powerpc: move device_to_mask() to dma-mapping.h
[deliverable/linux.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50
51 extern unsigned long _get_SP(void);
52
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_vsx = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59
60 /*
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
63 */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66 if (tsk->thread.regs) {
67 /*
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
74 */
75 preempt_disable();
76 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78 /*
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
84 */
85 BUG_ON(tsk != current);
86 #endif
87 giveup_fpu(tsk);
88 }
89 preempt_enable();
90 }
91 }
92
93 void enable_kernel_fp(void)
94 {
95 WARN_ON(preemptible());
96
97 #ifdef CONFIG_SMP
98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99 giveup_fpu(current);
100 else
101 giveup_fpu(NULL); /* just enables FP for kernel */
102 #else
103 giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107
108 #ifdef CONFIG_ALTIVEC
109 void enable_kernel_altivec(void)
110 {
111 WARN_ON(preemptible());
112
113 #ifdef CONFIG_SMP
114 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
115 giveup_altivec(current);
116 else
117 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
118 #else
119 giveup_altivec(last_task_used_altivec);
120 #endif /* CONFIG_SMP */
121 }
122 EXPORT_SYMBOL(enable_kernel_altivec);
123
124 /*
125 * Make sure the VMX/Altivec register state in the
126 * the thread_struct is up to date for task tsk.
127 */
128 void flush_altivec_to_thread(struct task_struct *tsk)
129 {
130 if (tsk->thread.regs) {
131 preempt_disable();
132 if (tsk->thread.regs->msr & MSR_VEC) {
133 #ifdef CONFIG_SMP
134 BUG_ON(tsk != current);
135 #endif
136 giveup_altivec(tsk);
137 }
138 preempt_enable();
139 }
140 }
141 #endif /* CONFIG_ALTIVEC */
142
143 #ifdef CONFIG_VSX
144 #if 0
145 /* not currently used, but some crazy RAID module might want to later */
146 void enable_kernel_vsx(void)
147 {
148 WARN_ON(preemptible());
149
150 #ifdef CONFIG_SMP
151 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
152 giveup_vsx(current);
153 else
154 giveup_vsx(NULL); /* just enable vsx for kernel - force */
155 #else
156 giveup_vsx(last_task_used_vsx);
157 #endif /* CONFIG_SMP */
158 }
159 EXPORT_SYMBOL(enable_kernel_vsx);
160 #endif
161
162 void flush_vsx_to_thread(struct task_struct *tsk)
163 {
164 if (tsk->thread.regs) {
165 preempt_disable();
166 if (tsk->thread.regs->msr & MSR_VSX) {
167 #ifdef CONFIG_SMP
168 BUG_ON(tsk != current);
169 #endif
170 giveup_vsx(tsk);
171 }
172 preempt_enable();
173 }
174 }
175 #endif /* CONFIG_VSX */
176
177 #ifdef CONFIG_SPE
178
179 void enable_kernel_spe(void)
180 {
181 WARN_ON(preemptible());
182
183 #ifdef CONFIG_SMP
184 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
185 giveup_spe(current);
186 else
187 giveup_spe(NULL); /* just enable SPE for kernel - force */
188 #else
189 giveup_spe(last_task_used_spe);
190 #endif /* __SMP __ */
191 }
192 EXPORT_SYMBOL(enable_kernel_spe);
193
194 void flush_spe_to_thread(struct task_struct *tsk)
195 {
196 if (tsk->thread.regs) {
197 preempt_disable();
198 if (tsk->thread.regs->msr & MSR_SPE) {
199 #ifdef CONFIG_SMP
200 BUG_ON(tsk != current);
201 #endif
202 giveup_spe(tsk);
203 }
204 preempt_enable();
205 }
206 }
207 #endif /* CONFIG_SPE */
208
209 #ifndef CONFIG_SMP
210 /*
211 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
212 * and the current task has some state, discard it.
213 */
214 void discard_lazy_cpu_state(void)
215 {
216 preempt_disable();
217 if (last_task_used_math == current)
218 last_task_used_math = NULL;
219 #ifdef CONFIG_ALTIVEC
220 if (last_task_used_altivec == current)
221 last_task_used_altivec = NULL;
222 #endif /* CONFIG_ALTIVEC */
223 #ifdef CONFIG_VSX
224 if (last_task_used_vsx == current)
225 last_task_used_vsx = NULL;
226 #endif /* CONFIG_VSX */
227 #ifdef CONFIG_SPE
228 if (last_task_used_spe == current)
229 last_task_used_spe = NULL;
230 #endif
231 preempt_enable();
232 }
233 #endif /* CONFIG_SMP */
234
235 static DEFINE_PER_CPU(unsigned long, current_dabr);
236
237 int set_dabr(unsigned long dabr)
238 {
239 __get_cpu_var(current_dabr) = dabr;
240
241 #ifdef CONFIG_PPC_MERGE /* XXX for now */
242 if (ppc_md.set_dabr)
243 return ppc_md.set_dabr(dabr);
244 #endif
245
246 /* XXX should we have a CPU_FTR_HAS_DABR ? */
247 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
248 mtspr(SPRN_DABR, dabr);
249 #endif
250 return 0;
251 }
252
253 #ifdef CONFIG_PPC64
254 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
255 #endif
256
257 struct task_struct *__switch_to(struct task_struct *prev,
258 struct task_struct *new)
259 {
260 struct thread_struct *new_thread, *old_thread;
261 unsigned long flags;
262 struct task_struct *last;
263
264 #ifdef CONFIG_SMP
265 /* avoid complexity of lazy save/restore of fpu
266 * by just saving it every time we switch out if
267 * this task used the fpu during the last quantum.
268 *
269 * If it tries to use the fpu again, it'll trap and
270 * reload its fp regs. So we don't have to do a restore
271 * every switch, just a save.
272 * -- Cort
273 */
274 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
275 giveup_fpu(prev);
276 #ifdef CONFIG_ALTIVEC
277 /*
278 * If the previous thread used altivec in the last quantum
279 * (thus changing altivec regs) then save them.
280 * We used to check the VRSAVE register but not all apps
281 * set it, so we don't rely on it now (and in fact we need
282 * to save & restore VSCR even if VRSAVE == 0). -- paulus
283 *
284 * On SMP we always save/restore altivec regs just to avoid the
285 * complexity of changing processors.
286 * -- Cort
287 */
288 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
289 giveup_altivec(prev);
290 #endif /* CONFIG_ALTIVEC */
291 #ifdef CONFIG_VSX
292 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
293 giveup_vsx(prev);
294 #endif /* CONFIG_VSX */
295 #ifdef CONFIG_SPE
296 /*
297 * If the previous thread used spe in the last quantum
298 * (thus changing spe regs) then save them.
299 *
300 * On SMP we always save/restore spe regs just to avoid the
301 * complexity of changing processors.
302 */
303 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
304 giveup_spe(prev);
305 #endif /* CONFIG_SPE */
306
307 #else /* CONFIG_SMP */
308 #ifdef CONFIG_ALTIVEC
309 /* Avoid the trap. On smp this this never happens since
310 * we don't set last_task_used_altivec -- Cort
311 */
312 if (new->thread.regs && last_task_used_altivec == new)
313 new->thread.regs->msr |= MSR_VEC;
314 #endif /* CONFIG_ALTIVEC */
315 #ifdef CONFIG_VSX
316 if (new->thread.regs && last_task_used_vsx == new)
317 new->thread.regs->msr |= MSR_VSX;
318 #endif /* CONFIG_VSX */
319 #ifdef CONFIG_SPE
320 /* Avoid the trap. On smp this this never happens since
321 * we don't set last_task_used_spe
322 */
323 if (new->thread.regs && last_task_used_spe == new)
324 new->thread.regs->msr |= MSR_SPE;
325 #endif /* CONFIG_SPE */
326
327 #endif /* CONFIG_SMP */
328
329 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
330 set_dabr(new->thread.dabr);
331
332 new_thread = &new->thread;
333 old_thread = &current->thread;
334
335 #ifdef CONFIG_PPC64
336 /*
337 * Collect processor utilization data per process
338 */
339 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
340 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
341 long unsigned start_tb, current_tb;
342 start_tb = old_thread->start_tb;
343 cu->current_tb = current_tb = mfspr(SPRN_PURR);
344 old_thread->accum_tb += (current_tb - start_tb);
345 new_thread->start_tb = current_tb;
346 }
347 #endif
348
349 local_irq_save(flags);
350
351 account_system_vtime(current);
352 account_process_vtime(current);
353 calculate_steal_time();
354
355 /*
356 * We can't take a PMU exception inside _switch() since there is a
357 * window where the kernel stack SLB and the kernel stack are out
358 * of sync. Hard disable here.
359 */
360 hard_irq_disable();
361 last = _switch(old_thread, new_thread);
362
363 local_irq_restore(flags);
364
365 return last;
366 }
367
368 static int instructions_to_print = 16;
369
370 static void show_instructions(struct pt_regs *regs)
371 {
372 int i;
373 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
374 sizeof(int));
375
376 printk("Instruction dump:");
377
378 for (i = 0; i < instructions_to_print; i++) {
379 int instr;
380
381 if (!(i % 8))
382 printk("\n");
383
384 #if !defined(CONFIG_BOOKE)
385 /* If executing with the IMMU off, adjust pc rather
386 * than print XXXXXXXX.
387 */
388 if (!(regs->msr & MSR_IR))
389 pc = (unsigned long)phys_to_virt(pc);
390 #endif
391
392 /* We use __get_user here *only* to avoid an OOPS on a
393 * bad address because the pc *should* only be a
394 * kernel address.
395 */
396 if (!__kernel_text_address(pc) ||
397 __get_user(instr, (unsigned int __user *)pc)) {
398 printk("XXXXXXXX ");
399 } else {
400 if (regs->nip == pc)
401 printk("<%08x> ", instr);
402 else
403 printk("%08x ", instr);
404 }
405
406 pc += sizeof(int);
407 }
408
409 printk("\n");
410 }
411
412 static struct regbit {
413 unsigned long bit;
414 const char *name;
415 } msr_bits[] = {
416 {MSR_EE, "EE"},
417 {MSR_PR, "PR"},
418 {MSR_FP, "FP"},
419 {MSR_VEC, "VEC"},
420 {MSR_VSX, "VSX"},
421 {MSR_ME, "ME"},
422 {MSR_IR, "IR"},
423 {MSR_DR, "DR"},
424 {0, NULL}
425 };
426
427 static void printbits(unsigned long val, struct regbit *bits)
428 {
429 const char *sep = "";
430
431 printk("<");
432 for (; bits->bit; ++bits)
433 if (val & bits->bit) {
434 printk("%s%s", sep, bits->name);
435 sep = ",";
436 }
437 printk(">");
438 }
439
440 #ifdef CONFIG_PPC64
441 #define REG "%016lx"
442 #define REGS_PER_LINE 4
443 #define LAST_VOLATILE 13
444 #else
445 #define REG "%08lx"
446 #define REGS_PER_LINE 8
447 #define LAST_VOLATILE 12
448 #endif
449
450 void show_regs(struct pt_regs * regs)
451 {
452 int i, trap;
453
454 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
455 regs->nip, regs->link, regs->ctr);
456 printk("REGS: %p TRAP: %04lx %s (%s)\n",
457 regs, regs->trap, print_tainted(), init_utsname()->release);
458 printk("MSR: "REG" ", regs->msr);
459 printbits(regs->msr, msr_bits);
460 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
461 trap = TRAP(regs);
462 if (trap == 0x300 || trap == 0x600)
463 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
464 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
465 #else
466 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
467 #endif
468 printk("TASK = %p[%d] '%s' THREAD: %p",
469 current, task_pid_nr(current), current->comm, task_thread_info(current));
470
471 #ifdef CONFIG_SMP
472 printk(" CPU: %d", raw_smp_processor_id());
473 #endif /* CONFIG_SMP */
474
475 for (i = 0; i < 32; i++) {
476 if ((i % REGS_PER_LINE) == 0)
477 printk("\n" KERN_INFO "GPR%02d: ", i);
478 printk(REG " ", regs->gpr[i]);
479 if (i == LAST_VOLATILE && !FULL_REGS(regs))
480 break;
481 }
482 printk("\n");
483 #ifdef CONFIG_KALLSYMS
484 /*
485 * Lookup NIP late so we have the best change of getting the
486 * above info out without failing
487 */
488 printk("NIP ["REG"] ", regs->nip);
489 print_symbol("%s\n", regs->nip);
490 printk("LR ["REG"] ", regs->link);
491 print_symbol("%s\n", regs->link);
492 #endif
493 show_stack(current, (unsigned long *) regs->gpr[1]);
494 if (!user_mode(regs))
495 show_instructions(regs);
496 }
497
498 void exit_thread(void)
499 {
500 discard_lazy_cpu_state();
501 }
502
503 void flush_thread(void)
504 {
505 #ifdef CONFIG_PPC64
506 struct thread_info *t = current_thread_info();
507
508 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
509 clear_ti_thread_flag(t, TIF_ABI_PENDING);
510 if (test_ti_thread_flag(t, TIF_32BIT))
511 clear_ti_thread_flag(t, TIF_32BIT);
512 else
513 set_ti_thread_flag(t, TIF_32BIT);
514 }
515 #endif
516
517 discard_lazy_cpu_state();
518
519 if (current->thread.dabr) {
520 current->thread.dabr = 0;
521 set_dabr(0);
522 }
523 }
524
525 void
526 release_thread(struct task_struct *t)
527 {
528 }
529
530 /*
531 * This gets called before we allocate a new thread and copy
532 * the current task into it.
533 */
534 void prepare_to_copy(struct task_struct *tsk)
535 {
536 flush_fp_to_thread(current);
537 flush_altivec_to_thread(current);
538 flush_vsx_to_thread(current);
539 flush_spe_to_thread(current);
540 }
541
542 /*
543 * Copy a thread..
544 */
545 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
546 unsigned long unused, struct task_struct *p,
547 struct pt_regs *regs)
548 {
549 struct pt_regs *childregs, *kregs;
550 extern void ret_from_fork(void);
551 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
552
553 CHECK_FULL_REGS(regs);
554 /* Copy registers */
555 sp -= sizeof(struct pt_regs);
556 childregs = (struct pt_regs *) sp;
557 *childregs = *regs;
558 if ((childregs->msr & MSR_PR) == 0) {
559 /* for kernel thread, set `current' and stackptr in new task */
560 childregs->gpr[1] = sp + sizeof(struct pt_regs);
561 #ifdef CONFIG_PPC32
562 childregs->gpr[2] = (unsigned long) p;
563 #else
564 clear_tsk_thread_flag(p, TIF_32BIT);
565 #endif
566 p->thread.regs = NULL; /* no user register state */
567 } else {
568 childregs->gpr[1] = usp;
569 p->thread.regs = childregs;
570 if (clone_flags & CLONE_SETTLS) {
571 #ifdef CONFIG_PPC64
572 if (!test_thread_flag(TIF_32BIT))
573 childregs->gpr[13] = childregs->gpr[6];
574 else
575 #endif
576 childregs->gpr[2] = childregs->gpr[6];
577 }
578 }
579 childregs->gpr[3] = 0; /* Result from fork() */
580 sp -= STACK_FRAME_OVERHEAD;
581
582 /*
583 * The way this works is that at some point in the future
584 * some task will call _switch to switch to the new task.
585 * That will pop off the stack frame created below and start
586 * the new task running at ret_from_fork. The new task will
587 * do some house keeping and then return from the fork or clone
588 * system call, using the stack frame created above.
589 */
590 sp -= sizeof(struct pt_regs);
591 kregs = (struct pt_regs *) sp;
592 sp -= STACK_FRAME_OVERHEAD;
593 p->thread.ksp = sp;
594 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
595 _ALIGN_UP(sizeof(struct thread_info), 16);
596
597 #ifdef CONFIG_PPC64
598 if (cpu_has_feature(CPU_FTR_SLB)) {
599 unsigned long sp_vsid;
600 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
601
602 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
603 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
604 << SLB_VSID_SHIFT_1T;
605 else
606 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
607 << SLB_VSID_SHIFT;
608 sp_vsid |= SLB_VSID_KERNEL | llp;
609 p->thread.ksp_vsid = sp_vsid;
610 }
611
612 /*
613 * The PPC64 ABI makes use of a TOC to contain function
614 * pointers. The function (ret_from_except) is actually a pointer
615 * to the TOC entry. The first entry is a pointer to the actual
616 * function.
617 */
618 kregs->nip = *((unsigned long *)ret_from_fork);
619 #else
620 kregs->nip = (unsigned long)ret_from_fork;
621 #endif
622
623 return 0;
624 }
625
626 /*
627 * Set up a thread for executing a new program
628 */
629 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
630 {
631 #ifdef CONFIG_PPC64
632 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
633 #endif
634
635 set_fs(USER_DS);
636
637 /*
638 * If we exec out of a kernel thread then thread.regs will not be
639 * set. Do it now.
640 */
641 if (!current->thread.regs) {
642 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
643 current->thread.regs = regs - 1;
644 }
645
646 memset(regs->gpr, 0, sizeof(regs->gpr));
647 regs->ctr = 0;
648 regs->link = 0;
649 regs->xer = 0;
650 regs->ccr = 0;
651 regs->gpr[1] = sp;
652
653 /*
654 * We have just cleared all the nonvolatile GPRs, so make
655 * FULL_REGS(regs) return true. This is necessary to allow
656 * ptrace to examine the thread immediately after exec.
657 */
658 regs->trap &= ~1UL;
659
660 #ifdef CONFIG_PPC32
661 regs->mq = 0;
662 regs->nip = start;
663 regs->msr = MSR_USER;
664 #else
665 if (!test_thread_flag(TIF_32BIT)) {
666 unsigned long entry, toc;
667
668 /* start is a relocated pointer to the function descriptor for
669 * the elf _start routine. The first entry in the function
670 * descriptor is the entry address of _start and the second
671 * entry is the TOC value we need to use.
672 */
673 __get_user(entry, (unsigned long __user *)start);
674 __get_user(toc, (unsigned long __user *)start+1);
675
676 /* Check whether the e_entry function descriptor entries
677 * need to be relocated before we can use them.
678 */
679 if (load_addr != 0) {
680 entry += load_addr;
681 toc += load_addr;
682 }
683 regs->nip = entry;
684 regs->gpr[2] = toc;
685 regs->msr = MSR_USER64;
686 } else {
687 regs->nip = start;
688 regs->gpr[2] = 0;
689 regs->msr = MSR_USER32;
690 }
691 #endif
692
693 discard_lazy_cpu_state();
694 #ifdef CONFIG_VSX
695 current->thread.used_vsr = 0;
696 #endif
697 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
698 current->thread.fpscr.val = 0;
699 #ifdef CONFIG_ALTIVEC
700 memset(current->thread.vr, 0, sizeof(current->thread.vr));
701 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
702 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
703 current->thread.vrsave = 0;
704 current->thread.used_vr = 0;
705 #endif /* CONFIG_ALTIVEC */
706 #ifdef CONFIG_SPE
707 memset(current->thread.evr, 0, sizeof(current->thread.evr));
708 current->thread.acc = 0;
709 current->thread.spefscr = 0;
710 current->thread.used_spe = 0;
711 #endif /* CONFIG_SPE */
712 }
713
714 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
715 | PR_FP_EXC_RES | PR_FP_EXC_INV)
716
717 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
718 {
719 struct pt_regs *regs = tsk->thread.regs;
720
721 /* This is a bit hairy. If we are an SPE enabled processor
722 * (have embedded fp) we store the IEEE exception enable flags in
723 * fpexc_mode. fpexc_mode is also used for setting FP exception
724 * mode (asyn, precise, disabled) for 'Classic' FP. */
725 if (val & PR_FP_EXC_SW_ENABLE) {
726 #ifdef CONFIG_SPE
727 if (cpu_has_feature(CPU_FTR_SPE)) {
728 tsk->thread.fpexc_mode = val &
729 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
730 return 0;
731 } else {
732 return -EINVAL;
733 }
734 #else
735 return -EINVAL;
736 #endif
737 }
738
739 /* on a CONFIG_SPE this does not hurt us. The bits that
740 * __pack_fe01 use do not overlap with bits used for
741 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
742 * on CONFIG_SPE implementations are reserved so writing to
743 * them does not change anything */
744 if (val > PR_FP_EXC_PRECISE)
745 return -EINVAL;
746 tsk->thread.fpexc_mode = __pack_fe01(val);
747 if (regs != NULL && (regs->msr & MSR_FP) != 0)
748 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
749 | tsk->thread.fpexc_mode;
750 return 0;
751 }
752
753 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
754 {
755 unsigned int val;
756
757 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
758 #ifdef CONFIG_SPE
759 if (cpu_has_feature(CPU_FTR_SPE))
760 val = tsk->thread.fpexc_mode;
761 else
762 return -EINVAL;
763 #else
764 return -EINVAL;
765 #endif
766 else
767 val = __unpack_fe01(tsk->thread.fpexc_mode);
768 return put_user(val, (unsigned int __user *) adr);
769 }
770
771 int set_endian(struct task_struct *tsk, unsigned int val)
772 {
773 struct pt_regs *regs = tsk->thread.regs;
774
775 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
776 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
777 return -EINVAL;
778
779 if (regs == NULL)
780 return -EINVAL;
781
782 if (val == PR_ENDIAN_BIG)
783 regs->msr &= ~MSR_LE;
784 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
785 regs->msr |= MSR_LE;
786 else
787 return -EINVAL;
788
789 return 0;
790 }
791
792 int get_endian(struct task_struct *tsk, unsigned long adr)
793 {
794 struct pt_regs *regs = tsk->thread.regs;
795 unsigned int val;
796
797 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
798 !cpu_has_feature(CPU_FTR_REAL_LE))
799 return -EINVAL;
800
801 if (regs == NULL)
802 return -EINVAL;
803
804 if (regs->msr & MSR_LE) {
805 if (cpu_has_feature(CPU_FTR_REAL_LE))
806 val = PR_ENDIAN_LITTLE;
807 else
808 val = PR_ENDIAN_PPC_LITTLE;
809 } else
810 val = PR_ENDIAN_BIG;
811
812 return put_user(val, (unsigned int __user *)adr);
813 }
814
815 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
816 {
817 tsk->thread.align_ctl = val;
818 return 0;
819 }
820
821 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
822 {
823 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
824 }
825
826 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
827
828 int sys_clone(unsigned long clone_flags, unsigned long usp,
829 int __user *parent_tidp, void __user *child_threadptr,
830 int __user *child_tidp, int p6,
831 struct pt_regs *regs)
832 {
833 CHECK_FULL_REGS(regs);
834 if (usp == 0)
835 usp = regs->gpr[1]; /* stack pointer for child */
836 #ifdef CONFIG_PPC64
837 if (test_thread_flag(TIF_32BIT)) {
838 parent_tidp = TRUNC_PTR(parent_tidp);
839 child_tidp = TRUNC_PTR(child_tidp);
840 }
841 #endif
842 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
843 }
844
845 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
846 unsigned long p4, unsigned long p5, unsigned long p6,
847 struct pt_regs *regs)
848 {
849 CHECK_FULL_REGS(regs);
850 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
851 }
852
853 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
854 unsigned long p4, unsigned long p5, unsigned long p6,
855 struct pt_regs *regs)
856 {
857 CHECK_FULL_REGS(regs);
858 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
859 regs, 0, NULL, NULL);
860 }
861
862 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
863 unsigned long a3, unsigned long a4, unsigned long a5,
864 struct pt_regs *regs)
865 {
866 int error;
867 char *filename;
868
869 filename = getname((char __user *) a0);
870 error = PTR_ERR(filename);
871 if (IS_ERR(filename))
872 goto out;
873 flush_fp_to_thread(current);
874 flush_altivec_to_thread(current);
875 flush_spe_to_thread(current);
876 error = do_execve(filename, (char __user * __user *) a1,
877 (char __user * __user *) a2, regs);
878 putname(filename);
879 out:
880 return error;
881 }
882
883 #ifdef CONFIG_IRQSTACKS
884 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
885 unsigned long nbytes)
886 {
887 unsigned long stack_page;
888 unsigned long cpu = task_cpu(p);
889
890 /*
891 * Avoid crashing if the stack has overflowed and corrupted
892 * task_cpu(p), which is in the thread_info struct.
893 */
894 if (cpu < NR_CPUS && cpu_possible(cpu)) {
895 stack_page = (unsigned long) hardirq_ctx[cpu];
896 if (sp >= stack_page + sizeof(struct thread_struct)
897 && sp <= stack_page + THREAD_SIZE - nbytes)
898 return 1;
899
900 stack_page = (unsigned long) softirq_ctx[cpu];
901 if (sp >= stack_page + sizeof(struct thread_struct)
902 && sp <= stack_page + THREAD_SIZE - nbytes)
903 return 1;
904 }
905 return 0;
906 }
907
908 #else
909 #define valid_irq_stack(sp, p, nb) 0
910 #endif /* CONFIG_IRQSTACKS */
911
912 int validate_sp(unsigned long sp, struct task_struct *p,
913 unsigned long nbytes)
914 {
915 unsigned long stack_page = (unsigned long)task_stack_page(p);
916
917 if (sp >= stack_page + sizeof(struct thread_struct)
918 && sp <= stack_page + THREAD_SIZE - nbytes)
919 return 1;
920
921 return valid_irq_stack(sp, p, nbytes);
922 }
923
924 EXPORT_SYMBOL(validate_sp);
925
926 unsigned long get_wchan(struct task_struct *p)
927 {
928 unsigned long ip, sp;
929 int count = 0;
930
931 if (!p || p == current || p->state == TASK_RUNNING)
932 return 0;
933
934 sp = p->thread.ksp;
935 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
936 return 0;
937
938 do {
939 sp = *(unsigned long *)sp;
940 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
941 return 0;
942 if (count > 0) {
943 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
944 if (!in_sched_functions(ip))
945 return ip;
946 }
947 } while (count++ < 16);
948 return 0;
949 }
950
951 static int kstack_depth_to_print = 64;
952
953 void show_stack(struct task_struct *tsk, unsigned long *stack)
954 {
955 unsigned long sp, ip, lr, newsp;
956 int count = 0;
957 int firstframe = 1;
958
959 sp = (unsigned long) stack;
960 if (tsk == NULL)
961 tsk = current;
962 if (sp == 0) {
963 if (tsk == current)
964 asm("mr %0,1" : "=r" (sp));
965 else
966 sp = tsk->thread.ksp;
967 }
968
969 lr = 0;
970 printk("Call Trace:\n");
971 do {
972 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
973 return;
974
975 stack = (unsigned long *) sp;
976 newsp = stack[0];
977 ip = stack[STACK_FRAME_LR_SAVE];
978 if (!firstframe || ip != lr) {
979 printk("["REG"] ["REG"] ", sp, ip);
980 print_symbol("%s", ip);
981 if (firstframe)
982 printk(" (unreliable)");
983 printk("\n");
984 }
985 firstframe = 0;
986
987 /*
988 * See if this is an exception frame.
989 * We look for the "regshere" marker in the current frame.
990 */
991 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
992 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
993 struct pt_regs *regs = (struct pt_regs *)
994 (sp + STACK_FRAME_OVERHEAD);
995 printk("--- Exception: %lx", regs->trap);
996 print_symbol(" at %s\n", regs->nip);
997 lr = regs->link;
998 print_symbol(" LR = %s\n", lr);
999 firstframe = 1;
1000 }
1001
1002 sp = newsp;
1003 } while (count++ < kstack_depth_to_print);
1004 }
1005
1006 void dump_stack(void)
1007 {
1008 show_stack(current, NULL);
1009 }
1010 EXPORT_SYMBOL(dump_stack);
1011
1012 #ifdef CONFIG_PPC64
1013 void ppc64_runlatch_on(void)
1014 {
1015 unsigned long ctrl;
1016
1017 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1018 HMT_medium();
1019
1020 ctrl = mfspr(SPRN_CTRLF);
1021 ctrl |= CTRL_RUNLATCH;
1022 mtspr(SPRN_CTRLT, ctrl);
1023
1024 set_thread_flag(TIF_RUNLATCH);
1025 }
1026 }
1027
1028 void ppc64_runlatch_off(void)
1029 {
1030 unsigned long ctrl;
1031
1032 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1033 HMT_medium();
1034
1035 clear_thread_flag(TIF_RUNLATCH);
1036
1037 ctrl = mfspr(SPRN_CTRLF);
1038 ctrl &= ~CTRL_RUNLATCH;
1039 mtspr(SPRN_CTRLT, ctrl);
1040 }
1041 }
1042 #endif
1043
1044 #if THREAD_SHIFT < PAGE_SHIFT
1045
1046 static struct kmem_cache *thread_info_cache;
1047
1048 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1049 {
1050 struct thread_info *ti;
1051
1052 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1053 if (unlikely(ti == NULL))
1054 return NULL;
1055 #ifdef CONFIG_DEBUG_STACK_USAGE
1056 memset(ti, 0, THREAD_SIZE);
1057 #endif
1058 return ti;
1059 }
1060
1061 void free_thread_info(struct thread_info *ti)
1062 {
1063 kmem_cache_free(thread_info_cache, ti);
1064 }
1065
1066 void thread_info_cache_init(void)
1067 {
1068 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1069 THREAD_SIZE, 0, NULL);
1070 BUG_ON(thread_info_cache == NULL);
1071 }
1072
1073 #endif /* THREAD_SHIFT < PAGE_SHIFT */
This page took 0.074213 seconds and 5 git commands to generate.