Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mattst88...
[deliverable/linux.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/syscalls.h>
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #endif
55 #include <linux/kprobes.h>
56 #include <linux/kdebug.h>
57
58 extern unsigned long _get_SP(void);
59
60 #ifndef CONFIG_SMP
61 struct task_struct *last_task_used_math = NULL;
62 struct task_struct *last_task_used_altivec = NULL;
63 struct task_struct *last_task_used_vsx = NULL;
64 struct task_struct *last_task_used_spe = NULL;
65 #endif
66
67 /*
68 * Make sure the floating-point register state in the
69 * the thread_struct is up to date for task tsk.
70 */
71 void flush_fp_to_thread(struct task_struct *tsk)
72 {
73 if (tsk->thread.regs) {
74 /*
75 * We need to disable preemption here because if we didn't,
76 * another process could get scheduled after the regs->msr
77 * test but before we have finished saving the FP registers
78 * to the thread_struct. That process could take over the
79 * FPU, and then when we get scheduled again we would store
80 * bogus values for the remaining FP registers.
81 */
82 preempt_disable();
83 if (tsk->thread.regs->msr & MSR_FP) {
84 #ifdef CONFIG_SMP
85 /*
86 * This should only ever be called for current or
87 * for a stopped child process. Since we save away
88 * the FP register state on context switch on SMP,
89 * there is something wrong if a stopped child appears
90 * to still have its FP state in the CPU registers.
91 */
92 BUG_ON(tsk != current);
93 #endif
94 giveup_fpu(tsk);
95 }
96 preempt_enable();
97 }
98 }
99
100 void enable_kernel_fp(void)
101 {
102 WARN_ON(preemptible());
103
104 #ifdef CONFIG_SMP
105 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
106 giveup_fpu(current);
107 else
108 giveup_fpu(NULL); /* just enables FP for kernel */
109 #else
110 giveup_fpu(last_task_used_math);
111 #endif /* CONFIG_SMP */
112 }
113 EXPORT_SYMBOL(enable_kernel_fp);
114
115 #ifdef CONFIG_ALTIVEC
116 void enable_kernel_altivec(void)
117 {
118 WARN_ON(preemptible());
119
120 #ifdef CONFIG_SMP
121 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
122 giveup_altivec(current);
123 else
124 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
125 #else
126 giveup_altivec(last_task_used_altivec);
127 #endif /* CONFIG_SMP */
128 }
129 EXPORT_SYMBOL(enable_kernel_altivec);
130
131 /*
132 * Make sure the VMX/Altivec register state in the
133 * the thread_struct is up to date for task tsk.
134 */
135 void flush_altivec_to_thread(struct task_struct *tsk)
136 {
137 if (tsk->thread.regs) {
138 preempt_disable();
139 if (tsk->thread.regs->msr & MSR_VEC) {
140 #ifdef CONFIG_SMP
141 BUG_ON(tsk != current);
142 #endif
143 giveup_altivec(tsk);
144 }
145 preempt_enable();
146 }
147 }
148 #endif /* CONFIG_ALTIVEC */
149
150 #ifdef CONFIG_VSX
151 #if 0
152 /* not currently used, but some crazy RAID module might want to later */
153 void enable_kernel_vsx(void)
154 {
155 WARN_ON(preemptible());
156
157 #ifdef CONFIG_SMP
158 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
159 giveup_vsx(current);
160 else
161 giveup_vsx(NULL); /* just enable vsx for kernel - force */
162 #else
163 giveup_vsx(last_task_used_vsx);
164 #endif /* CONFIG_SMP */
165 }
166 EXPORT_SYMBOL(enable_kernel_vsx);
167 #endif
168
169 void giveup_vsx(struct task_struct *tsk)
170 {
171 giveup_fpu(tsk);
172 giveup_altivec(tsk);
173 __giveup_vsx(tsk);
174 }
175
176 void flush_vsx_to_thread(struct task_struct *tsk)
177 {
178 if (tsk->thread.regs) {
179 preempt_disable();
180 if (tsk->thread.regs->msr & MSR_VSX) {
181 #ifdef CONFIG_SMP
182 BUG_ON(tsk != current);
183 #endif
184 giveup_vsx(tsk);
185 }
186 preempt_enable();
187 }
188 }
189 #endif /* CONFIG_VSX */
190
191 #ifdef CONFIG_SPE
192
193 void enable_kernel_spe(void)
194 {
195 WARN_ON(preemptible());
196
197 #ifdef CONFIG_SMP
198 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
199 giveup_spe(current);
200 else
201 giveup_spe(NULL); /* just enable SPE for kernel - force */
202 #else
203 giveup_spe(last_task_used_spe);
204 #endif /* __SMP __ */
205 }
206 EXPORT_SYMBOL(enable_kernel_spe);
207
208 void flush_spe_to_thread(struct task_struct *tsk)
209 {
210 if (tsk->thread.regs) {
211 preempt_disable();
212 if (tsk->thread.regs->msr & MSR_SPE) {
213 #ifdef CONFIG_SMP
214 BUG_ON(tsk != current);
215 #endif
216 giveup_spe(tsk);
217 }
218 preempt_enable();
219 }
220 }
221 #endif /* CONFIG_SPE */
222
223 #ifndef CONFIG_SMP
224 /*
225 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
226 * and the current task has some state, discard it.
227 */
228 void discard_lazy_cpu_state(void)
229 {
230 preempt_disable();
231 if (last_task_used_math == current)
232 last_task_used_math = NULL;
233 #ifdef CONFIG_ALTIVEC
234 if (last_task_used_altivec == current)
235 last_task_used_altivec = NULL;
236 #endif /* CONFIG_ALTIVEC */
237 #ifdef CONFIG_VSX
238 if (last_task_used_vsx == current)
239 last_task_used_vsx = NULL;
240 #endif /* CONFIG_VSX */
241 #ifdef CONFIG_SPE
242 if (last_task_used_spe == current)
243 last_task_used_spe = NULL;
244 #endif
245 preempt_enable();
246 }
247 #endif /* CONFIG_SMP */
248
249 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
250 void do_send_trap(struct pt_regs *regs, unsigned long address,
251 unsigned long error_code, int signal_code, int breakpt)
252 {
253 siginfo_t info;
254
255 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
256 11, SIGSEGV) == NOTIFY_STOP)
257 return;
258
259 /* Deliver the signal to userspace */
260 info.si_signo = SIGTRAP;
261 info.si_errno = breakpt; /* breakpoint or watchpoint id */
262 info.si_code = signal_code;
263 info.si_addr = (void __user *)address;
264 force_sig_info(SIGTRAP, &info, current);
265 }
266 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
267 void do_dabr(struct pt_regs *regs, unsigned long address,
268 unsigned long error_code)
269 {
270 siginfo_t info;
271
272 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273 11, SIGSEGV) == NOTIFY_STOP)
274 return;
275
276 if (debugger_dabr_match(regs))
277 return;
278
279 /* Clear the DABR */
280 set_dabr(0);
281
282 /* Deliver the signal to userspace */
283 info.si_signo = SIGTRAP;
284 info.si_errno = 0;
285 info.si_code = TRAP_HWBKPT;
286 info.si_addr = (void __user *)address;
287 force_sig_info(SIGTRAP, &info, current);
288 }
289 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
290
291 static DEFINE_PER_CPU(unsigned long, current_dabr);
292
293 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
294 /*
295 * Set the debug registers back to their default "safe" values.
296 */
297 static void set_debug_reg_defaults(struct thread_struct *thread)
298 {
299 thread->iac1 = thread->iac2 = 0;
300 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
301 thread->iac3 = thread->iac4 = 0;
302 #endif
303 thread->dac1 = thread->dac2 = 0;
304 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
305 thread->dvc1 = thread->dvc2 = 0;
306 #endif
307 thread->dbcr0 = 0;
308 #ifdef CONFIG_BOOKE
309 /*
310 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
311 */
312 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
313 DBCR1_IAC3US | DBCR1_IAC4US;
314 /*
315 * Force Data Address Compare User/Supervisor bits to be User-only
316 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
317 */
318 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
319 #else
320 thread->dbcr1 = 0;
321 #endif
322 }
323
324 static void prime_debug_regs(struct thread_struct *thread)
325 {
326 mtspr(SPRN_IAC1, thread->iac1);
327 mtspr(SPRN_IAC2, thread->iac2);
328 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
329 mtspr(SPRN_IAC3, thread->iac3);
330 mtspr(SPRN_IAC4, thread->iac4);
331 #endif
332 mtspr(SPRN_DAC1, thread->dac1);
333 mtspr(SPRN_DAC2, thread->dac2);
334 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
335 mtspr(SPRN_DVC1, thread->dvc1);
336 mtspr(SPRN_DVC2, thread->dvc2);
337 #endif
338 mtspr(SPRN_DBCR0, thread->dbcr0);
339 mtspr(SPRN_DBCR1, thread->dbcr1);
340 #ifdef CONFIG_BOOKE
341 mtspr(SPRN_DBCR2, thread->dbcr2);
342 #endif
343 }
344 /*
345 * Unless neither the old or new thread are making use of the
346 * debug registers, set the debug registers from the values
347 * stored in the new thread.
348 */
349 static void switch_booke_debug_regs(struct thread_struct *new_thread)
350 {
351 if ((current->thread.dbcr0 & DBCR0_IDM)
352 || (new_thread->dbcr0 & DBCR0_IDM))
353 prime_debug_regs(new_thread);
354 }
355 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
356 #ifndef CONFIG_HAVE_HW_BREAKPOINT
357 static void set_debug_reg_defaults(struct thread_struct *thread)
358 {
359 if (thread->dabr) {
360 thread->dabr = 0;
361 set_dabr(0);
362 }
363 }
364 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
365 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
366
367 int set_dabr(unsigned long dabr)
368 {
369 __get_cpu_var(current_dabr) = dabr;
370
371 if (ppc_md.set_dabr)
372 return ppc_md.set_dabr(dabr);
373
374 /* XXX should we have a CPU_FTR_HAS_DABR ? */
375 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
376 mtspr(SPRN_DAC1, dabr);
377 #ifdef CONFIG_PPC_47x
378 isync();
379 #endif
380 #elif defined(CONFIG_PPC_BOOK3S)
381 mtspr(SPRN_DABR, dabr);
382 #endif
383
384
385 return 0;
386 }
387
388 #ifdef CONFIG_PPC64
389 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
390 #endif
391
392 struct task_struct *__switch_to(struct task_struct *prev,
393 struct task_struct *new)
394 {
395 struct thread_struct *new_thread, *old_thread;
396 unsigned long flags;
397 struct task_struct *last;
398
399 #ifdef CONFIG_SMP
400 /* avoid complexity of lazy save/restore of fpu
401 * by just saving it every time we switch out if
402 * this task used the fpu during the last quantum.
403 *
404 * If it tries to use the fpu again, it'll trap and
405 * reload its fp regs. So we don't have to do a restore
406 * every switch, just a save.
407 * -- Cort
408 */
409 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
410 giveup_fpu(prev);
411 #ifdef CONFIG_ALTIVEC
412 /*
413 * If the previous thread used altivec in the last quantum
414 * (thus changing altivec regs) then save them.
415 * We used to check the VRSAVE register but not all apps
416 * set it, so we don't rely on it now (and in fact we need
417 * to save & restore VSCR even if VRSAVE == 0). -- paulus
418 *
419 * On SMP we always save/restore altivec regs just to avoid the
420 * complexity of changing processors.
421 * -- Cort
422 */
423 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
424 giveup_altivec(prev);
425 #endif /* CONFIG_ALTIVEC */
426 #ifdef CONFIG_VSX
427 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
428 /* VMX and FPU registers are already save here */
429 __giveup_vsx(prev);
430 #endif /* CONFIG_VSX */
431 #ifdef CONFIG_SPE
432 /*
433 * If the previous thread used spe in the last quantum
434 * (thus changing spe regs) then save them.
435 *
436 * On SMP we always save/restore spe regs just to avoid the
437 * complexity of changing processors.
438 */
439 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
440 giveup_spe(prev);
441 #endif /* CONFIG_SPE */
442
443 #else /* CONFIG_SMP */
444 #ifdef CONFIG_ALTIVEC
445 /* Avoid the trap. On smp this this never happens since
446 * we don't set last_task_used_altivec -- Cort
447 */
448 if (new->thread.regs && last_task_used_altivec == new)
449 new->thread.regs->msr |= MSR_VEC;
450 #endif /* CONFIG_ALTIVEC */
451 #ifdef CONFIG_VSX
452 if (new->thread.regs && last_task_used_vsx == new)
453 new->thread.regs->msr |= MSR_VSX;
454 #endif /* CONFIG_VSX */
455 #ifdef CONFIG_SPE
456 /* Avoid the trap. On smp this this never happens since
457 * we don't set last_task_used_spe
458 */
459 if (new->thread.regs && last_task_used_spe == new)
460 new->thread.regs->msr |= MSR_SPE;
461 #endif /* CONFIG_SPE */
462
463 #endif /* CONFIG_SMP */
464
465 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
466 switch_booke_debug_regs(&new->thread);
467 #else
468 /*
469 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
470 * schedule DABR
471 */
472 #ifndef CONFIG_HAVE_HW_BREAKPOINT
473 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
474 set_dabr(new->thread.dabr);
475 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
476 #endif
477
478
479 new_thread = &new->thread;
480 old_thread = &current->thread;
481
482 #if defined(CONFIG_PPC_BOOK3E_64)
483 /* XXX Current Book3E code doesn't deal with kernel side DBCR0,
484 * we always hold the user values, so we set it now.
485 *
486 * However, we ensure the kernel MSR:DE is appropriately cleared too
487 * to avoid spurrious single step exceptions in the kernel.
488 *
489 * This will have to change to merge with the ppc32 code at some point,
490 * but I don't like much what ppc32 is doing today so there's some
491 * thinking needed there
492 */
493 if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) {
494 u32 dbcr0;
495
496 mtmsr(mfmsr() & ~MSR_DE);
497 isync();
498 dbcr0 = mfspr(SPRN_DBCR0);
499 dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0;
500 mtspr(SPRN_DBCR0, dbcr0);
501 }
502 #endif /* CONFIG_PPC64_BOOK3E */
503
504 #ifdef CONFIG_PPC64
505 /*
506 * Collect processor utilization data per process
507 */
508 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
509 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
510 long unsigned start_tb, current_tb;
511 start_tb = old_thread->start_tb;
512 cu->current_tb = current_tb = mfspr(SPRN_PURR);
513 old_thread->accum_tb += (current_tb - start_tb);
514 new_thread->start_tb = current_tb;
515 }
516 #endif
517
518 local_irq_save(flags);
519
520 account_system_vtime(current);
521 account_process_vtime(current);
522
523 /*
524 * We can't take a PMU exception inside _switch() since there is a
525 * window where the kernel stack SLB and the kernel stack are out
526 * of sync. Hard disable here.
527 */
528 hard_irq_disable();
529 last = _switch(old_thread, new_thread);
530
531 local_irq_restore(flags);
532
533 return last;
534 }
535
536 static int instructions_to_print = 16;
537
538 static void show_instructions(struct pt_regs *regs)
539 {
540 int i;
541 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
542 sizeof(int));
543
544 printk("Instruction dump:");
545
546 for (i = 0; i < instructions_to_print; i++) {
547 int instr;
548
549 if (!(i % 8))
550 printk("\n");
551
552 #if !defined(CONFIG_BOOKE)
553 /* If executing with the IMMU off, adjust pc rather
554 * than print XXXXXXXX.
555 */
556 if (!(regs->msr & MSR_IR))
557 pc = (unsigned long)phys_to_virt(pc);
558 #endif
559
560 /* We use __get_user here *only* to avoid an OOPS on a
561 * bad address because the pc *should* only be a
562 * kernel address.
563 */
564 if (!__kernel_text_address(pc) ||
565 __get_user(instr, (unsigned int __user *)pc)) {
566 printk("XXXXXXXX ");
567 } else {
568 if (regs->nip == pc)
569 printk("<%08x> ", instr);
570 else
571 printk("%08x ", instr);
572 }
573
574 pc += sizeof(int);
575 }
576
577 printk("\n");
578 }
579
580 static struct regbit {
581 unsigned long bit;
582 const char *name;
583 } msr_bits[] = {
584 {MSR_EE, "EE"},
585 {MSR_PR, "PR"},
586 {MSR_FP, "FP"},
587 {MSR_VEC, "VEC"},
588 {MSR_VSX, "VSX"},
589 {MSR_ME, "ME"},
590 {MSR_CE, "CE"},
591 {MSR_DE, "DE"},
592 {MSR_IR, "IR"},
593 {MSR_DR, "DR"},
594 {0, NULL}
595 };
596
597 static void printbits(unsigned long val, struct regbit *bits)
598 {
599 const char *sep = "";
600
601 printk("<");
602 for (; bits->bit; ++bits)
603 if (val & bits->bit) {
604 printk("%s%s", sep, bits->name);
605 sep = ",";
606 }
607 printk(">");
608 }
609
610 #ifdef CONFIG_PPC64
611 #define REG "%016lx"
612 #define REGS_PER_LINE 4
613 #define LAST_VOLATILE 13
614 #else
615 #define REG "%08lx"
616 #define REGS_PER_LINE 8
617 #define LAST_VOLATILE 12
618 #endif
619
620 void show_regs(struct pt_regs * regs)
621 {
622 int i, trap;
623
624 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
625 regs->nip, regs->link, regs->ctr);
626 printk("REGS: %p TRAP: %04lx %s (%s)\n",
627 regs, regs->trap, print_tainted(), init_utsname()->release);
628 printk("MSR: "REG" ", regs->msr);
629 printbits(regs->msr, msr_bits);
630 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
631 trap = TRAP(regs);
632 if (trap == 0x300 || trap == 0x600)
633 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
634 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
635 #else
636 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
637 #endif
638 printk("TASK = %p[%d] '%s' THREAD: %p",
639 current, task_pid_nr(current), current->comm, task_thread_info(current));
640
641 #ifdef CONFIG_SMP
642 printk(" CPU: %d", raw_smp_processor_id());
643 #endif /* CONFIG_SMP */
644
645 for (i = 0; i < 32; i++) {
646 if ((i % REGS_PER_LINE) == 0)
647 printk("\nGPR%02d: ", i);
648 printk(REG " ", regs->gpr[i]);
649 if (i == LAST_VOLATILE && !FULL_REGS(regs))
650 break;
651 }
652 printk("\n");
653 #ifdef CONFIG_KALLSYMS
654 /*
655 * Lookup NIP late so we have the best change of getting the
656 * above info out without failing
657 */
658 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
659 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
660 #endif
661 show_stack(current, (unsigned long *) regs->gpr[1]);
662 if (!user_mode(regs))
663 show_instructions(regs);
664 }
665
666 void exit_thread(void)
667 {
668 discard_lazy_cpu_state();
669 }
670
671 void flush_thread(void)
672 {
673 discard_lazy_cpu_state();
674
675 #ifdef CONFIG_HAVE_HW_BREAKPOINT
676 flush_ptrace_hw_breakpoint(current);
677 #else /* CONFIG_HAVE_HW_BREAKPOINT */
678 set_debug_reg_defaults(&current->thread);
679 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
680 }
681
682 void
683 release_thread(struct task_struct *t)
684 {
685 }
686
687 /*
688 * This gets called before we allocate a new thread and copy
689 * the current task into it.
690 */
691 void prepare_to_copy(struct task_struct *tsk)
692 {
693 flush_fp_to_thread(current);
694 flush_altivec_to_thread(current);
695 flush_vsx_to_thread(current);
696 flush_spe_to_thread(current);
697 #ifdef CONFIG_HAVE_HW_BREAKPOINT
698 flush_ptrace_hw_breakpoint(tsk);
699 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
700 }
701
702 /*
703 * Copy a thread..
704 */
705 int copy_thread(unsigned long clone_flags, unsigned long usp,
706 unsigned long unused, struct task_struct *p,
707 struct pt_regs *regs)
708 {
709 struct pt_regs *childregs, *kregs;
710 extern void ret_from_fork(void);
711 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
712
713 CHECK_FULL_REGS(regs);
714 /* Copy registers */
715 sp -= sizeof(struct pt_regs);
716 childregs = (struct pt_regs *) sp;
717 *childregs = *regs;
718 if ((childregs->msr & MSR_PR) == 0) {
719 /* for kernel thread, set `current' and stackptr in new task */
720 childregs->gpr[1] = sp + sizeof(struct pt_regs);
721 #ifdef CONFIG_PPC32
722 childregs->gpr[2] = (unsigned long) p;
723 #else
724 clear_tsk_thread_flag(p, TIF_32BIT);
725 #endif
726 p->thread.regs = NULL; /* no user register state */
727 } else {
728 childregs->gpr[1] = usp;
729 p->thread.regs = childregs;
730 if (clone_flags & CLONE_SETTLS) {
731 #ifdef CONFIG_PPC64
732 if (!is_32bit_task())
733 childregs->gpr[13] = childregs->gpr[6];
734 else
735 #endif
736 childregs->gpr[2] = childregs->gpr[6];
737 }
738 }
739 childregs->gpr[3] = 0; /* Result from fork() */
740 sp -= STACK_FRAME_OVERHEAD;
741
742 /*
743 * The way this works is that at some point in the future
744 * some task will call _switch to switch to the new task.
745 * That will pop off the stack frame created below and start
746 * the new task running at ret_from_fork. The new task will
747 * do some house keeping and then return from the fork or clone
748 * system call, using the stack frame created above.
749 */
750 sp -= sizeof(struct pt_regs);
751 kregs = (struct pt_regs *) sp;
752 sp -= STACK_FRAME_OVERHEAD;
753 p->thread.ksp = sp;
754 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
755 _ALIGN_UP(sizeof(struct thread_info), 16);
756
757 #ifdef CONFIG_PPC_STD_MMU_64
758 if (cpu_has_feature(CPU_FTR_SLB)) {
759 unsigned long sp_vsid;
760 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
761
762 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
763 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
764 << SLB_VSID_SHIFT_1T;
765 else
766 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
767 << SLB_VSID_SHIFT;
768 sp_vsid |= SLB_VSID_KERNEL | llp;
769 p->thread.ksp_vsid = sp_vsid;
770 }
771 #endif /* CONFIG_PPC_STD_MMU_64 */
772
773 /*
774 * The PPC64 ABI makes use of a TOC to contain function
775 * pointers. The function (ret_from_except) is actually a pointer
776 * to the TOC entry. The first entry is a pointer to the actual
777 * function.
778 */
779 #ifdef CONFIG_PPC64
780 kregs->nip = *((unsigned long *)ret_from_fork);
781 #else
782 kregs->nip = (unsigned long)ret_from_fork;
783 #endif
784
785 return 0;
786 }
787
788 /*
789 * Set up a thread for executing a new program
790 */
791 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
792 {
793 #ifdef CONFIG_PPC64
794 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
795 #endif
796
797 set_fs(USER_DS);
798
799 /*
800 * If we exec out of a kernel thread then thread.regs will not be
801 * set. Do it now.
802 */
803 if (!current->thread.regs) {
804 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
805 current->thread.regs = regs - 1;
806 }
807
808 memset(regs->gpr, 0, sizeof(regs->gpr));
809 regs->ctr = 0;
810 regs->link = 0;
811 regs->xer = 0;
812 regs->ccr = 0;
813 regs->gpr[1] = sp;
814
815 /*
816 * We have just cleared all the nonvolatile GPRs, so make
817 * FULL_REGS(regs) return true. This is necessary to allow
818 * ptrace to examine the thread immediately after exec.
819 */
820 regs->trap &= ~1UL;
821
822 #ifdef CONFIG_PPC32
823 regs->mq = 0;
824 regs->nip = start;
825 regs->msr = MSR_USER;
826 #else
827 if (!is_32bit_task()) {
828 unsigned long entry, toc;
829
830 /* start is a relocated pointer to the function descriptor for
831 * the elf _start routine. The first entry in the function
832 * descriptor is the entry address of _start and the second
833 * entry is the TOC value we need to use.
834 */
835 __get_user(entry, (unsigned long __user *)start);
836 __get_user(toc, (unsigned long __user *)start+1);
837
838 /* Check whether the e_entry function descriptor entries
839 * need to be relocated before we can use them.
840 */
841 if (load_addr != 0) {
842 entry += load_addr;
843 toc += load_addr;
844 }
845 regs->nip = entry;
846 regs->gpr[2] = toc;
847 regs->msr = MSR_USER64;
848 } else {
849 regs->nip = start;
850 regs->gpr[2] = 0;
851 regs->msr = MSR_USER32;
852 }
853 #endif
854
855 discard_lazy_cpu_state();
856 #ifdef CONFIG_VSX
857 current->thread.used_vsr = 0;
858 #endif
859 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
860 current->thread.fpscr.val = 0;
861 #ifdef CONFIG_ALTIVEC
862 memset(current->thread.vr, 0, sizeof(current->thread.vr));
863 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
864 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
865 current->thread.vrsave = 0;
866 current->thread.used_vr = 0;
867 #endif /* CONFIG_ALTIVEC */
868 #ifdef CONFIG_SPE
869 memset(current->thread.evr, 0, sizeof(current->thread.evr));
870 current->thread.acc = 0;
871 current->thread.spefscr = 0;
872 current->thread.used_spe = 0;
873 #endif /* CONFIG_SPE */
874 }
875
876 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
877 | PR_FP_EXC_RES | PR_FP_EXC_INV)
878
879 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
880 {
881 struct pt_regs *regs = tsk->thread.regs;
882
883 /* This is a bit hairy. If we are an SPE enabled processor
884 * (have embedded fp) we store the IEEE exception enable flags in
885 * fpexc_mode. fpexc_mode is also used for setting FP exception
886 * mode (asyn, precise, disabled) for 'Classic' FP. */
887 if (val & PR_FP_EXC_SW_ENABLE) {
888 #ifdef CONFIG_SPE
889 if (cpu_has_feature(CPU_FTR_SPE)) {
890 tsk->thread.fpexc_mode = val &
891 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
892 return 0;
893 } else {
894 return -EINVAL;
895 }
896 #else
897 return -EINVAL;
898 #endif
899 }
900
901 /* on a CONFIG_SPE this does not hurt us. The bits that
902 * __pack_fe01 use do not overlap with bits used for
903 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
904 * on CONFIG_SPE implementations are reserved so writing to
905 * them does not change anything */
906 if (val > PR_FP_EXC_PRECISE)
907 return -EINVAL;
908 tsk->thread.fpexc_mode = __pack_fe01(val);
909 if (regs != NULL && (regs->msr & MSR_FP) != 0)
910 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
911 | tsk->thread.fpexc_mode;
912 return 0;
913 }
914
915 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
916 {
917 unsigned int val;
918
919 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
920 #ifdef CONFIG_SPE
921 if (cpu_has_feature(CPU_FTR_SPE))
922 val = tsk->thread.fpexc_mode;
923 else
924 return -EINVAL;
925 #else
926 return -EINVAL;
927 #endif
928 else
929 val = __unpack_fe01(tsk->thread.fpexc_mode);
930 return put_user(val, (unsigned int __user *) adr);
931 }
932
933 int set_endian(struct task_struct *tsk, unsigned int val)
934 {
935 struct pt_regs *regs = tsk->thread.regs;
936
937 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
938 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
939 return -EINVAL;
940
941 if (regs == NULL)
942 return -EINVAL;
943
944 if (val == PR_ENDIAN_BIG)
945 regs->msr &= ~MSR_LE;
946 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
947 regs->msr |= MSR_LE;
948 else
949 return -EINVAL;
950
951 return 0;
952 }
953
954 int get_endian(struct task_struct *tsk, unsigned long adr)
955 {
956 struct pt_regs *regs = tsk->thread.regs;
957 unsigned int val;
958
959 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
960 !cpu_has_feature(CPU_FTR_REAL_LE))
961 return -EINVAL;
962
963 if (regs == NULL)
964 return -EINVAL;
965
966 if (regs->msr & MSR_LE) {
967 if (cpu_has_feature(CPU_FTR_REAL_LE))
968 val = PR_ENDIAN_LITTLE;
969 else
970 val = PR_ENDIAN_PPC_LITTLE;
971 } else
972 val = PR_ENDIAN_BIG;
973
974 return put_user(val, (unsigned int __user *)adr);
975 }
976
977 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
978 {
979 tsk->thread.align_ctl = val;
980 return 0;
981 }
982
983 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
984 {
985 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
986 }
987
988 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
989
990 int sys_clone(unsigned long clone_flags, unsigned long usp,
991 int __user *parent_tidp, void __user *child_threadptr,
992 int __user *child_tidp, int p6,
993 struct pt_regs *regs)
994 {
995 CHECK_FULL_REGS(regs);
996 if (usp == 0)
997 usp = regs->gpr[1]; /* stack pointer for child */
998 #ifdef CONFIG_PPC64
999 if (is_32bit_task()) {
1000 parent_tidp = TRUNC_PTR(parent_tidp);
1001 child_tidp = TRUNC_PTR(child_tidp);
1002 }
1003 #endif
1004 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1005 }
1006
1007 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1008 unsigned long p4, unsigned long p5, unsigned long p6,
1009 struct pt_regs *regs)
1010 {
1011 CHECK_FULL_REGS(regs);
1012 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1013 }
1014
1015 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1016 unsigned long p4, unsigned long p5, unsigned long p6,
1017 struct pt_regs *regs)
1018 {
1019 CHECK_FULL_REGS(regs);
1020 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1021 regs, 0, NULL, NULL);
1022 }
1023
1024 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1025 unsigned long a3, unsigned long a4, unsigned long a5,
1026 struct pt_regs *regs)
1027 {
1028 int error;
1029 char *filename;
1030
1031 filename = getname((const char __user *) a0);
1032 error = PTR_ERR(filename);
1033 if (IS_ERR(filename))
1034 goto out;
1035 flush_fp_to_thread(current);
1036 flush_altivec_to_thread(current);
1037 flush_spe_to_thread(current);
1038 error = do_execve(filename,
1039 (const char __user *const __user *) a1,
1040 (const char __user *const __user *) a2, regs);
1041 putname(filename);
1042 out:
1043 return error;
1044 }
1045
1046 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1047 unsigned long nbytes)
1048 {
1049 unsigned long stack_page;
1050 unsigned long cpu = task_cpu(p);
1051
1052 /*
1053 * Avoid crashing if the stack has overflowed and corrupted
1054 * task_cpu(p), which is in the thread_info struct.
1055 */
1056 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1057 stack_page = (unsigned long) hardirq_ctx[cpu];
1058 if (sp >= stack_page + sizeof(struct thread_struct)
1059 && sp <= stack_page + THREAD_SIZE - nbytes)
1060 return 1;
1061
1062 stack_page = (unsigned long) softirq_ctx[cpu];
1063 if (sp >= stack_page + sizeof(struct thread_struct)
1064 && sp <= stack_page + THREAD_SIZE - nbytes)
1065 return 1;
1066 }
1067 return 0;
1068 }
1069
1070 int validate_sp(unsigned long sp, struct task_struct *p,
1071 unsigned long nbytes)
1072 {
1073 unsigned long stack_page = (unsigned long)task_stack_page(p);
1074
1075 if (sp >= stack_page + sizeof(struct thread_struct)
1076 && sp <= stack_page + THREAD_SIZE - nbytes)
1077 return 1;
1078
1079 return valid_irq_stack(sp, p, nbytes);
1080 }
1081
1082 EXPORT_SYMBOL(validate_sp);
1083
1084 unsigned long get_wchan(struct task_struct *p)
1085 {
1086 unsigned long ip, sp;
1087 int count = 0;
1088
1089 if (!p || p == current || p->state == TASK_RUNNING)
1090 return 0;
1091
1092 sp = p->thread.ksp;
1093 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1094 return 0;
1095
1096 do {
1097 sp = *(unsigned long *)sp;
1098 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1099 return 0;
1100 if (count > 0) {
1101 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1102 if (!in_sched_functions(ip))
1103 return ip;
1104 }
1105 } while (count++ < 16);
1106 return 0;
1107 }
1108
1109 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1110
1111 void show_stack(struct task_struct *tsk, unsigned long *stack)
1112 {
1113 unsigned long sp, ip, lr, newsp;
1114 int count = 0;
1115 int firstframe = 1;
1116 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1117 int curr_frame = current->curr_ret_stack;
1118 extern void return_to_handler(void);
1119 unsigned long rth = (unsigned long)return_to_handler;
1120 unsigned long mrth = -1;
1121 #ifdef CONFIG_PPC64
1122 extern void mod_return_to_handler(void);
1123 rth = *(unsigned long *)rth;
1124 mrth = (unsigned long)mod_return_to_handler;
1125 mrth = *(unsigned long *)mrth;
1126 #endif
1127 #endif
1128
1129 sp = (unsigned long) stack;
1130 if (tsk == NULL)
1131 tsk = current;
1132 if (sp == 0) {
1133 if (tsk == current)
1134 asm("mr %0,1" : "=r" (sp));
1135 else
1136 sp = tsk->thread.ksp;
1137 }
1138
1139 lr = 0;
1140 printk("Call Trace:\n");
1141 do {
1142 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1143 return;
1144
1145 stack = (unsigned long *) sp;
1146 newsp = stack[0];
1147 ip = stack[STACK_FRAME_LR_SAVE];
1148 if (!firstframe || ip != lr) {
1149 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1150 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1151 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1152 printk(" (%pS)",
1153 (void *)current->ret_stack[curr_frame].ret);
1154 curr_frame--;
1155 }
1156 #endif
1157 if (firstframe)
1158 printk(" (unreliable)");
1159 printk("\n");
1160 }
1161 firstframe = 0;
1162
1163 /*
1164 * See if this is an exception frame.
1165 * We look for the "regshere" marker in the current frame.
1166 */
1167 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1168 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1169 struct pt_regs *regs = (struct pt_regs *)
1170 (sp + STACK_FRAME_OVERHEAD);
1171 lr = regs->link;
1172 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1173 regs->trap, (void *)regs->nip, (void *)lr);
1174 firstframe = 1;
1175 }
1176
1177 sp = newsp;
1178 } while (count++ < kstack_depth_to_print);
1179 }
1180
1181 void dump_stack(void)
1182 {
1183 show_stack(current, NULL);
1184 }
1185 EXPORT_SYMBOL(dump_stack);
1186
1187 #ifdef CONFIG_PPC64
1188 void ppc64_runlatch_on(void)
1189 {
1190 unsigned long ctrl;
1191
1192 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1193 HMT_medium();
1194
1195 ctrl = mfspr(SPRN_CTRLF);
1196 ctrl |= CTRL_RUNLATCH;
1197 mtspr(SPRN_CTRLT, ctrl);
1198
1199 set_thread_flag(TIF_RUNLATCH);
1200 }
1201 }
1202
1203 void __ppc64_runlatch_off(void)
1204 {
1205 unsigned long ctrl;
1206
1207 HMT_medium();
1208
1209 clear_thread_flag(TIF_RUNLATCH);
1210
1211 ctrl = mfspr(SPRN_CTRLF);
1212 ctrl &= ~CTRL_RUNLATCH;
1213 mtspr(SPRN_CTRLT, ctrl);
1214 }
1215 #endif
1216
1217 #if THREAD_SHIFT < PAGE_SHIFT
1218
1219 static struct kmem_cache *thread_info_cache;
1220
1221 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1222 {
1223 struct thread_info *ti;
1224
1225 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1226 if (unlikely(ti == NULL))
1227 return NULL;
1228 #ifdef CONFIG_DEBUG_STACK_USAGE
1229 memset(ti, 0, THREAD_SIZE);
1230 #endif
1231 return ti;
1232 }
1233
1234 void free_thread_info(struct thread_info *ti)
1235 {
1236 kmem_cache_free(thread_info_cache, ti);
1237 }
1238
1239 void thread_info_cache_init(void)
1240 {
1241 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1242 THREAD_SIZE, 0, NULL);
1243 BUG_ON(thread_info_cache == NULL);
1244 }
1245
1246 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1247
1248 unsigned long arch_align_stack(unsigned long sp)
1249 {
1250 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1251 sp -= get_random_int() & ~PAGE_MASK;
1252 return sp & ~0xf;
1253 }
1254
1255 static inline unsigned long brk_rnd(void)
1256 {
1257 unsigned long rnd = 0;
1258
1259 /* 8MB for 32bit, 1GB for 64bit */
1260 if (is_32bit_task())
1261 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1262 else
1263 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1264
1265 return rnd << PAGE_SHIFT;
1266 }
1267
1268 unsigned long arch_randomize_brk(struct mm_struct *mm)
1269 {
1270 unsigned long base = mm->brk;
1271 unsigned long ret;
1272
1273 #ifdef CONFIG_PPC_STD_MMU_64
1274 /*
1275 * If we are using 1TB segments and we are allowed to randomise
1276 * the heap, we can put it above 1TB so it is backed by a 1TB
1277 * segment. Otherwise the heap will be in the bottom 1TB
1278 * which always uses 256MB segments and this may result in a
1279 * performance penalty.
1280 */
1281 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1282 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1283 #endif
1284
1285 ret = PAGE_ALIGN(base + brk_rnd());
1286
1287 if (ret < mm->brk)
1288 return mm->brk;
1289
1290 return ret;
1291 }
1292
1293 unsigned long randomize_et_dyn(unsigned long base)
1294 {
1295 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1296
1297 if (ret < base)
1298 return base;
1299
1300 return ret;
1301 }
This page took 0.087015 seconds and 5 git commands to generate.