[POWERPC] Move stackframe definitions to common header
[deliverable/linux.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50
51 extern unsigned long _get_SP(void);
52
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
58
59 /*
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
62 */
63 void flush_fp_to_thread(struct task_struct *tsk)
64 {
65 if (tsk->thread.regs) {
66 /*
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
73 */
74 preempt_disable();
75 if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
77 /*
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
83 */
84 BUG_ON(tsk != current);
85 #endif
86 giveup_fpu(tsk);
87 }
88 preempt_enable();
89 }
90 }
91
92 void enable_kernel_fp(void)
93 {
94 WARN_ON(preemptible());
95
96 #ifdef CONFIG_SMP
97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 giveup_fpu(current);
99 else
100 giveup_fpu(NULL); /* just enables FP for kernel */
101 #else
102 giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
104 }
105 EXPORT_SYMBOL(enable_kernel_fp);
106
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
108 {
109 if (!tsk->thread.regs)
110 return 0;
111 flush_fp_to_thread(current);
112
113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
114
115 return 1;
116 }
117
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
120 {
121 WARN_ON(preemptible());
122
123 #ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
128 #else
129 giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
131 }
132 EXPORT_SYMBOL(enable_kernel_altivec);
133
134 /*
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
137 */
138 void flush_altivec_to_thread(struct task_struct *tsk)
139 {
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145 #endif
146 giveup_altivec(tsk);
147 }
148 preempt_enable();
149 }
150 }
151
152 int dump_task_altivec(struct task_struct *tsk, elf_vrregset_t *vrregs)
153 {
154 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
155 * separately, see below */
156 const int nregs = ELF_NVRREG - 2;
157 elf_vrreg_t *reg;
158 u32 *dest;
159
160 if (tsk == current)
161 flush_altivec_to_thread(tsk);
162
163 reg = (elf_vrreg_t *)vrregs;
164
165 /* copy the 32 vr registers */
166 memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
167 reg += nregs;
168
169 /* copy the vscr */
170 memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
171 reg++;
172
173 /* vrsave is stored in the high 32bit slot of the final 128bits */
174 memset(reg, 0, sizeof(*reg));
175 dest = (u32 *)reg;
176 *dest = tsk->thread.vrsave;
177
178 return 1;
179 }
180 #endif /* CONFIG_ALTIVEC */
181
182 #ifdef CONFIG_SPE
183
184 void enable_kernel_spe(void)
185 {
186 WARN_ON(preemptible());
187
188 #ifdef CONFIG_SMP
189 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
190 giveup_spe(current);
191 else
192 giveup_spe(NULL); /* just enable SPE for kernel - force */
193 #else
194 giveup_spe(last_task_used_spe);
195 #endif /* __SMP __ */
196 }
197 EXPORT_SYMBOL(enable_kernel_spe);
198
199 void flush_spe_to_thread(struct task_struct *tsk)
200 {
201 if (tsk->thread.regs) {
202 preempt_disable();
203 if (tsk->thread.regs->msr & MSR_SPE) {
204 #ifdef CONFIG_SMP
205 BUG_ON(tsk != current);
206 #endif
207 giveup_spe(tsk);
208 }
209 preempt_enable();
210 }
211 }
212
213 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
214 {
215 flush_spe_to_thread(current);
216 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
217 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
218 return 1;
219 }
220 #endif /* CONFIG_SPE */
221
222 #ifndef CONFIG_SMP
223 /*
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
226 */
227 void discard_lazy_cpu_state(void)
228 {
229 preempt_disable();
230 if (last_task_used_math == current)
231 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec == current)
234 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_SPE
237 if (last_task_used_spe == current)
238 last_task_used_spe = NULL;
239 #endif
240 preempt_enable();
241 }
242 #endif /* CONFIG_SMP */
243
244 static DEFINE_PER_CPU(unsigned long, current_dabr);
245
246 int set_dabr(unsigned long dabr)
247 {
248 __get_cpu_var(current_dabr) = dabr;
249
250 #ifdef CONFIG_PPC_MERGE /* XXX for now */
251 if (ppc_md.set_dabr)
252 return ppc_md.set_dabr(dabr);
253 #endif
254
255 /* XXX should we have a CPU_FTR_HAS_DABR ? */
256 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
257 mtspr(SPRN_DABR, dabr);
258 #endif
259 return 0;
260 }
261
262 #ifdef CONFIG_PPC64
263 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
264 #endif
265
266 struct task_struct *__switch_to(struct task_struct *prev,
267 struct task_struct *new)
268 {
269 struct thread_struct *new_thread, *old_thread;
270 unsigned long flags;
271 struct task_struct *last;
272
273 #ifdef CONFIG_SMP
274 /* avoid complexity of lazy save/restore of fpu
275 * by just saving it every time we switch out if
276 * this task used the fpu during the last quantum.
277 *
278 * If it tries to use the fpu again, it'll trap and
279 * reload its fp regs. So we don't have to do a restore
280 * every switch, just a save.
281 * -- Cort
282 */
283 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
284 giveup_fpu(prev);
285 #ifdef CONFIG_ALTIVEC
286 /*
287 * If the previous thread used altivec in the last quantum
288 * (thus changing altivec regs) then save them.
289 * We used to check the VRSAVE register but not all apps
290 * set it, so we don't rely on it now (and in fact we need
291 * to save & restore VSCR even if VRSAVE == 0). -- paulus
292 *
293 * On SMP we always save/restore altivec regs just to avoid the
294 * complexity of changing processors.
295 * -- Cort
296 */
297 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
298 giveup_altivec(prev);
299 #endif /* CONFIG_ALTIVEC */
300 #ifdef CONFIG_SPE
301 /*
302 * If the previous thread used spe in the last quantum
303 * (thus changing spe regs) then save them.
304 *
305 * On SMP we always save/restore spe regs just to avoid the
306 * complexity of changing processors.
307 */
308 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
309 giveup_spe(prev);
310 #endif /* CONFIG_SPE */
311
312 #else /* CONFIG_SMP */
313 #ifdef CONFIG_ALTIVEC
314 /* Avoid the trap. On smp this this never happens since
315 * we don't set last_task_used_altivec -- Cort
316 */
317 if (new->thread.regs && last_task_used_altivec == new)
318 new->thread.regs->msr |= MSR_VEC;
319 #endif /* CONFIG_ALTIVEC */
320 #ifdef CONFIG_SPE
321 /* Avoid the trap. On smp this this never happens since
322 * we don't set last_task_used_spe
323 */
324 if (new->thread.regs && last_task_used_spe == new)
325 new->thread.regs->msr |= MSR_SPE;
326 #endif /* CONFIG_SPE */
327
328 #endif /* CONFIG_SMP */
329
330 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
331 set_dabr(new->thread.dabr);
332
333 new_thread = &new->thread;
334 old_thread = &current->thread;
335
336 #ifdef CONFIG_PPC64
337 /*
338 * Collect processor utilization data per process
339 */
340 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
341 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
342 long unsigned start_tb, current_tb;
343 start_tb = old_thread->start_tb;
344 cu->current_tb = current_tb = mfspr(SPRN_PURR);
345 old_thread->accum_tb += (current_tb - start_tb);
346 new_thread->start_tb = current_tb;
347 }
348 #endif
349
350 local_irq_save(flags);
351
352 account_system_vtime(current);
353 account_process_vtime(current);
354 calculate_steal_time();
355
356 /*
357 * We can't take a PMU exception inside _switch() since there is a
358 * window where the kernel stack SLB and the kernel stack are out
359 * of sync. Hard disable here.
360 */
361 hard_irq_disable();
362 last = _switch(old_thread, new_thread);
363
364 local_irq_restore(flags);
365
366 return last;
367 }
368
369 static int instructions_to_print = 16;
370
371 static void show_instructions(struct pt_regs *regs)
372 {
373 int i;
374 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
375 sizeof(int));
376
377 printk("Instruction dump:");
378
379 for (i = 0; i < instructions_to_print; i++) {
380 int instr;
381
382 if (!(i % 8))
383 printk("\n");
384
385 #if !defined(CONFIG_BOOKE)
386 /* If executing with the IMMU off, adjust pc rather
387 * than print XXXXXXXX.
388 */
389 if (!(regs->msr & MSR_IR))
390 pc = (unsigned long)phys_to_virt(pc);
391 #endif
392
393 /* We use __get_user here *only* to avoid an OOPS on a
394 * bad address because the pc *should* only be a
395 * kernel address.
396 */
397 if (!__kernel_text_address(pc) ||
398 __get_user(instr, (unsigned int __user *)pc)) {
399 printk("XXXXXXXX ");
400 } else {
401 if (regs->nip == pc)
402 printk("<%08x> ", instr);
403 else
404 printk("%08x ", instr);
405 }
406
407 pc += sizeof(int);
408 }
409
410 printk("\n");
411 }
412
413 static struct regbit {
414 unsigned long bit;
415 const char *name;
416 } msr_bits[] = {
417 {MSR_EE, "EE"},
418 {MSR_PR, "PR"},
419 {MSR_FP, "FP"},
420 {MSR_ME, "ME"},
421 {MSR_IR, "IR"},
422 {MSR_DR, "DR"},
423 {0, NULL}
424 };
425
426 static void printbits(unsigned long val, struct regbit *bits)
427 {
428 const char *sep = "";
429
430 printk("<");
431 for (; bits->bit; ++bits)
432 if (val & bits->bit) {
433 printk("%s%s", sep, bits->name);
434 sep = ",";
435 }
436 printk(">");
437 }
438
439 #ifdef CONFIG_PPC64
440 #define REG "%016lx"
441 #define REGS_PER_LINE 4
442 #define LAST_VOLATILE 13
443 #else
444 #define REG "%08lx"
445 #define REGS_PER_LINE 8
446 #define LAST_VOLATILE 12
447 #endif
448
449 void show_regs(struct pt_regs * regs)
450 {
451 int i, trap;
452
453 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
454 regs->nip, regs->link, regs->ctr);
455 printk("REGS: %p TRAP: %04lx %s (%s)\n",
456 regs, regs->trap, print_tainted(), init_utsname()->release);
457 printk("MSR: "REG" ", regs->msr);
458 printbits(regs->msr, msr_bits);
459 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
460 trap = TRAP(regs);
461 if (trap == 0x300 || trap == 0x600)
462 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
463 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
464 #else
465 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
466 #endif
467 printk("TASK = %p[%d] '%s' THREAD: %p",
468 current, task_pid_nr(current), current->comm, task_thread_info(current));
469
470 #ifdef CONFIG_SMP
471 printk(" CPU: %d", raw_smp_processor_id());
472 #endif /* CONFIG_SMP */
473
474 for (i = 0; i < 32; i++) {
475 if ((i % REGS_PER_LINE) == 0)
476 printk("\n" KERN_INFO "GPR%02d: ", i);
477 printk(REG " ", regs->gpr[i]);
478 if (i == LAST_VOLATILE && !FULL_REGS(regs))
479 break;
480 }
481 printk("\n");
482 #ifdef CONFIG_KALLSYMS
483 /*
484 * Lookup NIP late so we have the best change of getting the
485 * above info out without failing
486 */
487 printk("NIP ["REG"] ", regs->nip);
488 print_symbol("%s\n", regs->nip);
489 printk("LR ["REG"] ", regs->link);
490 print_symbol("%s\n", regs->link);
491 #endif
492 show_stack(current, (unsigned long *) regs->gpr[1]);
493 if (!user_mode(regs))
494 show_instructions(regs);
495 }
496
497 void exit_thread(void)
498 {
499 discard_lazy_cpu_state();
500 }
501
502 void flush_thread(void)
503 {
504 #ifdef CONFIG_PPC64
505 struct thread_info *t = current_thread_info();
506
507 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
508 clear_ti_thread_flag(t, TIF_ABI_PENDING);
509 if (test_ti_thread_flag(t, TIF_32BIT))
510 clear_ti_thread_flag(t, TIF_32BIT);
511 else
512 set_ti_thread_flag(t, TIF_32BIT);
513 }
514 #endif
515
516 discard_lazy_cpu_state();
517
518 if (current->thread.dabr) {
519 current->thread.dabr = 0;
520 set_dabr(0);
521 }
522 }
523
524 void
525 release_thread(struct task_struct *t)
526 {
527 }
528
529 /*
530 * This gets called before we allocate a new thread and copy
531 * the current task into it.
532 */
533 void prepare_to_copy(struct task_struct *tsk)
534 {
535 flush_fp_to_thread(current);
536 flush_altivec_to_thread(current);
537 flush_spe_to_thread(current);
538 }
539
540 /*
541 * Copy a thread..
542 */
543 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
544 unsigned long unused, struct task_struct *p,
545 struct pt_regs *regs)
546 {
547 struct pt_regs *childregs, *kregs;
548 extern void ret_from_fork(void);
549 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
550
551 CHECK_FULL_REGS(regs);
552 /* Copy registers */
553 sp -= sizeof(struct pt_regs);
554 childregs = (struct pt_regs *) sp;
555 *childregs = *regs;
556 if ((childregs->msr & MSR_PR) == 0) {
557 /* for kernel thread, set `current' and stackptr in new task */
558 childregs->gpr[1] = sp + sizeof(struct pt_regs);
559 #ifdef CONFIG_PPC32
560 childregs->gpr[2] = (unsigned long) p;
561 #else
562 clear_tsk_thread_flag(p, TIF_32BIT);
563 #endif
564 p->thread.regs = NULL; /* no user register state */
565 } else {
566 childregs->gpr[1] = usp;
567 p->thread.regs = childregs;
568 if (clone_flags & CLONE_SETTLS) {
569 #ifdef CONFIG_PPC64
570 if (!test_thread_flag(TIF_32BIT))
571 childregs->gpr[13] = childregs->gpr[6];
572 else
573 #endif
574 childregs->gpr[2] = childregs->gpr[6];
575 }
576 }
577 childregs->gpr[3] = 0; /* Result from fork() */
578 sp -= STACK_FRAME_OVERHEAD;
579
580 /*
581 * The way this works is that at some point in the future
582 * some task will call _switch to switch to the new task.
583 * That will pop off the stack frame created below and start
584 * the new task running at ret_from_fork. The new task will
585 * do some house keeping and then return from the fork or clone
586 * system call, using the stack frame created above.
587 */
588 sp -= sizeof(struct pt_regs);
589 kregs = (struct pt_regs *) sp;
590 sp -= STACK_FRAME_OVERHEAD;
591 p->thread.ksp = sp;
592
593 #ifdef CONFIG_PPC64
594 if (cpu_has_feature(CPU_FTR_SLB)) {
595 unsigned long sp_vsid;
596 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
597
598 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
599 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
600 << SLB_VSID_SHIFT_1T;
601 else
602 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
603 << SLB_VSID_SHIFT;
604 sp_vsid |= SLB_VSID_KERNEL | llp;
605 p->thread.ksp_vsid = sp_vsid;
606 }
607
608 /*
609 * The PPC64 ABI makes use of a TOC to contain function
610 * pointers. The function (ret_from_except) is actually a pointer
611 * to the TOC entry. The first entry is a pointer to the actual
612 * function.
613 */
614 kregs->nip = *((unsigned long *)ret_from_fork);
615 #else
616 kregs->nip = (unsigned long)ret_from_fork;
617 #endif
618
619 return 0;
620 }
621
622 /*
623 * Set up a thread for executing a new program
624 */
625 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
626 {
627 #ifdef CONFIG_PPC64
628 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
629 #endif
630
631 set_fs(USER_DS);
632
633 /*
634 * If we exec out of a kernel thread then thread.regs will not be
635 * set. Do it now.
636 */
637 if (!current->thread.regs) {
638 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
639 current->thread.regs = regs - 1;
640 }
641
642 memset(regs->gpr, 0, sizeof(regs->gpr));
643 regs->ctr = 0;
644 regs->link = 0;
645 regs->xer = 0;
646 regs->ccr = 0;
647 regs->gpr[1] = sp;
648
649 /*
650 * We have just cleared all the nonvolatile GPRs, so make
651 * FULL_REGS(regs) return true. This is necessary to allow
652 * ptrace to examine the thread immediately after exec.
653 */
654 regs->trap &= ~1UL;
655
656 #ifdef CONFIG_PPC32
657 regs->mq = 0;
658 regs->nip = start;
659 regs->msr = MSR_USER;
660 #else
661 if (!test_thread_flag(TIF_32BIT)) {
662 unsigned long entry, toc;
663
664 /* start is a relocated pointer to the function descriptor for
665 * the elf _start routine. The first entry in the function
666 * descriptor is the entry address of _start and the second
667 * entry is the TOC value we need to use.
668 */
669 __get_user(entry, (unsigned long __user *)start);
670 __get_user(toc, (unsigned long __user *)start+1);
671
672 /* Check whether the e_entry function descriptor entries
673 * need to be relocated before we can use them.
674 */
675 if (load_addr != 0) {
676 entry += load_addr;
677 toc += load_addr;
678 }
679 regs->nip = entry;
680 regs->gpr[2] = toc;
681 regs->msr = MSR_USER64;
682 } else {
683 regs->nip = start;
684 regs->gpr[2] = 0;
685 regs->msr = MSR_USER32;
686 }
687 #endif
688
689 discard_lazy_cpu_state();
690 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
691 current->thread.fpscr.val = 0;
692 #ifdef CONFIG_ALTIVEC
693 memset(current->thread.vr, 0, sizeof(current->thread.vr));
694 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
695 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
696 current->thread.vrsave = 0;
697 current->thread.used_vr = 0;
698 #endif /* CONFIG_ALTIVEC */
699 #ifdef CONFIG_SPE
700 memset(current->thread.evr, 0, sizeof(current->thread.evr));
701 current->thread.acc = 0;
702 current->thread.spefscr = 0;
703 current->thread.used_spe = 0;
704 #endif /* CONFIG_SPE */
705 }
706
707 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
708 | PR_FP_EXC_RES | PR_FP_EXC_INV)
709
710 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
711 {
712 struct pt_regs *regs = tsk->thread.regs;
713
714 /* This is a bit hairy. If we are an SPE enabled processor
715 * (have embedded fp) we store the IEEE exception enable flags in
716 * fpexc_mode. fpexc_mode is also used for setting FP exception
717 * mode (asyn, precise, disabled) for 'Classic' FP. */
718 if (val & PR_FP_EXC_SW_ENABLE) {
719 #ifdef CONFIG_SPE
720 if (cpu_has_feature(CPU_FTR_SPE)) {
721 tsk->thread.fpexc_mode = val &
722 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
723 return 0;
724 } else {
725 return -EINVAL;
726 }
727 #else
728 return -EINVAL;
729 #endif
730 }
731
732 /* on a CONFIG_SPE this does not hurt us. The bits that
733 * __pack_fe01 use do not overlap with bits used for
734 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
735 * on CONFIG_SPE implementations are reserved so writing to
736 * them does not change anything */
737 if (val > PR_FP_EXC_PRECISE)
738 return -EINVAL;
739 tsk->thread.fpexc_mode = __pack_fe01(val);
740 if (regs != NULL && (regs->msr & MSR_FP) != 0)
741 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
742 | tsk->thread.fpexc_mode;
743 return 0;
744 }
745
746 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
747 {
748 unsigned int val;
749
750 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
751 #ifdef CONFIG_SPE
752 if (cpu_has_feature(CPU_FTR_SPE))
753 val = tsk->thread.fpexc_mode;
754 else
755 return -EINVAL;
756 #else
757 return -EINVAL;
758 #endif
759 else
760 val = __unpack_fe01(tsk->thread.fpexc_mode);
761 return put_user(val, (unsigned int __user *) adr);
762 }
763
764 int set_endian(struct task_struct *tsk, unsigned int val)
765 {
766 struct pt_regs *regs = tsk->thread.regs;
767
768 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
769 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
770 return -EINVAL;
771
772 if (regs == NULL)
773 return -EINVAL;
774
775 if (val == PR_ENDIAN_BIG)
776 regs->msr &= ~MSR_LE;
777 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
778 regs->msr |= MSR_LE;
779 else
780 return -EINVAL;
781
782 return 0;
783 }
784
785 int get_endian(struct task_struct *tsk, unsigned long adr)
786 {
787 struct pt_regs *regs = tsk->thread.regs;
788 unsigned int val;
789
790 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
791 !cpu_has_feature(CPU_FTR_REAL_LE))
792 return -EINVAL;
793
794 if (regs == NULL)
795 return -EINVAL;
796
797 if (regs->msr & MSR_LE) {
798 if (cpu_has_feature(CPU_FTR_REAL_LE))
799 val = PR_ENDIAN_LITTLE;
800 else
801 val = PR_ENDIAN_PPC_LITTLE;
802 } else
803 val = PR_ENDIAN_BIG;
804
805 return put_user(val, (unsigned int __user *)adr);
806 }
807
808 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
809 {
810 tsk->thread.align_ctl = val;
811 return 0;
812 }
813
814 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
815 {
816 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
817 }
818
819 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
820
821 int sys_clone(unsigned long clone_flags, unsigned long usp,
822 int __user *parent_tidp, void __user *child_threadptr,
823 int __user *child_tidp, int p6,
824 struct pt_regs *regs)
825 {
826 CHECK_FULL_REGS(regs);
827 if (usp == 0)
828 usp = regs->gpr[1]; /* stack pointer for child */
829 #ifdef CONFIG_PPC64
830 if (test_thread_flag(TIF_32BIT)) {
831 parent_tidp = TRUNC_PTR(parent_tidp);
832 child_tidp = TRUNC_PTR(child_tidp);
833 }
834 #endif
835 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
836 }
837
838 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
839 unsigned long p4, unsigned long p5, unsigned long p6,
840 struct pt_regs *regs)
841 {
842 CHECK_FULL_REGS(regs);
843 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
844 }
845
846 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
847 unsigned long p4, unsigned long p5, unsigned long p6,
848 struct pt_regs *regs)
849 {
850 CHECK_FULL_REGS(regs);
851 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
852 regs, 0, NULL, NULL);
853 }
854
855 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
856 unsigned long a3, unsigned long a4, unsigned long a5,
857 struct pt_regs *regs)
858 {
859 int error;
860 char *filename;
861
862 filename = getname((char __user *) a0);
863 error = PTR_ERR(filename);
864 if (IS_ERR(filename))
865 goto out;
866 flush_fp_to_thread(current);
867 flush_altivec_to_thread(current);
868 flush_spe_to_thread(current);
869 error = do_execve(filename, (char __user * __user *) a1,
870 (char __user * __user *) a2, regs);
871 putname(filename);
872 out:
873 return error;
874 }
875
876 #ifdef CONFIG_IRQSTACKS
877 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
878 unsigned long nbytes)
879 {
880 unsigned long stack_page;
881 unsigned long cpu = task_cpu(p);
882
883 /*
884 * Avoid crashing if the stack has overflowed and corrupted
885 * task_cpu(p), which is in the thread_info struct.
886 */
887 if (cpu < NR_CPUS && cpu_possible(cpu)) {
888 stack_page = (unsigned long) hardirq_ctx[cpu];
889 if (sp >= stack_page + sizeof(struct thread_struct)
890 && sp <= stack_page + THREAD_SIZE - nbytes)
891 return 1;
892
893 stack_page = (unsigned long) softirq_ctx[cpu];
894 if (sp >= stack_page + sizeof(struct thread_struct)
895 && sp <= stack_page + THREAD_SIZE - nbytes)
896 return 1;
897 }
898 return 0;
899 }
900
901 #else
902 #define valid_irq_stack(sp, p, nb) 0
903 #endif /* CONFIG_IRQSTACKS */
904
905 int validate_sp(unsigned long sp, struct task_struct *p,
906 unsigned long nbytes)
907 {
908 unsigned long stack_page = (unsigned long)task_stack_page(p);
909
910 if (sp >= stack_page + sizeof(struct thread_struct)
911 && sp <= stack_page + THREAD_SIZE - nbytes)
912 return 1;
913
914 return valid_irq_stack(sp, p, nbytes);
915 }
916
917 EXPORT_SYMBOL(validate_sp);
918
919 unsigned long get_wchan(struct task_struct *p)
920 {
921 unsigned long ip, sp;
922 int count = 0;
923
924 if (!p || p == current || p->state == TASK_RUNNING)
925 return 0;
926
927 sp = p->thread.ksp;
928 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
929 return 0;
930
931 do {
932 sp = *(unsigned long *)sp;
933 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
934 return 0;
935 if (count > 0) {
936 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
937 if (!in_sched_functions(ip))
938 return ip;
939 }
940 } while (count++ < 16);
941 return 0;
942 }
943
944 static int kstack_depth_to_print = 64;
945
946 void show_stack(struct task_struct *tsk, unsigned long *stack)
947 {
948 unsigned long sp, ip, lr, newsp;
949 int count = 0;
950 int firstframe = 1;
951
952 sp = (unsigned long) stack;
953 if (tsk == NULL)
954 tsk = current;
955 if (sp == 0) {
956 if (tsk == current)
957 asm("mr %0,1" : "=r" (sp));
958 else
959 sp = tsk->thread.ksp;
960 }
961
962 lr = 0;
963 printk("Call Trace:\n");
964 do {
965 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
966 return;
967
968 stack = (unsigned long *) sp;
969 newsp = stack[0];
970 ip = stack[STACK_FRAME_LR_SAVE];
971 if (!firstframe || ip != lr) {
972 printk("["REG"] ["REG"] ", sp, ip);
973 print_symbol("%s", ip);
974 if (firstframe)
975 printk(" (unreliable)");
976 printk("\n");
977 }
978 firstframe = 0;
979
980 /*
981 * See if this is an exception frame.
982 * We look for the "regshere" marker in the current frame.
983 */
984 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
985 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
986 struct pt_regs *regs = (struct pt_regs *)
987 (sp + STACK_FRAME_OVERHEAD);
988 printk("--- Exception: %lx", regs->trap);
989 print_symbol(" at %s\n", regs->nip);
990 lr = regs->link;
991 print_symbol(" LR = %s\n", lr);
992 firstframe = 1;
993 }
994
995 sp = newsp;
996 } while (count++ < kstack_depth_to_print);
997 }
998
999 void dump_stack(void)
1000 {
1001 show_stack(current, NULL);
1002 }
1003 EXPORT_SYMBOL(dump_stack);
1004
1005 #ifdef CONFIG_PPC64
1006 void ppc64_runlatch_on(void)
1007 {
1008 unsigned long ctrl;
1009
1010 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1011 HMT_medium();
1012
1013 ctrl = mfspr(SPRN_CTRLF);
1014 ctrl |= CTRL_RUNLATCH;
1015 mtspr(SPRN_CTRLT, ctrl);
1016
1017 set_thread_flag(TIF_RUNLATCH);
1018 }
1019 }
1020
1021 void ppc64_runlatch_off(void)
1022 {
1023 unsigned long ctrl;
1024
1025 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1026 HMT_medium();
1027
1028 clear_thread_flag(TIF_RUNLATCH);
1029
1030 ctrl = mfspr(SPRN_CTRLF);
1031 ctrl &= ~CTRL_RUNLATCH;
1032 mtspr(SPRN_CTRLT, ctrl);
1033 }
1034 }
1035 #endif
This page took 0.074834 seconds and 5 git commands to generate.