Merge 3.12-rc3 into char-misc-next
[deliverable/linux.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_FPU
78 /*
79 * Make sure the floating-point register state in the
80 * the thread_struct is up to date for task tsk.
81 */
82 void flush_fp_to_thread(struct task_struct *tsk)
83 {
84 if (tsk->thread.regs) {
85 /*
86 * We need to disable preemption here because if we didn't,
87 * another process could get scheduled after the regs->msr
88 * test but before we have finished saving the FP registers
89 * to the thread_struct. That process could take over the
90 * FPU, and then when we get scheduled again we would store
91 * bogus values for the remaining FP registers.
92 */
93 preempt_disable();
94 if (tsk->thread.regs->msr & MSR_FP) {
95 #ifdef CONFIG_SMP
96 /*
97 * This should only ever be called for current or
98 * for a stopped child process. Since we save away
99 * the FP register state on context switch on SMP,
100 * there is something wrong if a stopped child appears
101 * to still have its FP state in the CPU registers.
102 */
103 BUG_ON(tsk != current);
104 #endif
105 giveup_fpu(tsk);
106 }
107 preempt_enable();
108 }
109 }
110 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
111 #endif
112
113 void enable_kernel_fp(void)
114 {
115 WARN_ON(preemptible());
116
117 #ifdef CONFIG_SMP
118 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
119 giveup_fpu(current);
120 else
121 giveup_fpu(NULL); /* just enables FP for kernel */
122 #else
123 giveup_fpu(last_task_used_math);
124 #endif /* CONFIG_SMP */
125 }
126 EXPORT_SYMBOL(enable_kernel_fp);
127
128 #ifdef CONFIG_ALTIVEC
129 void enable_kernel_altivec(void)
130 {
131 WARN_ON(preemptible());
132
133 #ifdef CONFIG_SMP
134 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
135 giveup_altivec(current);
136 else
137 giveup_altivec_notask();
138 #else
139 giveup_altivec(last_task_used_altivec);
140 #endif /* CONFIG_SMP */
141 }
142 EXPORT_SYMBOL(enable_kernel_altivec);
143
144 /*
145 * Make sure the VMX/Altivec register state in the
146 * the thread_struct is up to date for task tsk.
147 */
148 void flush_altivec_to_thread(struct task_struct *tsk)
149 {
150 if (tsk->thread.regs) {
151 preempt_disable();
152 if (tsk->thread.regs->msr & MSR_VEC) {
153 #ifdef CONFIG_SMP
154 BUG_ON(tsk != current);
155 #endif
156 giveup_altivec(tsk);
157 }
158 preempt_enable();
159 }
160 }
161 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
162 #endif /* CONFIG_ALTIVEC */
163
164 #ifdef CONFIG_VSX
165 #if 0
166 /* not currently used, but some crazy RAID module might want to later */
167 void enable_kernel_vsx(void)
168 {
169 WARN_ON(preemptible());
170
171 #ifdef CONFIG_SMP
172 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
173 giveup_vsx(current);
174 else
175 giveup_vsx(NULL); /* just enable vsx for kernel - force */
176 #else
177 giveup_vsx(last_task_used_vsx);
178 #endif /* CONFIG_SMP */
179 }
180 EXPORT_SYMBOL(enable_kernel_vsx);
181 #endif
182
183 void giveup_vsx(struct task_struct *tsk)
184 {
185 giveup_fpu(tsk);
186 giveup_altivec(tsk);
187 __giveup_vsx(tsk);
188 }
189
190 void flush_vsx_to_thread(struct task_struct *tsk)
191 {
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VSX) {
195 #ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197 #endif
198 giveup_vsx(tsk);
199 }
200 preempt_enable();
201 }
202 }
203 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
204 #endif /* CONFIG_VSX */
205
206 #ifdef CONFIG_SPE
207
208 void enable_kernel_spe(void)
209 {
210 WARN_ON(preemptible());
211
212 #ifdef CONFIG_SMP
213 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
214 giveup_spe(current);
215 else
216 giveup_spe(NULL); /* just enable SPE for kernel - force */
217 #else
218 giveup_spe(last_task_used_spe);
219 #endif /* __SMP __ */
220 }
221 EXPORT_SYMBOL(enable_kernel_spe);
222
223 void flush_spe_to_thread(struct task_struct *tsk)
224 {
225 if (tsk->thread.regs) {
226 preempt_disable();
227 if (tsk->thread.regs->msr & MSR_SPE) {
228 #ifdef CONFIG_SMP
229 BUG_ON(tsk != current);
230 #endif
231 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
232 giveup_spe(tsk);
233 }
234 preempt_enable();
235 }
236 }
237 #endif /* CONFIG_SPE */
238
239 #ifndef CONFIG_SMP
240 /*
241 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
242 * and the current task has some state, discard it.
243 */
244 void discard_lazy_cpu_state(void)
245 {
246 preempt_disable();
247 if (last_task_used_math == current)
248 last_task_used_math = NULL;
249 #ifdef CONFIG_ALTIVEC
250 if (last_task_used_altivec == current)
251 last_task_used_altivec = NULL;
252 #endif /* CONFIG_ALTIVEC */
253 #ifdef CONFIG_VSX
254 if (last_task_used_vsx == current)
255 last_task_used_vsx = NULL;
256 #endif /* CONFIG_VSX */
257 #ifdef CONFIG_SPE
258 if (last_task_used_spe == current)
259 last_task_used_spe = NULL;
260 #endif
261 preempt_enable();
262 }
263 #endif /* CONFIG_SMP */
264
265 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
266 void do_send_trap(struct pt_regs *regs, unsigned long address,
267 unsigned long error_code, int signal_code, int breakpt)
268 {
269 siginfo_t info;
270
271 current->thread.trap_nr = signal_code;
272 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273 11, SIGSEGV) == NOTIFY_STOP)
274 return;
275
276 /* Deliver the signal to userspace */
277 info.si_signo = SIGTRAP;
278 info.si_errno = breakpt; /* breakpoint or watchpoint id */
279 info.si_code = signal_code;
280 info.si_addr = (void __user *)address;
281 force_sig_info(SIGTRAP, &info, current);
282 }
283 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
284 void do_break (struct pt_regs *regs, unsigned long address,
285 unsigned long error_code)
286 {
287 siginfo_t info;
288
289 current->thread.trap_nr = TRAP_HWBKPT;
290 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
291 11, SIGSEGV) == NOTIFY_STOP)
292 return;
293
294 if (debugger_break_match(regs))
295 return;
296
297 /* Clear the breakpoint */
298 hw_breakpoint_disable();
299
300 /* Deliver the signal to userspace */
301 info.si_signo = SIGTRAP;
302 info.si_errno = 0;
303 info.si_code = TRAP_HWBKPT;
304 info.si_addr = (void __user *)address;
305 force_sig_info(SIGTRAP, &info, current);
306 }
307 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
308
309 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
310
311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
312 /*
313 * Set the debug registers back to their default "safe" values.
314 */
315 static void set_debug_reg_defaults(struct thread_struct *thread)
316 {
317 thread->iac1 = thread->iac2 = 0;
318 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
319 thread->iac3 = thread->iac4 = 0;
320 #endif
321 thread->dac1 = thread->dac2 = 0;
322 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
323 thread->dvc1 = thread->dvc2 = 0;
324 #endif
325 thread->dbcr0 = 0;
326 #ifdef CONFIG_BOOKE
327 /*
328 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
329 */
330 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
331 DBCR1_IAC3US | DBCR1_IAC4US;
332 /*
333 * Force Data Address Compare User/Supervisor bits to be User-only
334 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
335 */
336 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
337 #else
338 thread->dbcr1 = 0;
339 #endif
340 }
341
342 static void prime_debug_regs(struct thread_struct *thread)
343 {
344 /*
345 * We could have inherited MSR_DE from userspace, since
346 * it doesn't get cleared on exception entry. Make sure
347 * MSR_DE is clear before we enable any debug events.
348 */
349 mtmsr(mfmsr() & ~MSR_DE);
350
351 mtspr(SPRN_IAC1, thread->iac1);
352 mtspr(SPRN_IAC2, thread->iac2);
353 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
354 mtspr(SPRN_IAC3, thread->iac3);
355 mtspr(SPRN_IAC4, thread->iac4);
356 #endif
357 mtspr(SPRN_DAC1, thread->dac1);
358 mtspr(SPRN_DAC2, thread->dac2);
359 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
360 mtspr(SPRN_DVC1, thread->dvc1);
361 mtspr(SPRN_DVC2, thread->dvc2);
362 #endif
363 mtspr(SPRN_DBCR0, thread->dbcr0);
364 mtspr(SPRN_DBCR1, thread->dbcr1);
365 #ifdef CONFIG_BOOKE
366 mtspr(SPRN_DBCR2, thread->dbcr2);
367 #endif
368 }
369 /*
370 * Unless neither the old or new thread are making use of the
371 * debug registers, set the debug registers from the values
372 * stored in the new thread.
373 */
374 static void switch_booke_debug_regs(struct thread_struct *new_thread)
375 {
376 if ((current->thread.dbcr0 & DBCR0_IDM)
377 || (new_thread->dbcr0 & DBCR0_IDM))
378 prime_debug_regs(new_thread);
379 }
380 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
381 #ifndef CONFIG_HAVE_HW_BREAKPOINT
382 static void set_debug_reg_defaults(struct thread_struct *thread)
383 {
384 thread->hw_brk.address = 0;
385 thread->hw_brk.type = 0;
386 set_breakpoint(&thread->hw_brk);
387 }
388 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
389 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
390
391 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
392 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393 {
394 mtspr(SPRN_DAC1, dabr);
395 #ifdef CONFIG_PPC_47x
396 isync();
397 #endif
398 return 0;
399 }
400 #elif defined(CONFIG_PPC_BOOK3S)
401 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
402 {
403 mtspr(SPRN_DABR, dabr);
404 if (cpu_has_feature(CPU_FTR_DABRX))
405 mtspr(SPRN_DABRX, dabrx);
406 return 0;
407 }
408 #else
409 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
410 {
411 return -EINVAL;
412 }
413 #endif
414
415 static inline int set_dabr(struct arch_hw_breakpoint *brk)
416 {
417 unsigned long dabr, dabrx;
418
419 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
420 dabrx = ((brk->type >> 3) & 0x7);
421
422 if (ppc_md.set_dabr)
423 return ppc_md.set_dabr(dabr, dabrx);
424
425 return __set_dabr(dabr, dabrx);
426 }
427
428 static inline int set_dawr(struct arch_hw_breakpoint *brk)
429 {
430 unsigned long dawr, dawrx, mrd;
431
432 dawr = brk->address;
433
434 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
435 << (63 - 58); //* read/write bits */
436 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
437 << (63 - 59); //* translate */
438 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
439 >> 3; //* PRIM bits */
440 /* dawr length is stored in field MDR bits 48:53. Matches range in
441 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
442 0b111111=64DW.
443 brk->len is in bytes.
444 This aligns up to double word size, shifts and does the bias.
445 */
446 mrd = ((brk->len + 7) >> 3) - 1;
447 dawrx |= (mrd & 0x3f) << (63 - 53);
448
449 if (ppc_md.set_dawr)
450 return ppc_md.set_dawr(dawr, dawrx);
451 mtspr(SPRN_DAWR, dawr);
452 mtspr(SPRN_DAWRX, dawrx);
453 return 0;
454 }
455
456 int set_breakpoint(struct arch_hw_breakpoint *brk)
457 {
458 __get_cpu_var(current_brk) = *brk;
459
460 if (cpu_has_feature(CPU_FTR_DAWR))
461 return set_dawr(brk);
462
463 return set_dabr(brk);
464 }
465
466 #ifdef CONFIG_PPC64
467 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
468 #endif
469
470 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
471 struct arch_hw_breakpoint *b)
472 {
473 if (a->address != b->address)
474 return false;
475 if (a->type != b->type)
476 return false;
477 if (a->len != b->len)
478 return false;
479 return true;
480 }
481 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
482 static inline void tm_reclaim_task(struct task_struct *tsk)
483 {
484 /* We have to work out if we're switching from/to a task that's in the
485 * middle of a transaction.
486 *
487 * In switching we need to maintain a 2nd register state as
488 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
489 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
490 * (current) FPRs into oldtask->thread.transact_fpr[].
491 *
492 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
493 */
494 struct thread_struct *thr = &tsk->thread;
495
496 if (!thr->regs)
497 return;
498
499 if (!MSR_TM_ACTIVE(thr->regs->msr))
500 goto out_and_saveregs;
501
502 /* Stash the original thread MSR, as giveup_fpu et al will
503 * modify it. We hold onto it to see whether the task used
504 * FP & vector regs.
505 */
506 thr->tm_orig_msr = thr->regs->msr;
507
508 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
509 "ccr=%lx, msr=%lx, trap=%lx)\n",
510 tsk->pid, thr->regs->nip,
511 thr->regs->ccr, thr->regs->msr,
512 thr->regs->trap);
513
514 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
515
516 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
517 tsk->pid);
518
519 out_and_saveregs:
520 /* Always save the regs here, even if a transaction's not active.
521 * This context-switches a thread's TM info SPRs. We do it here to
522 * be consistent with the restore path (in recheckpoint) which
523 * cannot happen later in _switch().
524 */
525 tm_save_sprs(thr);
526 }
527
528 static inline void tm_recheckpoint_new_task(struct task_struct *new)
529 {
530 unsigned long msr;
531
532 if (!cpu_has_feature(CPU_FTR_TM))
533 return;
534
535 /* Recheckpoint the registers of the thread we're about to switch to.
536 *
537 * If the task was using FP, we non-lazily reload both the original and
538 * the speculative FP register states. This is because the kernel
539 * doesn't see if/when a TM rollback occurs, so if we take an FP
540 * unavoidable later, we are unable to determine which set of FP regs
541 * need to be restored.
542 */
543 if (!new->thread.regs)
544 return;
545
546 /* The TM SPRs are restored here, so that TEXASR.FS can be set
547 * before the trecheckpoint and no explosion occurs.
548 */
549 tm_restore_sprs(&new->thread);
550
551 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
552 return;
553 msr = new->thread.tm_orig_msr;
554 /* Recheckpoint to restore original checkpointed register state. */
555 TM_DEBUG("*** tm_recheckpoint of pid %d "
556 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
557 new->pid, new->thread.regs->msr, msr);
558
559 /* This loads the checkpointed FP/VEC state, if used */
560 tm_recheckpoint(&new->thread, msr);
561
562 /* This loads the speculative FP/VEC state, if used */
563 if (msr & MSR_FP) {
564 do_load_up_transact_fpu(&new->thread);
565 new->thread.regs->msr |=
566 (MSR_FP | new->thread.fpexc_mode);
567 }
568 #ifdef CONFIG_ALTIVEC
569 if (msr & MSR_VEC) {
570 do_load_up_transact_altivec(&new->thread);
571 new->thread.regs->msr |= MSR_VEC;
572 }
573 #endif
574 /* We may as well turn on VSX too since all the state is restored now */
575 if (msr & MSR_VSX)
576 new->thread.regs->msr |= MSR_VSX;
577
578 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
579 "(kernel msr 0x%lx)\n",
580 new->pid, mfmsr());
581 }
582
583 static inline void __switch_to_tm(struct task_struct *prev)
584 {
585 if (cpu_has_feature(CPU_FTR_TM)) {
586 tm_enable();
587 tm_reclaim_task(prev);
588 }
589 }
590 #else
591 #define tm_recheckpoint_new_task(new)
592 #define __switch_to_tm(prev)
593 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
594
595 struct task_struct *__switch_to(struct task_struct *prev,
596 struct task_struct *new)
597 {
598 struct thread_struct *new_thread, *old_thread;
599 unsigned long flags;
600 struct task_struct *last;
601 #ifdef CONFIG_PPC_BOOK3S_64
602 struct ppc64_tlb_batch *batch;
603 #endif
604
605 /* Back up the TAR across context switches.
606 * Note that the TAR is not available for use in the kernel. (To
607 * provide this, the TAR should be backed up/restored on exception
608 * entry/exit instead, and be in pt_regs. FIXME, this should be in
609 * pt_regs anyway (for debug).)
610 * Save the TAR here before we do treclaim/trecheckpoint as these
611 * will change the TAR.
612 */
613 save_tar(&prev->thread);
614
615 __switch_to_tm(prev);
616
617 #ifdef CONFIG_SMP
618 /* avoid complexity of lazy save/restore of fpu
619 * by just saving it every time we switch out if
620 * this task used the fpu during the last quantum.
621 *
622 * If it tries to use the fpu again, it'll trap and
623 * reload its fp regs. So we don't have to do a restore
624 * every switch, just a save.
625 * -- Cort
626 */
627 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
628 giveup_fpu(prev);
629 #ifdef CONFIG_ALTIVEC
630 /*
631 * If the previous thread used altivec in the last quantum
632 * (thus changing altivec regs) then save them.
633 * We used to check the VRSAVE register but not all apps
634 * set it, so we don't rely on it now (and in fact we need
635 * to save & restore VSCR even if VRSAVE == 0). -- paulus
636 *
637 * On SMP we always save/restore altivec regs just to avoid the
638 * complexity of changing processors.
639 * -- Cort
640 */
641 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
642 giveup_altivec(prev);
643 #endif /* CONFIG_ALTIVEC */
644 #ifdef CONFIG_VSX
645 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
646 /* VMX and FPU registers are already save here */
647 __giveup_vsx(prev);
648 #endif /* CONFIG_VSX */
649 #ifdef CONFIG_SPE
650 /*
651 * If the previous thread used spe in the last quantum
652 * (thus changing spe regs) then save them.
653 *
654 * On SMP we always save/restore spe regs just to avoid the
655 * complexity of changing processors.
656 */
657 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
658 giveup_spe(prev);
659 #endif /* CONFIG_SPE */
660
661 #else /* CONFIG_SMP */
662 #ifdef CONFIG_ALTIVEC
663 /* Avoid the trap. On smp this this never happens since
664 * we don't set last_task_used_altivec -- Cort
665 */
666 if (new->thread.regs && last_task_used_altivec == new)
667 new->thread.regs->msr |= MSR_VEC;
668 #endif /* CONFIG_ALTIVEC */
669 #ifdef CONFIG_VSX
670 if (new->thread.regs && last_task_used_vsx == new)
671 new->thread.regs->msr |= MSR_VSX;
672 #endif /* CONFIG_VSX */
673 #ifdef CONFIG_SPE
674 /* Avoid the trap. On smp this this never happens since
675 * we don't set last_task_used_spe
676 */
677 if (new->thread.regs && last_task_used_spe == new)
678 new->thread.regs->msr |= MSR_SPE;
679 #endif /* CONFIG_SPE */
680
681 #endif /* CONFIG_SMP */
682
683 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
684 switch_booke_debug_regs(&new->thread);
685 #else
686 /*
687 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
688 * schedule DABR
689 */
690 #ifndef CONFIG_HAVE_HW_BREAKPOINT
691 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
692 set_breakpoint(&new->thread.hw_brk);
693 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
694 #endif
695
696
697 new_thread = &new->thread;
698 old_thread = &current->thread;
699
700 #ifdef CONFIG_PPC64
701 /*
702 * Collect processor utilization data per process
703 */
704 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
705 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
706 long unsigned start_tb, current_tb;
707 start_tb = old_thread->start_tb;
708 cu->current_tb = current_tb = mfspr(SPRN_PURR);
709 old_thread->accum_tb += (current_tb - start_tb);
710 new_thread->start_tb = current_tb;
711 }
712 #endif /* CONFIG_PPC64 */
713
714 #ifdef CONFIG_PPC_BOOK3S_64
715 batch = &__get_cpu_var(ppc64_tlb_batch);
716 if (batch->active) {
717 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
718 if (batch->index)
719 __flush_tlb_pending(batch);
720 batch->active = 0;
721 }
722 #endif /* CONFIG_PPC_BOOK3S_64 */
723
724 local_irq_save(flags);
725
726 /*
727 * We can't take a PMU exception inside _switch() since there is a
728 * window where the kernel stack SLB and the kernel stack are out
729 * of sync. Hard disable here.
730 */
731 hard_irq_disable();
732
733 tm_recheckpoint_new_task(new);
734
735 last = _switch(old_thread, new_thread);
736
737 #ifdef CONFIG_PPC_BOOK3S_64
738 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
739 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
740 batch = &__get_cpu_var(ppc64_tlb_batch);
741 batch->active = 1;
742 }
743 #endif /* CONFIG_PPC_BOOK3S_64 */
744
745 local_irq_restore(flags);
746
747 return last;
748 }
749
750 static int instructions_to_print = 16;
751
752 static void show_instructions(struct pt_regs *regs)
753 {
754 int i;
755 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
756 sizeof(int));
757
758 printk("Instruction dump:");
759
760 for (i = 0; i < instructions_to_print; i++) {
761 int instr;
762
763 if (!(i % 8))
764 printk("\n");
765
766 #if !defined(CONFIG_BOOKE)
767 /* If executing with the IMMU off, adjust pc rather
768 * than print XXXXXXXX.
769 */
770 if (!(regs->msr & MSR_IR))
771 pc = (unsigned long)phys_to_virt(pc);
772 #endif
773
774 /* We use __get_user here *only* to avoid an OOPS on a
775 * bad address because the pc *should* only be a
776 * kernel address.
777 */
778 if (!__kernel_text_address(pc) ||
779 __get_user(instr, (unsigned int __user *)pc)) {
780 printk(KERN_CONT "XXXXXXXX ");
781 } else {
782 if (regs->nip == pc)
783 printk(KERN_CONT "<%08x> ", instr);
784 else
785 printk(KERN_CONT "%08x ", instr);
786 }
787
788 pc += sizeof(int);
789 }
790
791 printk("\n");
792 }
793
794 static struct regbit {
795 unsigned long bit;
796 const char *name;
797 } msr_bits[] = {
798 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
799 {MSR_SF, "SF"},
800 {MSR_HV, "HV"},
801 #endif
802 {MSR_VEC, "VEC"},
803 {MSR_VSX, "VSX"},
804 #ifdef CONFIG_BOOKE
805 {MSR_CE, "CE"},
806 #endif
807 {MSR_EE, "EE"},
808 {MSR_PR, "PR"},
809 {MSR_FP, "FP"},
810 {MSR_ME, "ME"},
811 #ifdef CONFIG_BOOKE
812 {MSR_DE, "DE"},
813 #else
814 {MSR_SE, "SE"},
815 {MSR_BE, "BE"},
816 #endif
817 {MSR_IR, "IR"},
818 {MSR_DR, "DR"},
819 {MSR_PMM, "PMM"},
820 #ifndef CONFIG_BOOKE
821 {MSR_RI, "RI"},
822 {MSR_LE, "LE"},
823 #endif
824 {0, NULL}
825 };
826
827 static void printbits(unsigned long val, struct regbit *bits)
828 {
829 const char *sep = "";
830
831 printk("<");
832 for (; bits->bit; ++bits)
833 if (val & bits->bit) {
834 printk("%s%s", sep, bits->name);
835 sep = ",";
836 }
837 printk(">");
838 }
839
840 #ifdef CONFIG_PPC64
841 #define REG "%016lx"
842 #define REGS_PER_LINE 4
843 #define LAST_VOLATILE 13
844 #else
845 #define REG "%08lx"
846 #define REGS_PER_LINE 8
847 #define LAST_VOLATILE 12
848 #endif
849
850 void show_regs(struct pt_regs * regs)
851 {
852 int i, trap;
853
854 show_regs_print_info(KERN_DEFAULT);
855
856 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
857 regs->nip, regs->link, regs->ctr);
858 printk("REGS: %p TRAP: %04lx %s (%s)\n",
859 regs, regs->trap, print_tainted(), init_utsname()->release);
860 printk("MSR: "REG" ", regs->msr);
861 printbits(regs->msr, msr_bits);
862 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
863 #ifdef CONFIG_PPC64
864 printk("SOFTE: %ld\n", regs->softe);
865 #endif
866 trap = TRAP(regs);
867 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
868 printk("CFAR: "REG"\n", regs->orig_gpr3);
869 if (trap == 0x300 || trap == 0x600)
870 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
871 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
872 #else
873 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
874 #endif
875
876 for (i = 0; i < 32; i++) {
877 if ((i % REGS_PER_LINE) == 0)
878 printk("\nGPR%02d: ", i);
879 printk(REG " ", regs->gpr[i]);
880 if (i == LAST_VOLATILE && !FULL_REGS(regs))
881 break;
882 }
883 printk("\n");
884 #ifdef CONFIG_KALLSYMS
885 /*
886 * Lookup NIP late so we have the best change of getting the
887 * above info out without failing
888 */
889 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
890 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
891 #endif
892 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
893 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
894 #endif
895 show_stack(current, (unsigned long *) regs->gpr[1]);
896 if (!user_mode(regs))
897 show_instructions(regs);
898 }
899
900 void exit_thread(void)
901 {
902 discard_lazy_cpu_state();
903 }
904
905 void flush_thread(void)
906 {
907 discard_lazy_cpu_state();
908
909 #ifdef CONFIG_HAVE_HW_BREAKPOINT
910 flush_ptrace_hw_breakpoint(current);
911 #else /* CONFIG_HAVE_HW_BREAKPOINT */
912 set_debug_reg_defaults(&current->thread);
913 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
914 }
915
916 void
917 release_thread(struct task_struct *t)
918 {
919 }
920
921 /*
922 * this gets called so that we can store coprocessor state into memory and
923 * copy the current task into the new thread.
924 */
925 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
926 {
927 flush_fp_to_thread(src);
928 flush_altivec_to_thread(src);
929 flush_vsx_to_thread(src);
930 flush_spe_to_thread(src);
931
932 *dst = *src;
933
934 clear_task_ebb(dst);
935
936 return 0;
937 }
938
939 /*
940 * Copy a thread..
941 */
942 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
943
944 int copy_thread(unsigned long clone_flags, unsigned long usp,
945 unsigned long arg, struct task_struct *p)
946 {
947 struct pt_regs *childregs, *kregs;
948 extern void ret_from_fork(void);
949 extern void ret_from_kernel_thread(void);
950 void (*f)(void);
951 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
952
953 /* Copy registers */
954 sp -= sizeof(struct pt_regs);
955 childregs = (struct pt_regs *) sp;
956 if (unlikely(p->flags & PF_KTHREAD)) {
957 struct thread_info *ti = (void *)task_stack_page(p);
958 memset(childregs, 0, sizeof(struct pt_regs));
959 childregs->gpr[1] = sp + sizeof(struct pt_regs);
960 childregs->gpr[14] = usp; /* function */
961 #ifdef CONFIG_PPC64
962 clear_tsk_thread_flag(p, TIF_32BIT);
963 childregs->softe = 1;
964 #endif
965 childregs->gpr[15] = arg;
966 p->thread.regs = NULL; /* no user register state */
967 ti->flags |= _TIF_RESTOREALL;
968 f = ret_from_kernel_thread;
969 } else {
970 struct pt_regs *regs = current_pt_regs();
971 CHECK_FULL_REGS(regs);
972 *childregs = *regs;
973 if (usp)
974 childregs->gpr[1] = usp;
975 p->thread.regs = childregs;
976 childregs->gpr[3] = 0; /* Result from fork() */
977 if (clone_flags & CLONE_SETTLS) {
978 #ifdef CONFIG_PPC64
979 if (!is_32bit_task())
980 childregs->gpr[13] = childregs->gpr[6];
981 else
982 #endif
983 childregs->gpr[2] = childregs->gpr[6];
984 }
985
986 f = ret_from_fork;
987 }
988 sp -= STACK_FRAME_OVERHEAD;
989
990 /*
991 * The way this works is that at some point in the future
992 * some task will call _switch to switch to the new task.
993 * That will pop off the stack frame created below and start
994 * the new task running at ret_from_fork. The new task will
995 * do some house keeping and then return from the fork or clone
996 * system call, using the stack frame created above.
997 */
998 ((unsigned long *)sp)[0] = 0;
999 sp -= sizeof(struct pt_regs);
1000 kregs = (struct pt_regs *) sp;
1001 sp -= STACK_FRAME_OVERHEAD;
1002 p->thread.ksp = sp;
1003 #ifdef CONFIG_PPC32
1004 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1005 _ALIGN_UP(sizeof(struct thread_info), 16);
1006 #endif
1007 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1008 p->thread.ptrace_bps[0] = NULL;
1009 #endif
1010
1011 #ifdef CONFIG_PPC_STD_MMU_64
1012 if (mmu_has_feature(MMU_FTR_SLB)) {
1013 unsigned long sp_vsid;
1014 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1015
1016 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1017 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1018 << SLB_VSID_SHIFT_1T;
1019 else
1020 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1021 << SLB_VSID_SHIFT;
1022 sp_vsid |= SLB_VSID_KERNEL | llp;
1023 p->thread.ksp_vsid = sp_vsid;
1024 }
1025 #endif /* CONFIG_PPC_STD_MMU_64 */
1026 #ifdef CONFIG_PPC64
1027 if (cpu_has_feature(CPU_FTR_DSCR)) {
1028 p->thread.dscr_inherit = current->thread.dscr_inherit;
1029 p->thread.dscr = current->thread.dscr;
1030 }
1031 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1032 p->thread.ppr = INIT_PPR;
1033 #endif
1034 /*
1035 * The PPC64 ABI makes use of a TOC to contain function
1036 * pointers. The function (ret_from_except) is actually a pointer
1037 * to the TOC entry. The first entry is a pointer to the actual
1038 * function.
1039 */
1040 #ifdef CONFIG_PPC64
1041 kregs->nip = *((unsigned long *)f);
1042 #else
1043 kregs->nip = (unsigned long)f;
1044 #endif
1045 return 0;
1046 }
1047
1048 /*
1049 * Set up a thread for executing a new program
1050 */
1051 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1052 {
1053 #ifdef CONFIG_PPC64
1054 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1055 #endif
1056
1057 /*
1058 * If we exec out of a kernel thread then thread.regs will not be
1059 * set. Do it now.
1060 */
1061 if (!current->thread.regs) {
1062 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1063 current->thread.regs = regs - 1;
1064 }
1065
1066 memset(regs->gpr, 0, sizeof(regs->gpr));
1067 regs->ctr = 0;
1068 regs->link = 0;
1069 regs->xer = 0;
1070 regs->ccr = 0;
1071 regs->gpr[1] = sp;
1072
1073 /*
1074 * We have just cleared all the nonvolatile GPRs, so make
1075 * FULL_REGS(regs) return true. This is necessary to allow
1076 * ptrace to examine the thread immediately after exec.
1077 */
1078 regs->trap &= ~1UL;
1079
1080 #ifdef CONFIG_PPC32
1081 regs->mq = 0;
1082 regs->nip = start;
1083 regs->msr = MSR_USER;
1084 #else
1085 if (!is_32bit_task()) {
1086 unsigned long entry, toc;
1087
1088 /* start is a relocated pointer to the function descriptor for
1089 * the elf _start routine. The first entry in the function
1090 * descriptor is the entry address of _start and the second
1091 * entry is the TOC value we need to use.
1092 */
1093 __get_user(entry, (unsigned long __user *)start);
1094 __get_user(toc, (unsigned long __user *)start+1);
1095
1096 /* Check whether the e_entry function descriptor entries
1097 * need to be relocated before we can use them.
1098 */
1099 if (load_addr != 0) {
1100 entry += load_addr;
1101 toc += load_addr;
1102 }
1103 regs->nip = entry;
1104 regs->gpr[2] = toc;
1105 regs->msr = MSR_USER64;
1106 } else {
1107 regs->nip = start;
1108 regs->gpr[2] = 0;
1109 regs->msr = MSR_USER32;
1110 }
1111 #endif
1112 discard_lazy_cpu_state();
1113 #ifdef CONFIG_VSX
1114 current->thread.used_vsr = 0;
1115 #endif
1116 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1117 current->thread.fpscr.val = 0;
1118 #ifdef CONFIG_ALTIVEC
1119 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1120 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1121 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1122 current->thread.vrsave = 0;
1123 current->thread.used_vr = 0;
1124 #endif /* CONFIG_ALTIVEC */
1125 #ifdef CONFIG_SPE
1126 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1127 current->thread.acc = 0;
1128 current->thread.spefscr = 0;
1129 current->thread.used_spe = 0;
1130 #endif /* CONFIG_SPE */
1131 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1132 if (cpu_has_feature(CPU_FTR_TM))
1133 regs->msr |= MSR_TM;
1134 current->thread.tm_tfhar = 0;
1135 current->thread.tm_texasr = 0;
1136 current->thread.tm_tfiar = 0;
1137 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1138 }
1139
1140 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1141 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1142
1143 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1144 {
1145 struct pt_regs *regs = tsk->thread.regs;
1146
1147 /* This is a bit hairy. If we are an SPE enabled processor
1148 * (have embedded fp) we store the IEEE exception enable flags in
1149 * fpexc_mode. fpexc_mode is also used for setting FP exception
1150 * mode (asyn, precise, disabled) for 'Classic' FP. */
1151 if (val & PR_FP_EXC_SW_ENABLE) {
1152 #ifdef CONFIG_SPE
1153 if (cpu_has_feature(CPU_FTR_SPE)) {
1154 tsk->thread.fpexc_mode = val &
1155 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1156 return 0;
1157 } else {
1158 return -EINVAL;
1159 }
1160 #else
1161 return -EINVAL;
1162 #endif
1163 }
1164
1165 /* on a CONFIG_SPE this does not hurt us. The bits that
1166 * __pack_fe01 use do not overlap with bits used for
1167 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1168 * on CONFIG_SPE implementations are reserved so writing to
1169 * them does not change anything */
1170 if (val > PR_FP_EXC_PRECISE)
1171 return -EINVAL;
1172 tsk->thread.fpexc_mode = __pack_fe01(val);
1173 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1174 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1175 | tsk->thread.fpexc_mode;
1176 return 0;
1177 }
1178
1179 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1180 {
1181 unsigned int val;
1182
1183 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1184 #ifdef CONFIG_SPE
1185 if (cpu_has_feature(CPU_FTR_SPE))
1186 val = tsk->thread.fpexc_mode;
1187 else
1188 return -EINVAL;
1189 #else
1190 return -EINVAL;
1191 #endif
1192 else
1193 val = __unpack_fe01(tsk->thread.fpexc_mode);
1194 return put_user(val, (unsigned int __user *) adr);
1195 }
1196
1197 int set_endian(struct task_struct *tsk, unsigned int val)
1198 {
1199 struct pt_regs *regs = tsk->thread.regs;
1200
1201 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1202 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1203 return -EINVAL;
1204
1205 if (regs == NULL)
1206 return -EINVAL;
1207
1208 if (val == PR_ENDIAN_BIG)
1209 regs->msr &= ~MSR_LE;
1210 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1211 regs->msr |= MSR_LE;
1212 else
1213 return -EINVAL;
1214
1215 return 0;
1216 }
1217
1218 int get_endian(struct task_struct *tsk, unsigned long adr)
1219 {
1220 struct pt_regs *regs = tsk->thread.regs;
1221 unsigned int val;
1222
1223 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1224 !cpu_has_feature(CPU_FTR_REAL_LE))
1225 return -EINVAL;
1226
1227 if (regs == NULL)
1228 return -EINVAL;
1229
1230 if (regs->msr & MSR_LE) {
1231 if (cpu_has_feature(CPU_FTR_REAL_LE))
1232 val = PR_ENDIAN_LITTLE;
1233 else
1234 val = PR_ENDIAN_PPC_LITTLE;
1235 } else
1236 val = PR_ENDIAN_BIG;
1237
1238 return put_user(val, (unsigned int __user *)adr);
1239 }
1240
1241 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1242 {
1243 tsk->thread.align_ctl = val;
1244 return 0;
1245 }
1246
1247 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1248 {
1249 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1250 }
1251
1252 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1253 unsigned long nbytes)
1254 {
1255 unsigned long stack_page;
1256 unsigned long cpu = task_cpu(p);
1257
1258 /*
1259 * Avoid crashing if the stack has overflowed and corrupted
1260 * task_cpu(p), which is in the thread_info struct.
1261 */
1262 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1263 stack_page = (unsigned long) hardirq_ctx[cpu];
1264 if (sp >= stack_page + sizeof(struct thread_struct)
1265 && sp <= stack_page + THREAD_SIZE - nbytes)
1266 return 1;
1267
1268 stack_page = (unsigned long) softirq_ctx[cpu];
1269 if (sp >= stack_page + sizeof(struct thread_struct)
1270 && sp <= stack_page + THREAD_SIZE - nbytes)
1271 return 1;
1272 }
1273 return 0;
1274 }
1275
1276 int validate_sp(unsigned long sp, struct task_struct *p,
1277 unsigned long nbytes)
1278 {
1279 unsigned long stack_page = (unsigned long)task_stack_page(p);
1280
1281 if (sp >= stack_page + sizeof(struct thread_struct)
1282 && sp <= stack_page + THREAD_SIZE - nbytes)
1283 return 1;
1284
1285 return valid_irq_stack(sp, p, nbytes);
1286 }
1287
1288 EXPORT_SYMBOL(validate_sp);
1289
1290 unsigned long get_wchan(struct task_struct *p)
1291 {
1292 unsigned long ip, sp;
1293 int count = 0;
1294
1295 if (!p || p == current || p->state == TASK_RUNNING)
1296 return 0;
1297
1298 sp = p->thread.ksp;
1299 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1300 return 0;
1301
1302 do {
1303 sp = *(unsigned long *)sp;
1304 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1305 return 0;
1306 if (count > 0) {
1307 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1308 if (!in_sched_functions(ip))
1309 return ip;
1310 }
1311 } while (count++ < 16);
1312 return 0;
1313 }
1314
1315 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1316
1317 void show_stack(struct task_struct *tsk, unsigned long *stack)
1318 {
1319 unsigned long sp, ip, lr, newsp;
1320 int count = 0;
1321 int firstframe = 1;
1322 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1323 int curr_frame = current->curr_ret_stack;
1324 extern void return_to_handler(void);
1325 unsigned long rth = (unsigned long)return_to_handler;
1326 unsigned long mrth = -1;
1327 #ifdef CONFIG_PPC64
1328 extern void mod_return_to_handler(void);
1329 rth = *(unsigned long *)rth;
1330 mrth = (unsigned long)mod_return_to_handler;
1331 mrth = *(unsigned long *)mrth;
1332 #endif
1333 #endif
1334
1335 sp = (unsigned long) stack;
1336 if (tsk == NULL)
1337 tsk = current;
1338 if (sp == 0) {
1339 if (tsk == current)
1340 asm("mr %0,1" : "=r" (sp));
1341 else
1342 sp = tsk->thread.ksp;
1343 }
1344
1345 lr = 0;
1346 printk("Call Trace:\n");
1347 do {
1348 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1349 return;
1350
1351 stack = (unsigned long *) sp;
1352 newsp = stack[0];
1353 ip = stack[STACK_FRAME_LR_SAVE];
1354 if (!firstframe || ip != lr) {
1355 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1356 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1357 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1358 printk(" (%pS)",
1359 (void *)current->ret_stack[curr_frame].ret);
1360 curr_frame--;
1361 }
1362 #endif
1363 if (firstframe)
1364 printk(" (unreliable)");
1365 printk("\n");
1366 }
1367 firstframe = 0;
1368
1369 /*
1370 * See if this is an exception frame.
1371 * We look for the "regshere" marker in the current frame.
1372 */
1373 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1374 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1375 struct pt_regs *regs = (struct pt_regs *)
1376 (sp + STACK_FRAME_OVERHEAD);
1377 lr = regs->link;
1378 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1379 regs->trap, (void *)regs->nip, (void *)lr);
1380 firstframe = 1;
1381 }
1382
1383 sp = newsp;
1384 } while (count++ < kstack_depth_to_print);
1385 }
1386
1387 #ifdef CONFIG_PPC64
1388 /* Called with hard IRQs off */
1389 void notrace __ppc64_runlatch_on(void)
1390 {
1391 struct thread_info *ti = current_thread_info();
1392 unsigned long ctrl;
1393
1394 ctrl = mfspr(SPRN_CTRLF);
1395 ctrl |= CTRL_RUNLATCH;
1396 mtspr(SPRN_CTRLT, ctrl);
1397
1398 ti->local_flags |= _TLF_RUNLATCH;
1399 }
1400
1401 /* Called with hard IRQs off */
1402 void notrace __ppc64_runlatch_off(void)
1403 {
1404 struct thread_info *ti = current_thread_info();
1405 unsigned long ctrl;
1406
1407 ti->local_flags &= ~_TLF_RUNLATCH;
1408
1409 ctrl = mfspr(SPRN_CTRLF);
1410 ctrl &= ~CTRL_RUNLATCH;
1411 mtspr(SPRN_CTRLT, ctrl);
1412 }
1413 #endif /* CONFIG_PPC64 */
1414
1415 unsigned long arch_align_stack(unsigned long sp)
1416 {
1417 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1418 sp -= get_random_int() & ~PAGE_MASK;
1419 return sp & ~0xf;
1420 }
1421
1422 static inline unsigned long brk_rnd(void)
1423 {
1424 unsigned long rnd = 0;
1425
1426 /* 8MB for 32bit, 1GB for 64bit */
1427 if (is_32bit_task())
1428 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1429 else
1430 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1431
1432 return rnd << PAGE_SHIFT;
1433 }
1434
1435 unsigned long arch_randomize_brk(struct mm_struct *mm)
1436 {
1437 unsigned long base = mm->brk;
1438 unsigned long ret;
1439
1440 #ifdef CONFIG_PPC_STD_MMU_64
1441 /*
1442 * If we are using 1TB segments and we are allowed to randomise
1443 * the heap, we can put it above 1TB so it is backed by a 1TB
1444 * segment. Otherwise the heap will be in the bottom 1TB
1445 * which always uses 256MB segments and this may result in a
1446 * performance penalty.
1447 */
1448 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1449 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1450 #endif
1451
1452 ret = PAGE_ALIGN(base + brk_rnd());
1453
1454 if (ret < mm->brk)
1455 return mm->brk;
1456
1457 return ret;
1458 }
1459
1460 unsigned long randomize_et_dyn(unsigned long base)
1461 {
1462 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1463
1464 if (ret < base)
1465 return base;
1466
1467 return ret;
1468 }
This page took 0.062164 seconds and 5 git commands to generate.