Merge branch 'pci/resource' into next
[deliverable/linux.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <linux/kprobes.h>
58 #include <linux/kdebug.h>
59
60 /* Transactional Memory debug */
61 #ifdef TM_DEBUG_SW
62 #define TM_DEBUG(x...) printk(KERN_INFO x)
63 #else
64 #define TM_DEBUG(x...) do { } while(0)
65 #endif
66
67 extern unsigned long _get_SP(void);
68
69 #ifndef CONFIG_SMP
70 struct task_struct *last_task_used_math = NULL;
71 struct task_struct *last_task_used_altivec = NULL;
72 struct task_struct *last_task_used_vsx = NULL;
73 struct task_struct *last_task_used_spe = NULL;
74 #endif
75
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
78 {
79 /*
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
84 */
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
88 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
89 set_thread_flag(TIF_RESTORE_TM);
90 }
91
92 giveup_fpu(tsk);
93 }
94
95 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
96 {
97 /*
98 * If we are saving the current thread's registers, and the
99 * thread is in a transactional state, set the TIF_RESTORE_TM
100 * bit so that we know to restore the registers before
101 * returning to userspace.
102 */
103 if (tsk == current && tsk->thread.regs &&
104 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
105 !test_thread_flag(TIF_RESTORE_TM)) {
106 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
107 set_thread_flag(TIF_RESTORE_TM);
108 }
109
110 giveup_altivec(tsk);
111 }
112
113 #else
114 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
115 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
116 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
117
118 #ifdef CONFIG_PPC_FPU
119 /*
120 * Make sure the floating-point register state in the
121 * the thread_struct is up to date for task tsk.
122 */
123 void flush_fp_to_thread(struct task_struct *tsk)
124 {
125 if (tsk->thread.regs) {
126 /*
127 * We need to disable preemption here because if we didn't,
128 * another process could get scheduled after the regs->msr
129 * test but before we have finished saving the FP registers
130 * to the thread_struct. That process could take over the
131 * FPU, and then when we get scheduled again we would store
132 * bogus values for the remaining FP registers.
133 */
134 preempt_disable();
135 if (tsk->thread.regs->msr & MSR_FP) {
136 #ifdef CONFIG_SMP
137 /*
138 * This should only ever be called for current or
139 * for a stopped child process. Since we save away
140 * the FP register state on context switch on SMP,
141 * there is something wrong if a stopped child appears
142 * to still have its FP state in the CPU registers.
143 */
144 BUG_ON(tsk != current);
145 #endif
146 giveup_fpu_maybe_transactional(tsk);
147 }
148 preempt_enable();
149 }
150 }
151 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
152 #endif /* CONFIG_PPC_FPU */
153
154 void enable_kernel_fp(void)
155 {
156 WARN_ON(preemptible());
157
158 #ifdef CONFIG_SMP
159 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
160 giveup_fpu_maybe_transactional(current);
161 else
162 giveup_fpu(NULL); /* just enables FP for kernel */
163 #else
164 giveup_fpu_maybe_transactional(last_task_used_math);
165 #endif /* CONFIG_SMP */
166 }
167 EXPORT_SYMBOL(enable_kernel_fp);
168
169 #ifdef CONFIG_ALTIVEC
170 void enable_kernel_altivec(void)
171 {
172 WARN_ON(preemptible());
173
174 #ifdef CONFIG_SMP
175 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
176 giveup_altivec_maybe_transactional(current);
177 else
178 giveup_altivec_notask();
179 #else
180 giveup_altivec_maybe_transactional(last_task_used_altivec);
181 #endif /* CONFIG_SMP */
182 }
183 EXPORT_SYMBOL(enable_kernel_altivec);
184
185 /*
186 * Make sure the VMX/Altivec register state in the
187 * the thread_struct is up to date for task tsk.
188 */
189 void flush_altivec_to_thread(struct task_struct *tsk)
190 {
191 if (tsk->thread.regs) {
192 preempt_disable();
193 if (tsk->thread.regs->msr & MSR_VEC) {
194 #ifdef CONFIG_SMP
195 BUG_ON(tsk != current);
196 #endif
197 giveup_altivec_maybe_transactional(tsk);
198 }
199 preempt_enable();
200 }
201 }
202 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
203 #endif /* CONFIG_ALTIVEC */
204
205 #ifdef CONFIG_VSX
206 #if 0
207 /* not currently used, but some crazy RAID module might want to later */
208 void enable_kernel_vsx(void)
209 {
210 WARN_ON(preemptible());
211
212 #ifdef CONFIG_SMP
213 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
214 giveup_vsx(current);
215 else
216 giveup_vsx(NULL); /* just enable vsx for kernel - force */
217 #else
218 giveup_vsx(last_task_used_vsx);
219 #endif /* CONFIG_SMP */
220 }
221 EXPORT_SYMBOL(enable_kernel_vsx);
222 #endif
223
224 void giveup_vsx(struct task_struct *tsk)
225 {
226 giveup_fpu_maybe_transactional(tsk);
227 giveup_altivec_maybe_transactional(tsk);
228 __giveup_vsx(tsk);
229 }
230
231 void flush_vsx_to_thread(struct task_struct *tsk)
232 {
233 if (tsk->thread.regs) {
234 preempt_disable();
235 if (tsk->thread.regs->msr & MSR_VSX) {
236 #ifdef CONFIG_SMP
237 BUG_ON(tsk != current);
238 #endif
239 giveup_vsx(tsk);
240 }
241 preempt_enable();
242 }
243 }
244 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
245 #endif /* CONFIG_VSX */
246
247 #ifdef CONFIG_SPE
248
249 void enable_kernel_spe(void)
250 {
251 WARN_ON(preemptible());
252
253 #ifdef CONFIG_SMP
254 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
255 giveup_spe(current);
256 else
257 giveup_spe(NULL); /* just enable SPE for kernel - force */
258 #else
259 giveup_spe(last_task_used_spe);
260 #endif /* __SMP __ */
261 }
262 EXPORT_SYMBOL(enable_kernel_spe);
263
264 void flush_spe_to_thread(struct task_struct *tsk)
265 {
266 if (tsk->thread.regs) {
267 preempt_disable();
268 if (tsk->thread.regs->msr & MSR_SPE) {
269 #ifdef CONFIG_SMP
270 BUG_ON(tsk != current);
271 #endif
272 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
273 giveup_spe(tsk);
274 }
275 preempt_enable();
276 }
277 }
278 #endif /* CONFIG_SPE */
279
280 #ifndef CONFIG_SMP
281 /*
282 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
283 * and the current task has some state, discard it.
284 */
285 void discard_lazy_cpu_state(void)
286 {
287 preempt_disable();
288 if (last_task_used_math == current)
289 last_task_used_math = NULL;
290 #ifdef CONFIG_ALTIVEC
291 if (last_task_used_altivec == current)
292 last_task_used_altivec = NULL;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_VSX
295 if (last_task_used_vsx == current)
296 last_task_used_vsx = NULL;
297 #endif /* CONFIG_VSX */
298 #ifdef CONFIG_SPE
299 if (last_task_used_spe == current)
300 last_task_used_spe = NULL;
301 #endif
302 preempt_enable();
303 }
304 #endif /* CONFIG_SMP */
305
306 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
307 void do_send_trap(struct pt_regs *regs, unsigned long address,
308 unsigned long error_code, int signal_code, int breakpt)
309 {
310 siginfo_t info;
311
312 current->thread.trap_nr = signal_code;
313 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
314 11, SIGSEGV) == NOTIFY_STOP)
315 return;
316
317 /* Deliver the signal to userspace */
318 info.si_signo = SIGTRAP;
319 info.si_errno = breakpt; /* breakpoint or watchpoint id */
320 info.si_code = signal_code;
321 info.si_addr = (void __user *)address;
322 force_sig_info(SIGTRAP, &info, current);
323 }
324 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
325 void do_break (struct pt_regs *regs, unsigned long address,
326 unsigned long error_code)
327 {
328 siginfo_t info;
329
330 current->thread.trap_nr = TRAP_HWBKPT;
331 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
332 11, SIGSEGV) == NOTIFY_STOP)
333 return;
334
335 if (debugger_break_match(regs))
336 return;
337
338 /* Clear the breakpoint */
339 hw_breakpoint_disable();
340
341 /* Deliver the signal to userspace */
342 info.si_signo = SIGTRAP;
343 info.si_errno = 0;
344 info.si_code = TRAP_HWBKPT;
345 info.si_addr = (void __user *)address;
346 force_sig_info(SIGTRAP, &info, current);
347 }
348 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
349
350 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
351
352 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
353 /*
354 * Set the debug registers back to their default "safe" values.
355 */
356 static void set_debug_reg_defaults(struct thread_struct *thread)
357 {
358 thread->debug.iac1 = thread->debug.iac2 = 0;
359 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
360 thread->debug.iac3 = thread->debug.iac4 = 0;
361 #endif
362 thread->debug.dac1 = thread->debug.dac2 = 0;
363 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
364 thread->debug.dvc1 = thread->debug.dvc2 = 0;
365 #endif
366 thread->debug.dbcr0 = 0;
367 #ifdef CONFIG_BOOKE
368 /*
369 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
370 */
371 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
372 DBCR1_IAC3US | DBCR1_IAC4US;
373 /*
374 * Force Data Address Compare User/Supervisor bits to be User-only
375 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
376 */
377 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
378 #else
379 thread->debug.dbcr1 = 0;
380 #endif
381 }
382
383 static void prime_debug_regs(struct debug_reg *debug)
384 {
385 /*
386 * We could have inherited MSR_DE from userspace, since
387 * it doesn't get cleared on exception entry. Make sure
388 * MSR_DE is clear before we enable any debug events.
389 */
390 mtmsr(mfmsr() & ~MSR_DE);
391
392 mtspr(SPRN_IAC1, debug->iac1);
393 mtspr(SPRN_IAC2, debug->iac2);
394 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
395 mtspr(SPRN_IAC3, debug->iac3);
396 mtspr(SPRN_IAC4, debug->iac4);
397 #endif
398 mtspr(SPRN_DAC1, debug->dac1);
399 mtspr(SPRN_DAC2, debug->dac2);
400 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
401 mtspr(SPRN_DVC1, debug->dvc1);
402 mtspr(SPRN_DVC2, debug->dvc2);
403 #endif
404 mtspr(SPRN_DBCR0, debug->dbcr0);
405 mtspr(SPRN_DBCR1, debug->dbcr1);
406 #ifdef CONFIG_BOOKE
407 mtspr(SPRN_DBCR2, debug->dbcr2);
408 #endif
409 }
410 /*
411 * Unless neither the old or new thread are making use of the
412 * debug registers, set the debug registers from the values
413 * stored in the new thread.
414 */
415 void switch_booke_debug_regs(struct debug_reg *new_debug)
416 {
417 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
418 || (new_debug->dbcr0 & DBCR0_IDM))
419 prime_debug_regs(new_debug);
420 }
421 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
422 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
423 #ifndef CONFIG_HAVE_HW_BREAKPOINT
424 static void set_debug_reg_defaults(struct thread_struct *thread)
425 {
426 thread->hw_brk.address = 0;
427 thread->hw_brk.type = 0;
428 set_breakpoint(&thread->hw_brk);
429 }
430 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
431 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
432
433 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
434 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
435 {
436 mtspr(SPRN_DAC1, dabr);
437 #ifdef CONFIG_PPC_47x
438 isync();
439 #endif
440 return 0;
441 }
442 #elif defined(CONFIG_PPC_BOOK3S)
443 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
444 {
445 mtspr(SPRN_DABR, dabr);
446 if (cpu_has_feature(CPU_FTR_DABRX))
447 mtspr(SPRN_DABRX, dabrx);
448 return 0;
449 }
450 #else
451 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
452 {
453 return -EINVAL;
454 }
455 #endif
456
457 static inline int set_dabr(struct arch_hw_breakpoint *brk)
458 {
459 unsigned long dabr, dabrx;
460
461 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
462 dabrx = ((brk->type >> 3) & 0x7);
463
464 if (ppc_md.set_dabr)
465 return ppc_md.set_dabr(dabr, dabrx);
466
467 return __set_dabr(dabr, dabrx);
468 }
469
470 static inline int set_dawr(struct arch_hw_breakpoint *brk)
471 {
472 unsigned long dawr, dawrx, mrd;
473
474 dawr = brk->address;
475
476 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
477 << (63 - 58); //* read/write bits */
478 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
479 << (63 - 59); //* translate */
480 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
481 >> 3; //* PRIM bits */
482 /* dawr length is stored in field MDR bits 48:53. Matches range in
483 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
484 0b111111=64DW.
485 brk->len is in bytes.
486 This aligns up to double word size, shifts and does the bias.
487 */
488 mrd = ((brk->len + 7) >> 3) - 1;
489 dawrx |= (mrd & 0x3f) << (63 - 53);
490
491 if (ppc_md.set_dawr)
492 return ppc_md.set_dawr(dawr, dawrx);
493 mtspr(SPRN_DAWR, dawr);
494 mtspr(SPRN_DAWRX, dawrx);
495 return 0;
496 }
497
498 int set_breakpoint(struct arch_hw_breakpoint *brk)
499 {
500 __get_cpu_var(current_brk) = *brk;
501
502 if (cpu_has_feature(CPU_FTR_DAWR))
503 return set_dawr(brk);
504
505 return set_dabr(brk);
506 }
507
508 #ifdef CONFIG_PPC64
509 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
510 #endif
511
512 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
513 struct arch_hw_breakpoint *b)
514 {
515 if (a->address != b->address)
516 return false;
517 if (a->type != b->type)
518 return false;
519 if (a->len != b->len)
520 return false;
521 return true;
522 }
523
524 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
525 static void tm_reclaim_thread(struct thread_struct *thr,
526 struct thread_info *ti, uint8_t cause)
527 {
528 unsigned long msr_diff = 0;
529
530 /*
531 * If FP/VSX registers have been already saved to the
532 * thread_struct, move them to the transact_fp array.
533 * We clear the TIF_RESTORE_TM bit since after the reclaim
534 * the thread will no longer be transactional.
535 */
536 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
537 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
538 if (msr_diff & MSR_FP)
539 memcpy(&thr->transact_fp, &thr->fp_state,
540 sizeof(struct thread_fp_state));
541 if (msr_diff & MSR_VEC)
542 memcpy(&thr->transact_vr, &thr->vr_state,
543 sizeof(struct thread_vr_state));
544 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
545 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
546 }
547
548 tm_reclaim(thr, thr->regs->msr, cause);
549
550 /* Having done the reclaim, we now have the checkpointed
551 * FP/VSX values in the registers. These might be valid
552 * even if we have previously called enable_kernel_fp() or
553 * flush_fp_to_thread(), so update thr->regs->msr to
554 * indicate their current validity.
555 */
556 thr->regs->msr |= msr_diff;
557 }
558
559 void tm_reclaim_current(uint8_t cause)
560 {
561 tm_enable();
562 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
563 }
564
565 static inline void tm_reclaim_task(struct task_struct *tsk)
566 {
567 /* We have to work out if we're switching from/to a task that's in the
568 * middle of a transaction.
569 *
570 * In switching we need to maintain a 2nd register state as
571 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
572 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
573 * (current) FPRs into oldtask->thread.transact_fpr[].
574 *
575 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
576 */
577 struct thread_struct *thr = &tsk->thread;
578
579 if (!thr->regs)
580 return;
581
582 if (!MSR_TM_ACTIVE(thr->regs->msr))
583 goto out_and_saveregs;
584
585 /* Stash the original thread MSR, as giveup_fpu et al will
586 * modify it. We hold onto it to see whether the task used
587 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
588 * tm_orig_msr is already set.
589 */
590 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
591 thr->tm_orig_msr = thr->regs->msr;
592
593 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
594 "ccr=%lx, msr=%lx, trap=%lx)\n",
595 tsk->pid, thr->regs->nip,
596 thr->regs->ccr, thr->regs->msr,
597 thr->regs->trap);
598
599 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
600
601 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
602 tsk->pid);
603
604 out_and_saveregs:
605 /* Always save the regs here, even if a transaction's not active.
606 * This context-switches a thread's TM info SPRs. We do it here to
607 * be consistent with the restore path (in recheckpoint) which
608 * cannot happen later in _switch().
609 */
610 tm_save_sprs(thr);
611 }
612
613 static inline void tm_recheckpoint_new_task(struct task_struct *new)
614 {
615 unsigned long msr;
616
617 if (!cpu_has_feature(CPU_FTR_TM))
618 return;
619
620 /* Recheckpoint the registers of the thread we're about to switch to.
621 *
622 * If the task was using FP, we non-lazily reload both the original and
623 * the speculative FP register states. This is because the kernel
624 * doesn't see if/when a TM rollback occurs, so if we take an FP
625 * unavoidable later, we are unable to determine which set of FP regs
626 * need to be restored.
627 */
628 if (!new->thread.regs)
629 return;
630
631 /* The TM SPRs are restored here, so that TEXASR.FS can be set
632 * before the trecheckpoint and no explosion occurs.
633 */
634 tm_restore_sprs(&new->thread);
635
636 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
637 return;
638 msr = new->thread.tm_orig_msr;
639 /* Recheckpoint to restore original checkpointed register state. */
640 TM_DEBUG("*** tm_recheckpoint of pid %d "
641 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
642 new->pid, new->thread.regs->msr, msr);
643
644 /* This loads the checkpointed FP/VEC state, if used */
645 tm_recheckpoint(&new->thread, msr);
646
647 /* This loads the speculative FP/VEC state, if used */
648 if (msr & MSR_FP) {
649 do_load_up_transact_fpu(&new->thread);
650 new->thread.regs->msr |=
651 (MSR_FP | new->thread.fpexc_mode);
652 }
653 #ifdef CONFIG_ALTIVEC
654 if (msr & MSR_VEC) {
655 do_load_up_transact_altivec(&new->thread);
656 new->thread.regs->msr |= MSR_VEC;
657 }
658 #endif
659 /* We may as well turn on VSX too since all the state is restored now */
660 if (msr & MSR_VSX)
661 new->thread.regs->msr |= MSR_VSX;
662
663 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
664 "(kernel msr 0x%lx)\n",
665 new->pid, mfmsr());
666 }
667
668 static inline void __switch_to_tm(struct task_struct *prev)
669 {
670 if (cpu_has_feature(CPU_FTR_TM)) {
671 tm_enable();
672 tm_reclaim_task(prev);
673 }
674 }
675
676 /*
677 * This is called if we are on the way out to userspace and the
678 * TIF_RESTORE_TM flag is set. It checks if we need to reload
679 * FP and/or vector state and does so if necessary.
680 * If userspace is inside a transaction (whether active or
681 * suspended) and FP/VMX/VSX instructions have ever been enabled
682 * inside that transaction, then we have to keep them enabled
683 * and keep the FP/VMX/VSX state loaded while ever the transaction
684 * continues. The reason is that if we didn't, and subsequently
685 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
686 * we don't know whether it's the same transaction, and thus we
687 * don't know which of the checkpointed state and the transactional
688 * state to use.
689 */
690 void restore_tm_state(struct pt_regs *regs)
691 {
692 unsigned long msr_diff;
693
694 clear_thread_flag(TIF_RESTORE_TM);
695 if (!MSR_TM_ACTIVE(regs->msr))
696 return;
697
698 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
699 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
700 if (msr_diff & MSR_FP) {
701 fp_enable();
702 load_fp_state(&current->thread.fp_state);
703 regs->msr |= current->thread.fpexc_mode;
704 }
705 if (msr_diff & MSR_VEC) {
706 vec_enable();
707 load_vr_state(&current->thread.vr_state);
708 }
709 regs->msr |= msr_diff;
710 }
711
712 #else
713 #define tm_recheckpoint_new_task(new)
714 #define __switch_to_tm(prev)
715 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
716
717 struct task_struct *__switch_to(struct task_struct *prev,
718 struct task_struct *new)
719 {
720 struct thread_struct *new_thread, *old_thread;
721 struct task_struct *last;
722 #ifdef CONFIG_PPC_BOOK3S_64
723 struct ppc64_tlb_batch *batch;
724 #endif
725
726 WARN_ON(!irqs_disabled());
727
728 /* Back up the TAR across context switches.
729 * Note that the TAR is not available for use in the kernel. (To
730 * provide this, the TAR should be backed up/restored on exception
731 * entry/exit instead, and be in pt_regs. FIXME, this should be in
732 * pt_regs anyway (for debug).)
733 * Save the TAR here before we do treclaim/trecheckpoint as these
734 * will change the TAR.
735 */
736 save_tar(&prev->thread);
737
738 __switch_to_tm(prev);
739
740 #ifdef CONFIG_SMP
741 /* avoid complexity of lazy save/restore of fpu
742 * by just saving it every time we switch out if
743 * this task used the fpu during the last quantum.
744 *
745 * If it tries to use the fpu again, it'll trap and
746 * reload its fp regs. So we don't have to do a restore
747 * every switch, just a save.
748 * -- Cort
749 */
750 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
751 giveup_fpu(prev);
752 #ifdef CONFIG_ALTIVEC
753 /*
754 * If the previous thread used altivec in the last quantum
755 * (thus changing altivec regs) then save them.
756 * We used to check the VRSAVE register but not all apps
757 * set it, so we don't rely on it now (and in fact we need
758 * to save & restore VSCR even if VRSAVE == 0). -- paulus
759 *
760 * On SMP we always save/restore altivec regs just to avoid the
761 * complexity of changing processors.
762 * -- Cort
763 */
764 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
765 giveup_altivec(prev);
766 #endif /* CONFIG_ALTIVEC */
767 #ifdef CONFIG_VSX
768 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
769 /* VMX and FPU registers are already save here */
770 __giveup_vsx(prev);
771 #endif /* CONFIG_VSX */
772 #ifdef CONFIG_SPE
773 /*
774 * If the previous thread used spe in the last quantum
775 * (thus changing spe regs) then save them.
776 *
777 * On SMP we always save/restore spe regs just to avoid the
778 * complexity of changing processors.
779 */
780 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
781 giveup_spe(prev);
782 #endif /* CONFIG_SPE */
783
784 #else /* CONFIG_SMP */
785 #ifdef CONFIG_ALTIVEC
786 /* Avoid the trap. On smp this this never happens since
787 * we don't set last_task_used_altivec -- Cort
788 */
789 if (new->thread.regs && last_task_used_altivec == new)
790 new->thread.regs->msr |= MSR_VEC;
791 #endif /* CONFIG_ALTIVEC */
792 #ifdef CONFIG_VSX
793 if (new->thread.regs && last_task_used_vsx == new)
794 new->thread.regs->msr |= MSR_VSX;
795 #endif /* CONFIG_VSX */
796 #ifdef CONFIG_SPE
797 /* Avoid the trap. On smp this this never happens since
798 * we don't set last_task_used_spe
799 */
800 if (new->thread.regs && last_task_used_spe == new)
801 new->thread.regs->msr |= MSR_SPE;
802 #endif /* CONFIG_SPE */
803
804 #endif /* CONFIG_SMP */
805
806 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
807 switch_booke_debug_regs(&new->thread.debug);
808 #else
809 /*
810 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
811 * schedule DABR
812 */
813 #ifndef CONFIG_HAVE_HW_BREAKPOINT
814 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
815 set_breakpoint(&new->thread.hw_brk);
816 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
817 #endif
818
819
820 new_thread = &new->thread;
821 old_thread = &current->thread;
822
823 #ifdef CONFIG_PPC64
824 /*
825 * Collect processor utilization data per process
826 */
827 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
828 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
829 long unsigned start_tb, current_tb;
830 start_tb = old_thread->start_tb;
831 cu->current_tb = current_tb = mfspr(SPRN_PURR);
832 old_thread->accum_tb += (current_tb - start_tb);
833 new_thread->start_tb = current_tb;
834 }
835 #endif /* CONFIG_PPC64 */
836
837 #ifdef CONFIG_PPC_BOOK3S_64
838 batch = &__get_cpu_var(ppc64_tlb_batch);
839 if (batch->active) {
840 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
841 if (batch->index)
842 __flush_tlb_pending(batch);
843 batch->active = 0;
844 }
845 #endif /* CONFIG_PPC_BOOK3S_64 */
846
847 /*
848 * We can't take a PMU exception inside _switch() since there is a
849 * window where the kernel stack SLB and the kernel stack are out
850 * of sync. Hard disable here.
851 */
852 hard_irq_disable();
853
854 tm_recheckpoint_new_task(new);
855
856 last = _switch(old_thread, new_thread);
857
858 #ifdef CONFIG_PPC_BOOK3S_64
859 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
860 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
861 batch = &__get_cpu_var(ppc64_tlb_batch);
862 batch->active = 1;
863 }
864 #endif /* CONFIG_PPC_BOOK3S_64 */
865
866 return last;
867 }
868
869 static int instructions_to_print = 16;
870
871 static void show_instructions(struct pt_regs *regs)
872 {
873 int i;
874 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
875 sizeof(int));
876
877 printk("Instruction dump:");
878
879 for (i = 0; i < instructions_to_print; i++) {
880 int instr;
881
882 if (!(i % 8))
883 printk("\n");
884
885 #if !defined(CONFIG_BOOKE)
886 /* If executing with the IMMU off, adjust pc rather
887 * than print XXXXXXXX.
888 */
889 if (!(regs->msr & MSR_IR))
890 pc = (unsigned long)phys_to_virt(pc);
891 #endif
892
893 /* We use __get_user here *only* to avoid an OOPS on a
894 * bad address because the pc *should* only be a
895 * kernel address.
896 */
897 if (!__kernel_text_address(pc) ||
898 __get_user(instr, (unsigned int __user *)pc)) {
899 printk(KERN_CONT "XXXXXXXX ");
900 } else {
901 if (regs->nip == pc)
902 printk(KERN_CONT "<%08x> ", instr);
903 else
904 printk(KERN_CONT "%08x ", instr);
905 }
906
907 pc += sizeof(int);
908 }
909
910 printk("\n");
911 }
912
913 static struct regbit {
914 unsigned long bit;
915 const char *name;
916 } msr_bits[] = {
917 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
918 {MSR_SF, "SF"},
919 {MSR_HV, "HV"},
920 #endif
921 {MSR_VEC, "VEC"},
922 {MSR_VSX, "VSX"},
923 #ifdef CONFIG_BOOKE
924 {MSR_CE, "CE"},
925 #endif
926 {MSR_EE, "EE"},
927 {MSR_PR, "PR"},
928 {MSR_FP, "FP"},
929 {MSR_ME, "ME"},
930 #ifdef CONFIG_BOOKE
931 {MSR_DE, "DE"},
932 #else
933 {MSR_SE, "SE"},
934 {MSR_BE, "BE"},
935 #endif
936 {MSR_IR, "IR"},
937 {MSR_DR, "DR"},
938 {MSR_PMM, "PMM"},
939 #ifndef CONFIG_BOOKE
940 {MSR_RI, "RI"},
941 {MSR_LE, "LE"},
942 #endif
943 {0, NULL}
944 };
945
946 static void printbits(unsigned long val, struct regbit *bits)
947 {
948 const char *sep = "";
949
950 printk("<");
951 for (; bits->bit; ++bits)
952 if (val & bits->bit) {
953 printk("%s%s", sep, bits->name);
954 sep = ",";
955 }
956 printk(">");
957 }
958
959 #ifdef CONFIG_PPC64
960 #define REG "%016lx"
961 #define REGS_PER_LINE 4
962 #define LAST_VOLATILE 13
963 #else
964 #define REG "%08lx"
965 #define REGS_PER_LINE 8
966 #define LAST_VOLATILE 12
967 #endif
968
969 void show_regs(struct pt_regs * regs)
970 {
971 int i, trap;
972
973 show_regs_print_info(KERN_DEFAULT);
974
975 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
976 regs->nip, regs->link, regs->ctr);
977 printk("REGS: %p TRAP: %04lx %s (%s)\n",
978 regs, regs->trap, print_tainted(), init_utsname()->release);
979 printk("MSR: "REG" ", regs->msr);
980 printbits(regs->msr, msr_bits);
981 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
982 trap = TRAP(regs);
983 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
984 printk("CFAR: "REG" ", regs->orig_gpr3);
985 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
986 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
987 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
988 #else
989 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
990 #endif
991 #ifdef CONFIG_PPC64
992 printk("SOFTE: %ld ", regs->softe);
993 #endif
994 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
995 if (MSR_TM_ACTIVE(regs->msr))
996 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
997 #endif
998
999 for (i = 0; i < 32; i++) {
1000 if ((i % REGS_PER_LINE) == 0)
1001 printk("\nGPR%02d: ", i);
1002 printk(REG " ", regs->gpr[i]);
1003 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1004 break;
1005 }
1006 printk("\n");
1007 #ifdef CONFIG_KALLSYMS
1008 /*
1009 * Lookup NIP late so we have the best change of getting the
1010 * above info out without failing
1011 */
1012 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1013 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1014 #endif
1015 show_stack(current, (unsigned long *) regs->gpr[1]);
1016 if (!user_mode(regs))
1017 show_instructions(regs);
1018 }
1019
1020 void exit_thread(void)
1021 {
1022 discard_lazy_cpu_state();
1023 }
1024
1025 void flush_thread(void)
1026 {
1027 discard_lazy_cpu_state();
1028
1029 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1030 flush_ptrace_hw_breakpoint(current);
1031 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1032 set_debug_reg_defaults(&current->thread);
1033 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1034 }
1035
1036 void
1037 release_thread(struct task_struct *t)
1038 {
1039 }
1040
1041 /*
1042 * this gets called so that we can store coprocessor state into memory and
1043 * copy the current task into the new thread.
1044 */
1045 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1046 {
1047 flush_fp_to_thread(src);
1048 flush_altivec_to_thread(src);
1049 flush_vsx_to_thread(src);
1050 flush_spe_to_thread(src);
1051
1052 *dst = *src;
1053
1054 clear_task_ebb(dst);
1055
1056 return 0;
1057 }
1058
1059 /*
1060 * Copy a thread..
1061 */
1062 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1063
1064 int copy_thread(unsigned long clone_flags, unsigned long usp,
1065 unsigned long arg, struct task_struct *p)
1066 {
1067 struct pt_regs *childregs, *kregs;
1068 extern void ret_from_fork(void);
1069 extern void ret_from_kernel_thread(void);
1070 void (*f)(void);
1071 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1072
1073 /* Copy registers */
1074 sp -= sizeof(struct pt_regs);
1075 childregs = (struct pt_regs *) sp;
1076 if (unlikely(p->flags & PF_KTHREAD)) {
1077 struct thread_info *ti = (void *)task_stack_page(p);
1078 memset(childregs, 0, sizeof(struct pt_regs));
1079 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1080 childregs->gpr[14] = usp; /* function */
1081 #ifdef CONFIG_PPC64
1082 clear_tsk_thread_flag(p, TIF_32BIT);
1083 childregs->softe = 1;
1084 #endif
1085 childregs->gpr[15] = arg;
1086 p->thread.regs = NULL; /* no user register state */
1087 ti->flags |= _TIF_RESTOREALL;
1088 f = ret_from_kernel_thread;
1089 } else {
1090 struct pt_regs *regs = current_pt_regs();
1091 CHECK_FULL_REGS(regs);
1092 *childregs = *regs;
1093 if (usp)
1094 childregs->gpr[1] = usp;
1095 p->thread.regs = childregs;
1096 childregs->gpr[3] = 0; /* Result from fork() */
1097 if (clone_flags & CLONE_SETTLS) {
1098 #ifdef CONFIG_PPC64
1099 if (!is_32bit_task())
1100 childregs->gpr[13] = childregs->gpr[6];
1101 else
1102 #endif
1103 childregs->gpr[2] = childregs->gpr[6];
1104 }
1105
1106 f = ret_from_fork;
1107 }
1108 sp -= STACK_FRAME_OVERHEAD;
1109
1110 /*
1111 * The way this works is that at some point in the future
1112 * some task will call _switch to switch to the new task.
1113 * That will pop off the stack frame created below and start
1114 * the new task running at ret_from_fork. The new task will
1115 * do some house keeping and then return from the fork or clone
1116 * system call, using the stack frame created above.
1117 */
1118 ((unsigned long *)sp)[0] = 0;
1119 sp -= sizeof(struct pt_regs);
1120 kregs = (struct pt_regs *) sp;
1121 sp -= STACK_FRAME_OVERHEAD;
1122 p->thread.ksp = sp;
1123 #ifdef CONFIG_PPC32
1124 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1125 _ALIGN_UP(sizeof(struct thread_info), 16);
1126 #endif
1127 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1128 p->thread.ptrace_bps[0] = NULL;
1129 #endif
1130
1131 p->thread.fp_save_area = NULL;
1132 #ifdef CONFIG_ALTIVEC
1133 p->thread.vr_save_area = NULL;
1134 #endif
1135
1136 #ifdef CONFIG_PPC_STD_MMU_64
1137 if (mmu_has_feature(MMU_FTR_SLB)) {
1138 unsigned long sp_vsid;
1139 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1140
1141 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1142 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1143 << SLB_VSID_SHIFT_1T;
1144 else
1145 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1146 << SLB_VSID_SHIFT;
1147 sp_vsid |= SLB_VSID_KERNEL | llp;
1148 p->thread.ksp_vsid = sp_vsid;
1149 }
1150 #endif /* CONFIG_PPC_STD_MMU_64 */
1151 #ifdef CONFIG_PPC64
1152 if (cpu_has_feature(CPU_FTR_DSCR)) {
1153 p->thread.dscr_inherit = current->thread.dscr_inherit;
1154 p->thread.dscr = current->thread.dscr;
1155 }
1156 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1157 p->thread.ppr = INIT_PPR;
1158 #endif
1159 /*
1160 * The PPC64 ABI makes use of a TOC to contain function
1161 * pointers. The function (ret_from_except) is actually a pointer
1162 * to the TOC entry. The first entry is a pointer to the actual
1163 * function.
1164 */
1165 #ifdef CONFIG_PPC64
1166 kregs->nip = *((unsigned long *)f);
1167 #else
1168 kregs->nip = (unsigned long)f;
1169 #endif
1170 return 0;
1171 }
1172
1173 /*
1174 * Set up a thread for executing a new program
1175 */
1176 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1177 {
1178 #ifdef CONFIG_PPC64
1179 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1180 #endif
1181
1182 /*
1183 * If we exec out of a kernel thread then thread.regs will not be
1184 * set. Do it now.
1185 */
1186 if (!current->thread.regs) {
1187 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1188 current->thread.regs = regs - 1;
1189 }
1190
1191 memset(regs->gpr, 0, sizeof(regs->gpr));
1192 regs->ctr = 0;
1193 regs->link = 0;
1194 regs->xer = 0;
1195 regs->ccr = 0;
1196 regs->gpr[1] = sp;
1197
1198 /*
1199 * We have just cleared all the nonvolatile GPRs, so make
1200 * FULL_REGS(regs) return true. This is necessary to allow
1201 * ptrace to examine the thread immediately after exec.
1202 */
1203 regs->trap &= ~1UL;
1204
1205 #ifdef CONFIG_PPC32
1206 regs->mq = 0;
1207 regs->nip = start;
1208 regs->msr = MSR_USER;
1209 #else
1210 if (!is_32bit_task()) {
1211 unsigned long entry;
1212
1213 if (is_elf2_task()) {
1214 /* Look ma, no function descriptors! */
1215 entry = start;
1216
1217 /*
1218 * Ulrich says:
1219 * The latest iteration of the ABI requires that when
1220 * calling a function (at its global entry point),
1221 * the caller must ensure r12 holds the entry point
1222 * address (so that the function can quickly
1223 * establish addressability).
1224 */
1225 regs->gpr[12] = start;
1226 /* Make sure that's restored on entry to userspace. */
1227 set_thread_flag(TIF_RESTOREALL);
1228 } else {
1229 unsigned long toc;
1230
1231 /* start is a relocated pointer to the function
1232 * descriptor for the elf _start routine. The first
1233 * entry in the function descriptor is the entry
1234 * address of _start and the second entry is the TOC
1235 * value we need to use.
1236 */
1237 __get_user(entry, (unsigned long __user *)start);
1238 __get_user(toc, (unsigned long __user *)start+1);
1239
1240 /* Check whether the e_entry function descriptor entries
1241 * need to be relocated before we can use them.
1242 */
1243 if (load_addr != 0) {
1244 entry += load_addr;
1245 toc += load_addr;
1246 }
1247 regs->gpr[2] = toc;
1248 }
1249 regs->nip = entry;
1250 regs->msr = MSR_USER64;
1251 } else {
1252 regs->nip = start;
1253 regs->gpr[2] = 0;
1254 regs->msr = MSR_USER32;
1255 }
1256 #endif
1257 discard_lazy_cpu_state();
1258 #ifdef CONFIG_VSX
1259 current->thread.used_vsr = 0;
1260 #endif
1261 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1262 current->thread.fp_save_area = NULL;
1263 #ifdef CONFIG_ALTIVEC
1264 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1265 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1266 current->thread.vr_save_area = NULL;
1267 current->thread.vrsave = 0;
1268 current->thread.used_vr = 0;
1269 #endif /* CONFIG_ALTIVEC */
1270 #ifdef CONFIG_SPE
1271 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1272 current->thread.acc = 0;
1273 current->thread.spefscr = 0;
1274 current->thread.used_spe = 0;
1275 #endif /* CONFIG_SPE */
1276 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1277 if (cpu_has_feature(CPU_FTR_TM))
1278 regs->msr |= MSR_TM;
1279 current->thread.tm_tfhar = 0;
1280 current->thread.tm_texasr = 0;
1281 current->thread.tm_tfiar = 0;
1282 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1283 }
1284
1285 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1286 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1287
1288 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1289 {
1290 struct pt_regs *regs = tsk->thread.regs;
1291
1292 /* This is a bit hairy. If we are an SPE enabled processor
1293 * (have embedded fp) we store the IEEE exception enable flags in
1294 * fpexc_mode. fpexc_mode is also used for setting FP exception
1295 * mode (asyn, precise, disabled) for 'Classic' FP. */
1296 if (val & PR_FP_EXC_SW_ENABLE) {
1297 #ifdef CONFIG_SPE
1298 if (cpu_has_feature(CPU_FTR_SPE)) {
1299 /*
1300 * When the sticky exception bits are set
1301 * directly by userspace, it must call prctl
1302 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1303 * in the existing prctl settings) or
1304 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1305 * the bits being set). <fenv.h> functions
1306 * saving and restoring the whole
1307 * floating-point environment need to do so
1308 * anyway to restore the prctl settings from
1309 * the saved environment.
1310 */
1311 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1312 tsk->thread.fpexc_mode = val &
1313 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1314 return 0;
1315 } else {
1316 return -EINVAL;
1317 }
1318 #else
1319 return -EINVAL;
1320 #endif
1321 }
1322
1323 /* on a CONFIG_SPE this does not hurt us. The bits that
1324 * __pack_fe01 use do not overlap with bits used for
1325 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1326 * on CONFIG_SPE implementations are reserved so writing to
1327 * them does not change anything */
1328 if (val > PR_FP_EXC_PRECISE)
1329 return -EINVAL;
1330 tsk->thread.fpexc_mode = __pack_fe01(val);
1331 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1332 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1333 | tsk->thread.fpexc_mode;
1334 return 0;
1335 }
1336
1337 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1338 {
1339 unsigned int val;
1340
1341 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1342 #ifdef CONFIG_SPE
1343 if (cpu_has_feature(CPU_FTR_SPE)) {
1344 /*
1345 * When the sticky exception bits are set
1346 * directly by userspace, it must call prctl
1347 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1348 * in the existing prctl settings) or
1349 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1350 * the bits being set). <fenv.h> functions
1351 * saving and restoring the whole
1352 * floating-point environment need to do so
1353 * anyway to restore the prctl settings from
1354 * the saved environment.
1355 */
1356 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1357 val = tsk->thread.fpexc_mode;
1358 } else
1359 return -EINVAL;
1360 #else
1361 return -EINVAL;
1362 #endif
1363 else
1364 val = __unpack_fe01(tsk->thread.fpexc_mode);
1365 return put_user(val, (unsigned int __user *) adr);
1366 }
1367
1368 int set_endian(struct task_struct *tsk, unsigned int val)
1369 {
1370 struct pt_regs *regs = tsk->thread.regs;
1371
1372 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1373 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1374 return -EINVAL;
1375
1376 if (regs == NULL)
1377 return -EINVAL;
1378
1379 if (val == PR_ENDIAN_BIG)
1380 regs->msr &= ~MSR_LE;
1381 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1382 regs->msr |= MSR_LE;
1383 else
1384 return -EINVAL;
1385
1386 return 0;
1387 }
1388
1389 int get_endian(struct task_struct *tsk, unsigned long adr)
1390 {
1391 struct pt_regs *regs = tsk->thread.regs;
1392 unsigned int val;
1393
1394 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1395 !cpu_has_feature(CPU_FTR_REAL_LE))
1396 return -EINVAL;
1397
1398 if (regs == NULL)
1399 return -EINVAL;
1400
1401 if (regs->msr & MSR_LE) {
1402 if (cpu_has_feature(CPU_FTR_REAL_LE))
1403 val = PR_ENDIAN_LITTLE;
1404 else
1405 val = PR_ENDIAN_PPC_LITTLE;
1406 } else
1407 val = PR_ENDIAN_BIG;
1408
1409 return put_user(val, (unsigned int __user *)adr);
1410 }
1411
1412 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1413 {
1414 tsk->thread.align_ctl = val;
1415 return 0;
1416 }
1417
1418 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1419 {
1420 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1421 }
1422
1423 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1424 unsigned long nbytes)
1425 {
1426 unsigned long stack_page;
1427 unsigned long cpu = task_cpu(p);
1428
1429 /*
1430 * Avoid crashing if the stack has overflowed and corrupted
1431 * task_cpu(p), which is in the thread_info struct.
1432 */
1433 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1434 stack_page = (unsigned long) hardirq_ctx[cpu];
1435 if (sp >= stack_page + sizeof(struct thread_struct)
1436 && sp <= stack_page + THREAD_SIZE - nbytes)
1437 return 1;
1438
1439 stack_page = (unsigned long) softirq_ctx[cpu];
1440 if (sp >= stack_page + sizeof(struct thread_struct)
1441 && sp <= stack_page + THREAD_SIZE - nbytes)
1442 return 1;
1443 }
1444 return 0;
1445 }
1446
1447 int validate_sp(unsigned long sp, struct task_struct *p,
1448 unsigned long nbytes)
1449 {
1450 unsigned long stack_page = (unsigned long)task_stack_page(p);
1451
1452 if (sp >= stack_page + sizeof(struct thread_struct)
1453 && sp <= stack_page + THREAD_SIZE - nbytes)
1454 return 1;
1455
1456 return valid_irq_stack(sp, p, nbytes);
1457 }
1458
1459 EXPORT_SYMBOL(validate_sp);
1460
1461 unsigned long get_wchan(struct task_struct *p)
1462 {
1463 unsigned long ip, sp;
1464 int count = 0;
1465
1466 if (!p || p == current || p->state == TASK_RUNNING)
1467 return 0;
1468
1469 sp = p->thread.ksp;
1470 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1471 return 0;
1472
1473 do {
1474 sp = *(unsigned long *)sp;
1475 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1476 return 0;
1477 if (count > 0) {
1478 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1479 if (!in_sched_functions(ip))
1480 return ip;
1481 }
1482 } while (count++ < 16);
1483 return 0;
1484 }
1485
1486 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1487
1488 void show_stack(struct task_struct *tsk, unsigned long *stack)
1489 {
1490 unsigned long sp, ip, lr, newsp;
1491 int count = 0;
1492 int firstframe = 1;
1493 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1494 int curr_frame = current->curr_ret_stack;
1495 extern void return_to_handler(void);
1496 unsigned long rth = (unsigned long)return_to_handler;
1497 unsigned long mrth = -1;
1498 #ifdef CONFIG_PPC64
1499 extern void mod_return_to_handler(void);
1500 rth = *(unsigned long *)rth;
1501 mrth = (unsigned long)mod_return_to_handler;
1502 mrth = *(unsigned long *)mrth;
1503 #endif
1504 #endif
1505
1506 sp = (unsigned long) stack;
1507 if (tsk == NULL)
1508 tsk = current;
1509 if (sp == 0) {
1510 if (tsk == current)
1511 asm("mr %0,1" : "=r" (sp));
1512 else
1513 sp = tsk->thread.ksp;
1514 }
1515
1516 lr = 0;
1517 printk("Call Trace:\n");
1518 do {
1519 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1520 return;
1521
1522 stack = (unsigned long *) sp;
1523 newsp = stack[0];
1524 ip = stack[STACK_FRAME_LR_SAVE];
1525 if (!firstframe || ip != lr) {
1526 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1527 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1528 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1529 printk(" (%pS)",
1530 (void *)current->ret_stack[curr_frame].ret);
1531 curr_frame--;
1532 }
1533 #endif
1534 if (firstframe)
1535 printk(" (unreliable)");
1536 printk("\n");
1537 }
1538 firstframe = 0;
1539
1540 /*
1541 * See if this is an exception frame.
1542 * We look for the "regshere" marker in the current frame.
1543 */
1544 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1545 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1546 struct pt_regs *regs = (struct pt_regs *)
1547 (sp + STACK_FRAME_OVERHEAD);
1548 lr = regs->link;
1549 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1550 regs->trap, (void *)regs->nip, (void *)lr);
1551 firstframe = 1;
1552 }
1553
1554 sp = newsp;
1555 } while (count++ < kstack_depth_to_print);
1556 }
1557
1558 #ifdef CONFIG_PPC64
1559 /* Called with hard IRQs off */
1560 void notrace __ppc64_runlatch_on(void)
1561 {
1562 struct thread_info *ti = current_thread_info();
1563 unsigned long ctrl;
1564
1565 ctrl = mfspr(SPRN_CTRLF);
1566 ctrl |= CTRL_RUNLATCH;
1567 mtspr(SPRN_CTRLT, ctrl);
1568
1569 ti->local_flags |= _TLF_RUNLATCH;
1570 }
1571
1572 /* Called with hard IRQs off */
1573 void notrace __ppc64_runlatch_off(void)
1574 {
1575 struct thread_info *ti = current_thread_info();
1576 unsigned long ctrl;
1577
1578 ti->local_flags &= ~_TLF_RUNLATCH;
1579
1580 ctrl = mfspr(SPRN_CTRLF);
1581 ctrl &= ~CTRL_RUNLATCH;
1582 mtspr(SPRN_CTRLT, ctrl);
1583 }
1584 #endif /* CONFIG_PPC64 */
1585
1586 unsigned long arch_align_stack(unsigned long sp)
1587 {
1588 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1589 sp -= get_random_int() & ~PAGE_MASK;
1590 return sp & ~0xf;
1591 }
1592
1593 static inline unsigned long brk_rnd(void)
1594 {
1595 unsigned long rnd = 0;
1596
1597 /* 8MB for 32bit, 1GB for 64bit */
1598 if (is_32bit_task())
1599 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1600 else
1601 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1602
1603 return rnd << PAGE_SHIFT;
1604 }
1605
1606 unsigned long arch_randomize_brk(struct mm_struct *mm)
1607 {
1608 unsigned long base = mm->brk;
1609 unsigned long ret;
1610
1611 #ifdef CONFIG_PPC_STD_MMU_64
1612 /*
1613 * If we are using 1TB segments and we are allowed to randomise
1614 * the heap, we can put it above 1TB so it is backed by a 1TB
1615 * segment. Otherwise the heap will be in the bottom 1TB
1616 * which always uses 256MB segments and this may result in a
1617 * performance penalty.
1618 */
1619 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1620 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1621 #endif
1622
1623 ret = PAGE_ALIGN(base + brk_rnd());
1624
1625 if (ret < mm->brk)
1626 return mm->brk;
1627
1628 return ret;
1629 }
1630
1631 unsigned long randomize_et_dyn(unsigned long base)
1632 {
1633 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1634
1635 if (ret < base)
1636 return base;
1637
1638 return ret;
1639 }
This page took 0.067371 seconds and 5 git commands to generate.