[POWERPC] 83xx: Removed PCI exclude of PHB
[deliverable/linux.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50
51 extern unsigned long _get_SP(void);
52
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
58
59 /*
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
62 */
63 void flush_fp_to_thread(struct task_struct *tsk)
64 {
65 if (tsk->thread.regs) {
66 /*
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
73 */
74 preempt_disable();
75 if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
77 /*
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
83 */
84 BUG_ON(tsk != current);
85 #endif
86 giveup_fpu(tsk);
87 }
88 preempt_enable();
89 }
90 }
91
92 void enable_kernel_fp(void)
93 {
94 WARN_ON(preemptible());
95
96 #ifdef CONFIG_SMP
97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 giveup_fpu(current);
99 else
100 giveup_fpu(NULL); /* just enables FP for kernel */
101 #else
102 giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
104 }
105 EXPORT_SYMBOL(enable_kernel_fp);
106
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
108 {
109 if (!tsk->thread.regs)
110 return 0;
111 flush_fp_to_thread(current);
112
113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
114
115 return 1;
116 }
117
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
120 {
121 WARN_ON(preemptible());
122
123 #ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
128 #else
129 giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
131 }
132 EXPORT_SYMBOL(enable_kernel_altivec);
133
134 /*
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
137 */
138 void flush_altivec_to_thread(struct task_struct *tsk)
139 {
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145 #endif
146 giveup_altivec(tsk);
147 }
148 preempt_enable();
149 }
150 }
151
152 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
153 {
154 flush_altivec_to_thread(current);
155 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
156 return 1;
157 }
158 #endif /* CONFIG_ALTIVEC */
159
160 #ifdef CONFIG_SPE
161
162 void enable_kernel_spe(void)
163 {
164 WARN_ON(preemptible());
165
166 #ifdef CONFIG_SMP
167 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
168 giveup_spe(current);
169 else
170 giveup_spe(NULL); /* just enable SPE for kernel - force */
171 #else
172 giveup_spe(last_task_used_spe);
173 #endif /* __SMP __ */
174 }
175 EXPORT_SYMBOL(enable_kernel_spe);
176
177 void flush_spe_to_thread(struct task_struct *tsk)
178 {
179 if (tsk->thread.regs) {
180 preempt_disable();
181 if (tsk->thread.regs->msr & MSR_SPE) {
182 #ifdef CONFIG_SMP
183 BUG_ON(tsk != current);
184 #endif
185 giveup_spe(tsk);
186 }
187 preempt_enable();
188 }
189 }
190
191 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
192 {
193 flush_spe_to_thread(current);
194 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
195 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
196 return 1;
197 }
198 #endif /* CONFIG_SPE */
199
200 #ifndef CONFIG_SMP
201 /*
202 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
203 * and the current task has some state, discard it.
204 */
205 void discard_lazy_cpu_state(void)
206 {
207 preempt_disable();
208 if (last_task_used_math == current)
209 last_task_used_math = NULL;
210 #ifdef CONFIG_ALTIVEC
211 if (last_task_used_altivec == current)
212 last_task_used_altivec = NULL;
213 #endif /* CONFIG_ALTIVEC */
214 #ifdef CONFIG_SPE
215 if (last_task_used_spe == current)
216 last_task_used_spe = NULL;
217 #endif
218 preempt_enable();
219 }
220 #endif /* CONFIG_SMP */
221
222 int set_dabr(unsigned long dabr)
223 {
224 #ifdef CONFIG_PPC_MERGE /* XXX for now */
225 if (ppc_md.set_dabr)
226 return ppc_md.set_dabr(dabr);
227 #endif
228
229 /* XXX should we have a CPU_FTR_HAS_DABR ? */
230 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
231 mtspr(SPRN_DABR, dabr);
232 #endif
233 return 0;
234 }
235
236 #ifdef CONFIG_PPC64
237 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
238 #endif
239
240 static DEFINE_PER_CPU(unsigned long, current_dabr);
241
242 struct task_struct *__switch_to(struct task_struct *prev,
243 struct task_struct *new)
244 {
245 struct thread_struct *new_thread, *old_thread;
246 unsigned long flags;
247 struct task_struct *last;
248
249 #ifdef CONFIG_SMP
250 /* avoid complexity of lazy save/restore of fpu
251 * by just saving it every time we switch out if
252 * this task used the fpu during the last quantum.
253 *
254 * If it tries to use the fpu again, it'll trap and
255 * reload its fp regs. So we don't have to do a restore
256 * every switch, just a save.
257 * -- Cort
258 */
259 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
260 giveup_fpu(prev);
261 #ifdef CONFIG_ALTIVEC
262 /*
263 * If the previous thread used altivec in the last quantum
264 * (thus changing altivec regs) then save them.
265 * We used to check the VRSAVE register but not all apps
266 * set it, so we don't rely on it now (and in fact we need
267 * to save & restore VSCR even if VRSAVE == 0). -- paulus
268 *
269 * On SMP we always save/restore altivec regs just to avoid the
270 * complexity of changing processors.
271 * -- Cort
272 */
273 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
274 giveup_altivec(prev);
275 #endif /* CONFIG_ALTIVEC */
276 #ifdef CONFIG_SPE
277 /*
278 * If the previous thread used spe in the last quantum
279 * (thus changing spe regs) then save them.
280 *
281 * On SMP we always save/restore spe regs just to avoid the
282 * complexity of changing processors.
283 */
284 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
285 giveup_spe(prev);
286 #endif /* CONFIG_SPE */
287
288 #else /* CONFIG_SMP */
289 #ifdef CONFIG_ALTIVEC
290 /* Avoid the trap. On smp this this never happens since
291 * we don't set last_task_used_altivec -- Cort
292 */
293 if (new->thread.regs && last_task_used_altivec == new)
294 new->thread.regs->msr |= MSR_VEC;
295 #endif /* CONFIG_ALTIVEC */
296 #ifdef CONFIG_SPE
297 /* Avoid the trap. On smp this this never happens since
298 * we don't set last_task_used_spe
299 */
300 if (new->thread.regs && last_task_used_spe == new)
301 new->thread.regs->msr |= MSR_SPE;
302 #endif /* CONFIG_SPE */
303
304 #endif /* CONFIG_SMP */
305
306 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
307 set_dabr(new->thread.dabr);
308 __get_cpu_var(current_dabr) = new->thread.dabr;
309 }
310
311 new_thread = &new->thread;
312 old_thread = &current->thread;
313
314 #ifdef CONFIG_PPC64
315 /*
316 * Collect processor utilization data per process
317 */
318 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
319 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
320 long unsigned start_tb, current_tb;
321 start_tb = old_thread->start_tb;
322 cu->current_tb = current_tb = mfspr(SPRN_PURR);
323 old_thread->accum_tb += (current_tb - start_tb);
324 new_thread->start_tb = current_tb;
325 }
326 #endif
327
328 local_irq_save(flags);
329
330 account_system_vtime(current);
331 account_process_vtime(current);
332 calculate_steal_time();
333
334 last = _switch(old_thread, new_thread);
335
336 local_irq_restore(flags);
337
338 return last;
339 }
340
341 static int instructions_to_print = 16;
342
343 static void show_instructions(struct pt_regs *regs)
344 {
345 int i;
346 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
347 sizeof(int));
348
349 printk("Instruction dump:");
350
351 for (i = 0; i < instructions_to_print; i++) {
352 int instr;
353
354 if (!(i % 8))
355 printk("\n");
356
357 /* We use __get_user here *only* to avoid an OOPS on a
358 * bad address because the pc *should* only be a
359 * kernel address.
360 */
361 if (!__kernel_text_address(pc) ||
362 __get_user(instr, (unsigned int __user *)pc)) {
363 printk("XXXXXXXX ");
364 } else {
365 if (regs->nip == pc)
366 printk("<%08x> ", instr);
367 else
368 printk("%08x ", instr);
369 }
370
371 pc += sizeof(int);
372 }
373
374 printk("\n");
375 }
376
377 static struct regbit {
378 unsigned long bit;
379 const char *name;
380 } msr_bits[] = {
381 {MSR_EE, "EE"},
382 {MSR_PR, "PR"},
383 {MSR_FP, "FP"},
384 {MSR_ME, "ME"},
385 {MSR_IR, "IR"},
386 {MSR_DR, "DR"},
387 {0, NULL}
388 };
389
390 static void printbits(unsigned long val, struct regbit *bits)
391 {
392 const char *sep = "";
393
394 printk("<");
395 for (; bits->bit; ++bits)
396 if (val & bits->bit) {
397 printk("%s%s", sep, bits->name);
398 sep = ",";
399 }
400 printk(">");
401 }
402
403 #ifdef CONFIG_PPC64
404 #define REG "%016lx"
405 #define REGS_PER_LINE 4
406 #define LAST_VOLATILE 13
407 #else
408 #define REG "%08lx"
409 #define REGS_PER_LINE 8
410 #define LAST_VOLATILE 12
411 #endif
412
413 void show_regs(struct pt_regs * regs)
414 {
415 int i, trap;
416
417 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
418 regs->nip, regs->link, regs->ctr);
419 printk("REGS: %p TRAP: %04lx %s (%s)\n",
420 regs, regs->trap, print_tainted(), init_utsname()->release);
421 printk("MSR: "REG" ", regs->msr);
422 printbits(regs->msr, msr_bits);
423 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
424 trap = TRAP(regs);
425 if (trap == 0x300 || trap == 0x600)
426 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
427 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
428 #else
429 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
430 #endif
431 printk("TASK = %p[%d] '%s' THREAD: %p",
432 current, current->pid, current->comm, task_thread_info(current));
433
434 #ifdef CONFIG_SMP
435 printk(" CPU: %d", smp_processor_id());
436 #endif /* CONFIG_SMP */
437
438 for (i = 0; i < 32; i++) {
439 if ((i % REGS_PER_LINE) == 0)
440 printk("\n" KERN_INFO "GPR%02d: ", i);
441 printk(REG " ", regs->gpr[i]);
442 if (i == LAST_VOLATILE && !FULL_REGS(regs))
443 break;
444 }
445 printk("\n");
446 #ifdef CONFIG_KALLSYMS
447 /*
448 * Lookup NIP late so we have the best change of getting the
449 * above info out without failing
450 */
451 printk("NIP ["REG"] ", regs->nip);
452 print_symbol("%s\n", regs->nip);
453 printk("LR ["REG"] ", regs->link);
454 print_symbol("%s\n", regs->link);
455 #endif
456 show_stack(current, (unsigned long *) regs->gpr[1]);
457 if (!user_mode(regs))
458 show_instructions(regs);
459 }
460
461 void exit_thread(void)
462 {
463 discard_lazy_cpu_state();
464 }
465
466 void flush_thread(void)
467 {
468 #ifdef CONFIG_PPC64
469 struct thread_info *t = current_thread_info();
470
471 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
472 clear_ti_thread_flag(t, TIF_ABI_PENDING);
473 if (test_ti_thread_flag(t, TIF_32BIT))
474 clear_ti_thread_flag(t, TIF_32BIT);
475 else
476 set_ti_thread_flag(t, TIF_32BIT);
477 }
478 #endif
479
480 discard_lazy_cpu_state();
481
482 if (current->thread.dabr) {
483 current->thread.dabr = 0;
484 set_dabr(0);
485 }
486 }
487
488 void
489 release_thread(struct task_struct *t)
490 {
491 }
492
493 /*
494 * This gets called before we allocate a new thread and copy
495 * the current task into it.
496 */
497 void prepare_to_copy(struct task_struct *tsk)
498 {
499 flush_fp_to_thread(current);
500 flush_altivec_to_thread(current);
501 flush_spe_to_thread(current);
502 }
503
504 /*
505 * Copy a thread..
506 */
507 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
508 unsigned long unused, struct task_struct *p,
509 struct pt_regs *regs)
510 {
511 struct pt_regs *childregs, *kregs;
512 extern void ret_from_fork(void);
513 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
514
515 CHECK_FULL_REGS(regs);
516 /* Copy registers */
517 sp -= sizeof(struct pt_regs);
518 childregs = (struct pt_regs *) sp;
519 *childregs = *regs;
520 if ((childregs->msr & MSR_PR) == 0) {
521 /* for kernel thread, set `current' and stackptr in new task */
522 childregs->gpr[1] = sp + sizeof(struct pt_regs);
523 #ifdef CONFIG_PPC32
524 childregs->gpr[2] = (unsigned long) p;
525 #else
526 clear_tsk_thread_flag(p, TIF_32BIT);
527 #endif
528 p->thread.regs = NULL; /* no user register state */
529 } else {
530 childregs->gpr[1] = usp;
531 p->thread.regs = childregs;
532 if (clone_flags & CLONE_SETTLS) {
533 #ifdef CONFIG_PPC64
534 if (!test_thread_flag(TIF_32BIT))
535 childregs->gpr[13] = childregs->gpr[6];
536 else
537 #endif
538 childregs->gpr[2] = childregs->gpr[6];
539 }
540 }
541 childregs->gpr[3] = 0; /* Result from fork() */
542 sp -= STACK_FRAME_OVERHEAD;
543
544 /*
545 * The way this works is that at some point in the future
546 * some task will call _switch to switch to the new task.
547 * That will pop off the stack frame created below and start
548 * the new task running at ret_from_fork. The new task will
549 * do some house keeping and then return from the fork or clone
550 * system call, using the stack frame created above.
551 */
552 sp -= sizeof(struct pt_regs);
553 kregs = (struct pt_regs *) sp;
554 sp -= STACK_FRAME_OVERHEAD;
555 p->thread.ksp = sp;
556
557 #ifdef CONFIG_PPC64
558 if (cpu_has_feature(CPU_FTR_SLB)) {
559 unsigned long sp_vsid = get_kernel_vsid(sp);
560 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
561
562 sp_vsid <<= SLB_VSID_SHIFT;
563 sp_vsid |= SLB_VSID_KERNEL | llp;
564 p->thread.ksp_vsid = sp_vsid;
565 }
566
567 /*
568 * The PPC64 ABI makes use of a TOC to contain function
569 * pointers. The function (ret_from_except) is actually a pointer
570 * to the TOC entry. The first entry is a pointer to the actual
571 * function.
572 */
573 kregs->nip = *((unsigned long *)ret_from_fork);
574 #else
575 kregs->nip = (unsigned long)ret_from_fork;
576 #endif
577
578 return 0;
579 }
580
581 /*
582 * Set up a thread for executing a new program
583 */
584 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
585 {
586 #ifdef CONFIG_PPC64
587 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
588 #endif
589
590 set_fs(USER_DS);
591
592 /*
593 * If we exec out of a kernel thread then thread.regs will not be
594 * set. Do it now.
595 */
596 if (!current->thread.regs) {
597 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
598 current->thread.regs = regs - 1;
599 }
600
601 memset(regs->gpr, 0, sizeof(regs->gpr));
602 regs->ctr = 0;
603 regs->link = 0;
604 regs->xer = 0;
605 regs->ccr = 0;
606 regs->gpr[1] = sp;
607
608 #ifdef CONFIG_PPC32
609 regs->mq = 0;
610 regs->nip = start;
611 regs->msr = MSR_USER;
612 #else
613 if (!test_thread_flag(TIF_32BIT)) {
614 unsigned long entry, toc;
615
616 /* start is a relocated pointer to the function descriptor for
617 * the elf _start routine. The first entry in the function
618 * descriptor is the entry address of _start and the second
619 * entry is the TOC value we need to use.
620 */
621 __get_user(entry, (unsigned long __user *)start);
622 __get_user(toc, (unsigned long __user *)start+1);
623
624 /* Check whether the e_entry function descriptor entries
625 * need to be relocated before we can use them.
626 */
627 if (load_addr != 0) {
628 entry += load_addr;
629 toc += load_addr;
630 }
631 regs->nip = entry;
632 regs->gpr[2] = toc;
633 regs->msr = MSR_USER64;
634 } else {
635 regs->nip = start;
636 regs->gpr[2] = 0;
637 regs->msr = MSR_USER32;
638 }
639 #endif
640
641 discard_lazy_cpu_state();
642 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
643 current->thread.fpscr.val = 0;
644 #ifdef CONFIG_ALTIVEC
645 memset(current->thread.vr, 0, sizeof(current->thread.vr));
646 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
647 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
648 current->thread.vrsave = 0;
649 current->thread.used_vr = 0;
650 #endif /* CONFIG_ALTIVEC */
651 #ifdef CONFIG_SPE
652 memset(current->thread.evr, 0, sizeof(current->thread.evr));
653 current->thread.acc = 0;
654 current->thread.spefscr = 0;
655 current->thread.used_spe = 0;
656 #endif /* CONFIG_SPE */
657 }
658
659 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
660 | PR_FP_EXC_RES | PR_FP_EXC_INV)
661
662 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
663 {
664 struct pt_regs *regs = tsk->thread.regs;
665
666 /* This is a bit hairy. If we are an SPE enabled processor
667 * (have embedded fp) we store the IEEE exception enable flags in
668 * fpexc_mode. fpexc_mode is also used for setting FP exception
669 * mode (asyn, precise, disabled) for 'Classic' FP. */
670 if (val & PR_FP_EXC_SW_ENABLE) {
671 #ifdef CONFIG_SPE
672 tsk->thread.fpexc_mode = val &
673 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
674 return 0;
675 #else
676 return -EINVAL;
677 #endif
678 }
679
680 /* on a CONFIG_SPE this does not hurt us. The bits that
681 * __pack_fe01 use do not overlap with bits used for
682 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
683 * on CONFIG_SPE implementations are reserved so writing to
684 * them does not change anything */
685 if (val > PR_FP_EXC_PRECISE)
686 return -EINVAL;
687 tsk->thread.fpexc_mode = __pack_fe01(val);
688 if (regs != NULL && (regs->msr & MSR_FP) != 0)
689 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
690 | tsk->thread.fpexc_mode;
691 return 0;
692 }
693
694 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
695 {
696 unsigned int val;
697
698 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
699 #ifdef CONFIG_SPE
700 val = tsk->thread.fpexc_mode;
701 #else
702 return -EINVAL;
703 #endif
704 else
705 val = __unpack_fe01(tsk->thread.fpexc_mode);
706 return put_user(val, (unsigned int __user *) adr);
707 }
708
709 int set_endian(struct task_struct *tsk, unsigned int val)
710 {
711 struct pt_regs *regs = tsk->thread.regs;
712
713 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
714 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
715 return -EINVAL;
716
717 if (regs == NULL)
718 return -EINVAL;
719
720 if (val == PR_ENDIAN_BIG)
721 regs->msr &= ~MSR_LE;
722 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
723 regs->msr |= MSR_LE;
724 else
725 return -EINVAL;
726
727 return 0;
728 }
729
730 int get_endian(struct task_struct *tsk, unsigned long adr)
731 {
732 struct pt_regs *regs = tsk->thread.regs;
733 unsigned int val;
734
735 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
736 !cpu_has_feature(CPU_FTR_REAL_LE))
737 return -EINVAL;
738
739 if (regs == NULL)
740 return -EINVAL;
741
742 if (regs->msr & MSR_LE) {
743 if (cpu_has_feature(CPU_FTR_REAL_LE))
744 val = PR_ENDIAN_LITTLE;
745 else
746 val = PR_ENDIAN_PPC_LITTLE;
747 } else
748 val = PR_ENDIAN_BIG;
749
750 return put_user(val, (unsigned int __user *)adr);
751 }
752
753 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
754 {
755 tsk->thread.align_ctl = val;
756 return 0;
757 }
758
759 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
760 {
761 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
762 }
763
764 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
765
766 int sys_clone(unsigned long clone_flags, unsigned long usp,
767 int __user *parent_tidp, void __user *child_threadptr,
768 int __user *child_tidp, int p6,
769 struct pt_regs *regs)
770 {
771 CHECK_FULL_REGS(regs);
772 if (usp == 0)
773 usp = regs->gpr[1]; /* stack pointer for child */
774 #ifdef CONFIG_PPC64
775 if (test_thread_flag(TIF_32BIT)) {
776 parent_tidp = TRUNC_PTR(parent_tidp);
777 child_tidp = TRUNC_PTR(child_tidp);
778 }
779 #endif
780 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
781 }
782
783 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
784 unsigned long p4, unsigned long p5, unsigned long p6,
785 struct pt_regs *regs)
786 {
787 CHECK_FULL_REGS(regs);
788 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
789 }
790
791 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
792 unsigned long p4, unsigned long p5, unsigned long p6,
793 struct pt_regs *regs)
794 {
795 CHECK_FULL_REGS(regs);
796 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
797 regs, 0, NULL, NULL);
798 }
799
800 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
801 unsigned long a3, unsigned long a4, unsigned long a5,
802 struct pt_regs *regs)
803 {
804 int error;
805 char *filename;
806
807 filename = getname((char __user *) a0);
808 error = PTR_ERR(filename);
809 if (IS_ERR(filename))
810 goto out;
811 flush_fp_to_thread(current);
812 flush_altivec_to_thread(current);
813 flush_spe_to_thread(current);
814 error = do_execve(filename, (char __user * __user *) a1,
815 (char __user * __user *) a2, regs);
816 if (error == 0) {
817 task_lock(current);
818 current->ptrace &= ~PT_DTRACE;
819 task_unlock(current);
820 }
821 putname(filename);
822 out:
823 return error;
824 }
825
826 #ifdef CONFIG_IRQSTACKS
827 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
828 unsigned long nbytes)
829 {
830 unsigned long stack_page;
831 unsigned long cpu = task_cpu(p);
832
833 /*
834 * Avoid crashing if the stack has overflowed and corrupted
835 * task_cpu(p), which is in the thread_info struct.
836 */
837 if (cpu < NR_CPUS && cpu_possible(cpu)) {
838 stack_page = (unsigned long) hardirq_ctx[cpu];
839 if (sp >= stack_page + sizeof(struct thread_struct)
840 && sp <= stack_page + THREAD_SIZE - nbytes)
841 return 1;
842
843 stack_page = (unsigned long) softirq_ctx[cpu];
844 if (sp >= stack_page + sizeof(struct thread_struct)
845 && sp <= stack_page + THREAD_SIZE - nbytes)
846 return 1;
847 }
848 return 0;
849 }
850
851 #else
852 #define valid_irq_stack(sp, p, nb) 0
853 #endif /* CONFIG_IRQSTACKS */
854
855 int validate_sp(unsigned long sp, struct task_struct *p,
856 unsigned long nbytes)
857 {
858 unsigned long stack_page = (unsigned long)task_stack_page(p);
859
860 if (sp >= stack_page + sizeof(struct thread_struct)
861 && sp <= stack_page + THREAD_SIZE - nbytes)
862 return 1;
863
864 return valid_irq_stack(sp, p, nbytes);
865 }
866
867 #ifdef CONFIG_PPC64
868 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
869 #define FRAME_LR_SAVE 2
870 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
871 #define REGS_MARKER 0x7265677368657265ul
872 #define FRAME_MARKER 12
873 #else
874 #define MIN_STACK_FRAME 16
875 #define FRAME_LR_SAVE 1
876 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
877 #define REGS_MARKER 0x72656773ul
878 #define FRAME_MARKER 2
879 #endif
880
881 EXPORT_SYMBOL(validate_sp);
882
883 unsigned long get_wchan(struct task_struct *p)
884 {
885 unsigned long ip, sp;
886 int count = 0;
887
888 if (!p || p == current || p->state == TASK_RUNNING)
889 return 0;
890
891 sp = p->thread.ksp;
892 if (!validate_sp(sp, p, MIN_STACK_FRAME))
893 return 0;
894
895 do {
896 sp = *(unsigned long *)sp;
897 if (!validate_sp(sp, p, MIN_STACK_FRAME))
898 return 0;
899 if (count > 0) {
900 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
901 if (!in_sched_functions(ip))
902 return ip;
903 }
904 } while (count++ < 16);
905 return 0;
906 }
907
908 static int kstack_depth_to_print = 64;
909
910 void show_stack(struct task_struct *tsk, unsigned long *stack)
911 {
912 unsigned long sp, ip, lr, newsp;
913 int count = 0;
914 int firstframe = 1;
915
916 sp = (unsigned long) stack;
917 if (tsk == NULL)
918 tsk = current;
919 if (sp == 0) {
920 if (tsk == current)
921 asm("mr %0,1" : "=r" (sp));
922 else
923 sp = tsk->thread.ksp;
924 }
925
926 lr = 0;
927 printk("Call Trace:\n");
928 do {
929 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
930 return;
931
932 stack = (unsigned long *) sp;
933 newsp = stack[0];
934 ip = stack[FRAME_LR_SAVE];
935 if (!firstframe || ip != lr) {
936 printk("["REG"] ["REG"] ", sp, ip);
937 print_symbol("%s", ip);
938 if (firstframe)
939 printk(" (unreliable)");
940 printk("\n");
941 }
942 firstframe = 0;
943
944 /*
945 * See if this is an exception frame.
946 * We look for the "regshere" marker in the current frame.
947 */
948 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
949 && stack[FRAME_MARKER] == REGS_MARKER) {
950 struct pt_regs *regs = (struct pt_regs *)
951 (sp + STACK_FRAME_OVERHEAD);
952 printk("--- Exception: %lx", regs->trap);
953 print_symbol(" at %s\n", regs->nip);
954 lr = regs->link;
955 print_symbol(" LR = %s\n", lr);
956 firstframe = 1;
957 }
958
959 sp = newsp;
960 } while (count++ < kstack_depth_to_print);
961 }
962
963 void dump_stack(void)
964 {
965 show_stack(current, NULL);
966 }
967 EXPORT_SYMBOL(dump_stack);
968
969 #ifdef CONFIG_PPC64
970 void ppc64_runlatch_on(void)
971 {
972 unsigned long ctrl;
973
974 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
975 HMT_medium();
976
977 ctrl = mfspr(SPRN_CTRLF);
978 ctrl |= CTRL_RUNLATCH;
979 mtspr(SPRN_CTRLT, ctrl);
980
981 set_thread_flag(TIF_RUNLATCH);
982 }
983 }
984
985 void ppc64_runlatch_off(void)
986 {
987 unsigned long ctrl;
988
989 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
990 HMT_medium();
991
992 clear_thread_flag(TIF_RUNLATCH);
993
994 ctrl = mfspr(SPRN_CTRLF);
995 ctrl &= ~CTRL_RUNLATCH;
996 mtspr(SPRN_CTRLT, ctrl);
997 }
998 }
999 #endif
This page took 0.080301 seconds and 6 git commands to generate.