;
342
343 /*
344 * If we didn't change anything, or only removed counters,
345 * no need to recalculate MMCR* settings and reset the PMCs.
346 * Just reenable the PMU with the current MMCR* settings
347 * (possibly updated for removal of counters).
348 */
349 if (!cpuhw->n_added) {
350 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
351 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
352 mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
353 if (cpuhw->n_counters == 0)
354 get_lppaca()->pmcregs_in_use = 0;
355 goto out;
356 }
357
358 /*
359 * Compute MMCR* values for the new set of counters
360 */
361 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
362 cpuhw->mmcr)) {
363 /* shouldn't ever get here */
364 printk(KERN_ERR "oops compute_mmcr failed\n");
365 goto out;
366 }
367
368 /*
369 * Add in MMCR0 freeze bits corresponding to the
370 * hw_event.exclude_* bits for the first counter.
371 * We have already checked that all counters have the
372 * same values for these bits as the first counter.
373 */
374 counter = cpuhw->counter[0];
375 if (counter->hw_event.exclude_user)
376 cpuhw->mmcr[0] |= MMCR0_FCP;
377 if (counter->hw_event.exclude_kernel)
378 cpuhw->mmcr[0] |= freeze_counters_kernel;
379 if (counter->hw_event.exclude_hv)
380 cpuhw->mmcr[0] |= MMCR0_FCHV;
381
382 /*
383 * Write the new configuration to MMCR* with the freeze
384 * bit set and set the hardware counters to their initial values.
385 * Then unfreeze the counters.
386 */
387 get_lppaca()->pmcregs_in_use = 1;
388 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
389 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
390 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
391 | MMCR0_FC);
392
393 /*
394 * Read off any pre-existing counters that need to move
395 * to another PMC.
396 */
397 for (i = 0; i < cpuhw->n_counters; ++i) {
398 counter = cpuhw->counter[i];
399 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
400 power_perf_read(counter);
401 write_pmc(counter->hw.idx, 0);
402 counter->hw.idx = 0;
403 }
404 }
405
406 /*
407 * Initialize the PMCs for all the new and moved counters.
408 */
409 for (i = 0; i < cpuhw->n_counters; ++i) {
410 counter = cpuhw->counter[i];
411 if (counter->hw.idx)
412 continue;
413 val = 0;
414 if (counter->hw_event.irq_period) {
415 left = atomic64_read(&counter->hw.period_left);
416 if (left < 0x80000000L)
417 val = 0x80000000L - left;
418 }
419 atomic64_set(&counter->hw.prev_count, val);
420 counter->hw.idx = hwc_index[i] + 1;
421 write_pmc(counter->hw.idx, val);
422 perf_counter_update_userpage(counter);
423 }
424 mb();
425 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
426 mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
427
428 out:
429 local_irq_restore(flags);
430 }
431
432 static int collect_events(struct perf_counter *group, int max_count,
433 struct perf_counter *ctrs[], unsigned int *events)
434 {
435 int n = 0;
436 struct perf_counter *counter;
437
438 if (!is_software_counter(group)) {
439 if (n >= max_count)
440 return -1;
441 ctrs[n] = group;
442 events[n++] = group->hw.config;
443 }
444 list_for_each_entry(counter, &group->sibling_list, list_entry) {
445 if (!is_software_counter(counter) &&
446 counter->state != PERF_COUNTER_STATE_OFF) {
447 if (n >= max_count)
448 return -1;
449 ctrs[n] = counter;
450 events[n++] = counter->hw.config;
451 }
452 }
453 return n;
454 }
455
456 static void counter_sched_in(struct perf_counter *counter, int cpu)
457 {
458 counter->state = PERF_COUNTER_STATE_ACTIVE;
459 counter->oncpu = cpu;
460 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
461 if (is_software_counter(counter))
462 counter->hw_ops->enable(counter);
463 }
464
465 /*
466 * Called to enable a whole group of counters.
467 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
468 * Assumes the caller has disabled interrupts and has
469 * frozen the PMU with hw_perf_save_disable.
470 */
471 int hw_perf_group_sched_in(struct perf_counter *group_leader,
472 struct perf_cpu_context *cpuctx,
473 struct perf_counter_context *ctx, int cpu)
474 {
475 struct cpu_hw_counters *cpuhw;
476 long i, n, n0;
477 struct perf_counter *sub;
478
479 cpuhw = &__get_cpu_var(cpu_hw_counters);
480 n0 = cpuhw->n_counters;
481 n = collect_events(group_leader, ppmu->n_counter - n0,
482 &cpuhw->counter[n0], &cpuhw->events[n0]);
483 if (n < 0)
484 return -EAGAIN;
485 if (check_excludes(cpuhw->counter, n0, n))
486 return -EAGAIN;
487 if (power_check_constraints(cpuhw->events, n + n0))
488 return -EAGAIN;
489 cpuhw->n_counters = n0 + n;
490 cpuhw->n_added += n;
491
492 /*
493 * OK, this group can go on; update counter states etc.,
494 * and enable any software counters
495 */
496 for (i = n0; i < n0 + n; ++i)
497 cpuhw->counter[i]->hw.config = cpuhw->events[i];
498 cpuctx->active_oncpu += n;
499 n = 1;
500 counter_sched_in(group_leader, cpu);
501 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
502 if (sub->state != PERF_COUNTER_STATE_OFF) {
503 counter_sched_in(sub, cpu);
504 ++n;
505 }
506 }
507 ctx->nr_active += n;
508
509 return 1;
510 }
511
512 /*
513 * Add a counter to the PMU.
514 * If all counters are not already frozen, then we disable and
515 * re-enable the PMU in order to get hw_perf_restore to do the
516 * actual work of reconfiguring the PMU.
517 */
518 static int power_perf_enable(struct perf_counter *counter)
519 {
520 struct cpu_hw_counters *cpuhw;
521 unsigned long flags;
522 u64 pmudis;
523 int n0;
524 int ret = -EAGAIN;
525
526 local_irq_save(flags);
527 pmudis = hw_perf_save_disable();
528
529 /*
530 * Add the counter to the list (if there is room)
531 * and check whether the total set is still feasible.
532 */
533 cpuhw = &__get_cpu_var(cpu_hw_counters);
534 n0 = cpuhw->n_counters;
535 if (n0 >= ppmu->n_counter)
536 goto out;
537 cpuhw->counter[n0] = counter;
538 cpuhw->events[n0] = counter->hw.config;
539 if (check_excludes(cpuhw->counter, n0, 1))
540 goto out;
541 if (power_check_constraints(cpuhw->events, n0 + 1))
542 goto out;
543
544 counter->hw.config = cpuhw->events[n0];
545 ++cpuhw->n_counters;
546 ++cpuhw->n_added;
547
548 ret = 0;
549 out:
550 hw_perf_restore(pmudis);
551 local_irq_restore(flags);
552 return ret;
553 }
554
555 /*
556 * Remove a counter from the PMU.
557 */
558 static void power_perf_disable(struct perf_counter *counter)
559 {
560 struct cpu_hw_counters *cpuhw;
561 long i;
562 u64 pmudis;
563 unsigned long flags;
564
565 local_irq_save(flags);
566 pmudis = hw_perf_save_disable();
567
568 power_perf_read(counter);
569
570 cpuhw = &__get_cpu_var(cpu_hw_counters);
571 for (i = 0; i < cpuhw->n_counters; ++i) {
572 if (counter == cpuhw->counter[i]) {
573 while (++i < cpuhw->n_counters)
574 cpuhw->counter[i-1] = cpuhw->counter[i];
575 --cpuhw->n_counters;
576 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
577 write_pmc(counter->hw.idx, 0);
578 counter->hw.idx = 0;
579 perf_counter_update_userpage(counter);
580 break;
581 }
582 }
583 if (cpuhw->n_counters == 0) {
584 /* disable exceptions if no counters are running */
585 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
586 }
587
588 hw_perf_restore(pmudis);
589 local_irq_restore(flags);
590 }
591
592 struct hw_perf_counter_ops power_perf_ops = {
593 .enable = power_perf_enable,
594 .disable = power_perf_disable,
595 .read = power_perf_read
596 };
597
598 /* Number of perf_counters counting hardware events */
599 static atomic_t num_counters;
600 /* Used to avoid races in calling reserve/release_pmc_hardware */
601 static DEFINE_MUTEX(pmc_reserve_mutex);
602
603 /*
604 * Release the PMU if this is the last perf_counter.
605 */
606 static void hw_perf_counter_destroy(struct perf_counter *counter)
607 {
608 if (!atomic_add_unless(&num_counters, -1, 1)) {
609 mutex_lock(&pmc_reserve_mutex);
610 if (atomic_dec_return(&num_counters) == 0)
611 release_pmc_hardware();
612 mutex_unlock(&pmc_reserve_mutex);
613 }
614 }
615
616 const struct hw_perf_counter_ops *
617 hw_perf_counter_init(struct perf_counter *counter)
618 {
619 unsigned long ev;
620 struct perf_counter *ctrs[MAX_HWCOUNTERS];
621 unsigned int events[MAX_HWCOUNTERS];
622 int n;
623 int err;
624
625 if (!ppmu)
626 return ERR_PTR(-ENXIO);
627 if ((s64)counter->hw_event.irq_period < 0)
628 return ERR_PTR(-EINVAL);
629 if (!perf_event_raw(&counter->hw_event)) {
630 ev = perf_event_id(&counter->hw_event);
631 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
632 return ERR_PTR(-EOPNOTSUPP);
633 ev = ppmu->generic_events[ev];
634 } else {
635 ev = perf_event_config(&counter->hw_event);
636 }
637 counter->hw.config_base = ev;
638 counter->hw.idx = 0;
639
640 /*
641 * If we are not running on a hypervisor, force the
642 * exclude_hv bit to 0 so that we don't care what
643 * the user set it to.
644 */
645 if (!firmware_has_feature(FW_FEATURE_LPAR))
646 counter->hw_event.exclude_hv = 0;
647
648 /*
649 * If this is in a group, check if it can go on with all the
650 * other hardware counters in the group. We assume the counter
651 * hasn't been linked into its leader's sibling list at this point.
652 */
653 n = 0;
654 if (counter->group_leader != counter) {
655 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
656 ctrs, events);
657 if (n < 0)
658 return ERR_PTR(-EINVAL);
659 }
660 events[n] = ev;
661 ctrs[n] = counter;
662 if (check_excludes(ctrs, n, 1))
663 return ERR_PTR(-EINVAL);
664 if (power_check_constraints(events, n + 1))
665 return ERR_PTR(-EINVAL);
666
667 counter->hw.config = events[n];
668 atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
669
670 /*
671 * See if we need to reserve the PMU.
672 * If no counters are currently in use, then we have to take a
673 * mutex to ensure that we don't race with another task doing
674 * reserve_pmc_hardware or release_pmc_hardware.
675 */
676 err = 0;
677 if (!atomic_inc_not_zero(&num_counters)) {
678 mutex_lock(&pmc_reserve_mutex);
679 if (atomic_read(&num_counters) == 0 &&
680 reserve_pmc_hardware(perf_counter_interrupt))
681 err = -EBUSY;
682 else
683 atomic_inc(&num_counters);
684 mutex_unlock(&pmc_reserve_mutex);
685 }
686 counter->destroy = hw_perf_counter_destroy;
687
688 if (err)
689 return ERR_PTR(err);
690 return &power_perf_ops;
691 }
692
693 /*
694 * A counter has overflowed; update its count and record
695 * things if requested. Note that interrupts are hard-disabled
696 * here so there is no possibility of being interrupted.
697 */
698 static void record_and_restart(struct perf_counter *counter, long val,
699 struct pt_regs *regs)
700 {
701 s64 prev, delta, left;
702 int record = 0;
703
704 /* we don't have to worry about interrupts here */
705 prev = atomic64_read(&counter->hw.prev_count);
706 delta = (val - prev) & 0xfffffffful;
707 atomic64_add(delta, &counter->count);
708
709 /*
710 * See if the total period for this counter has expired,
711 * and update for the next period.
712 */
713 val = 0;
714 left = atomic64_read(&counter->hw.period_left) - delta;
715 if (counter->hw_event.irq_period) {
716 if (left <= 0) {
717 left += counter->hw_event.irq_period;
718 if (left <= 0)
719 left = counter->hw_event.irq_period;
720 record = 1;
721 }
722 if (left < 0x80000000L)
723 val = 0x80000000L - left;
724 }
725 write_pmc(counter->hw.idx, val);
726 atomic64_set(&counter->hw.prev_count, val);
727 atomic64_set(&counter->hw.period_left, left);
728 perf_counter_update_userpage(counter);
729
730 /*
731 * Finally record data if requested.
732 */
733 if (record)
734 perf_counter_overflow(counter, 1, regs);
735 }
736
737 /*
738 * Performance monitor interrupt stuff
739 */
740 static void perf_counter_interrupt(struct pt_regs *regs)
741 {
742 int i;
743 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
744 struct perf_counter *counter;
745 long val;
746 int found = 0;
747
748 for (i = 0; i < cpuhw->n_counters; ++i) {
749 counter = cpuhw->counter[i];
750 val = read_pmc(counter->hw.idx);
751 if ((int)val < 0) {
752 /* counter has overflowed */
753 found = 1;
754 record_and_restart(counter, val, regs);
755 }
756 }
757
758 /*
759 * In case we didn't find and reset the counter that caused
760 * the interrupt, scan all counters and reset any that are
761 * negative, to avoid getting continual interrupts.
762 * Any that we processed in the previous loop will not be negative.
763 */
764 if (!found) {
765 for (i = 0; i < ppmu->n_counter; ++i) {
766 val = read_pmc(i + 1);
767 if ((int)val < 0)
768 write_pmc(i + 1, 0);
769 }
770 }
771
772 /*
773 * Reset MMCR0 to its normal value. This will set PMXE and
774 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
775 * and thus allow interrupts to occur again.
776 * XXX might want to use MSR.PM to keep the counters frozen until
777 * we get back out of this interrupt.
778 */
779 mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
780
781 /*
782 * If we need a wakeup, check whether interrupts were soft-enabled
783 * when we took the interrupt. If they were, we can wake stuff up
784 * immediately; otherwise we'll have do the wakeup when interrupts
785 * get soft-enabled.
786 */
787 if (test_perf_counter_pending() && regs->softe) {
788 irq_enter();
789 clear_perf_counter_pending();
790 perf_counter_do_pending();
791 irq_exit();
792 }
793 }
794
795 void hw_perf_counter_setup(int cpu)
796 {
797 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
798
799 memset(cpuhw, 0, sizeof(*cpuhw));
800 cpuhw->mmcr[0] = MMCR0_FC;
801 }
802
803 extern struct power_pmu power4_pmu;
804 extern struct power_pmu ppc970_pmu;
805 extern struct power_pmu power5_pmu;
806 extern struct power_pmu power5p_pmu;
807 extern struct power_pmu power6_pmu;
808
809 static int init_perf_counters(void)
810 {
811 unsigned long pvr;
812
813 /* XXX should get this from cputable */
814 pvr = mfspr(SPRN_PVR);
815 switch (PVR_VER(pvr)) {
816 case PV_POWER4:
817 case PV_POWER4p:
818 ppmu = &power4_pmu;
819 break;
820 case PV_970:
821 case PV_970FX:
822 case PV_970MP:
823 ppmu = &ppc970_pmu;
824 break;
825 case PV_POWER5:
826 ppmu = &power5_pmu;
827 break;
828 case PV_POWER5p:
829 ppmu = &power5p_pmu;
830 break;
831 case 0x3e:
832 ppmu = &power6_pmu;
833 break;
834 }
835
836 /*
837 * Use FCHV to ignore kernel events if MSR.HV is set.
838 */
839 if (mfmsr() & MSR_HV)
840 freeze_counters_kernel = MMCR0_FCHV;
841
842 return 0;
843 }
844
845 arch_initcall(init_perf_counters);
This page took 0.049267 seconds and 6 git commands to generate.