powerpc/ptrace: Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
[deliverable/linux.git] / arch / powerpc / kernel / ptrace.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/syscalls.h>
44
45 /*
46 * The parameter save area on the stack is used to store arguments being passed
47 * to callee function and is located at fixed offset from stack pointer.
48 */
49 #ifdef CONFIG_PPC32
50 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
51 #else /* CONFIG_PPC32 */
52 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
53 #endif
54
55 struct pt_regs_offset {
56 const char *name;
57 int offset;
58 };
59
60 #define STR(s) #s /* convert to string */
61 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62 #define GPR_OFFSET_NAME(num) \
63 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
64 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
65 #define REG_OFFSET_END {.name = NULL, .offset = 0}
66
67 #define TVSO(f) (offsetof(struct thread_vr_state, f))
68 #define TFSO(f) (offsetof(struct thread_fp_state, f))
69 #define TSO(f) (offsetof(struct thread_struct, f))
70
71 static const struct pt_regs_offset regoffset_table[] = {
72 GPR_OFFSET_NAME(0),
73 GPR_OFFSET_NAME(1),
74 GPR_OFFSET_NAME(2),
75 GPR_OFFSET_NAME(3),
76 GPR_OFFSET_NAME(4),
77 GPR_OFFSET_NAME(5),
78 GPR_OFFSET_NAME(6),
79 GPR_OFFSET_NAME(7),
80 GPR_OFFSET_NAME(8),
81 GPR_OFFSET_NAME(9),
82 GPR_OFFSET_NAME(10),
83 GPR_OFFSET_NAME(11),
84 GPR_OFFSET_NAME(12),
85 GPR_OFFSET_NAME(13),
86 GPR_OFFSET_NAME(14),
87 GPR_OFFSET_NAME(15),
88 GPR_OFFSET_NAME(16),
89 GPR_OFFSET_NAME(17),
90 GPR_OFFSET_NAME(18),
91 GPR_OFFSET_NAME(19),
92 GPR_OFFSET_NAME(20),
93 GPR_OFFSET_NAME(21),
94 GPR_OFFSET_NAME(22),
95 GPR_OFFSET_NAME(23),
96 GPR_OFFSET_NAME(24),
97 GPR_OFFSET_NAME(25),
98 GPR_OFFSET_NAME(26),
99 GPR_OFFSET_NAME(27),
100 GPR_OFFSET_NAME(28),
101 GPR_OFFSET_NAME(29),
102 GPR_OFFSET_NAME(30),
103 GPR_OFFSET_NAME(31),
104 REG_OFFSET_NAME(nip),
105 REG_OFFSET_NAME(msr),
106 REG_OFFSET_NAME(ctr),
107 REG_OFFSET_NAME(link),
108 REG_OFFSET_NAME(xer),
109 REG_OFFSET_NAME(ccr),
110 #ifdef CONFIG_PPC64
111 REG_OFFSET_NAME(softe),
112 #else
113 REG_OFFSET_NAME(mq),
114 #endif
115 REG_OFFSET_NAME(trap),
116 REG_OFFSET_NAME(dar),
117 REG_OFFSET_NAME(dsisr),
118 REG_OFFSET_END,
119 };
120
121 /**
122 * regs_query_register_offset() - query register offset from its name
123 * @name: the name of a register
124 *
125 * regs_query_register_offset() returns the offset of a register in struct
126 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
127 */
128 int regs_query_register_offset(const char *name)
129 {
130 const struct pt_regs_offset *roff;
131 for (roff = regoffset_table; roff->name != NULL; roff++)
132 if (!strcmp(roff->name, name))
133 return roff->offset;
134 return -EINVAL;
135 }
136
137 /**
138 * regs_query_register_name() - query register name from its offset
139 * @offset: the offset of a register in struct pt_regs.
140 *
141 * regs_query_register_name() returns the name of a register from its
142 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
143 */
144 const char *regs_query_register_name(unsigned int offset)
145 {
146 const struct pt_regs_offset *roff;
147 for (roff = regoffset_table; roff->name != NULL; roff++)
148 if (roff->offset == offset)
149 return roff->name;
150 return NULL;
151 }
152
153 /*
154 * does not yet catch signals sent when the child dies.
155 * in exit.c or in signal.c.
156 */
157
158 /*
159 * Set of msr bits that gdb can change on behalf of a process.
160 */
161 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
162 #define MSR_DEBUGCHANGE 0
163 #else
164 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
165 #endif
166
167 /*
168 * Max register writeable via put_reg
169 */
170 #ifdef CONFIG_PPC32
171 #define PT_MAX_PUT_REG PT_MQ
172 #else
173 #define PT_MAX_PUT_REG PT_CCR
174 #endif
175
176 static unsigned long get_user_msr(struct task_struct *task)
177 {
178 return task->thread.regs->msr | task->thread.fpexc_mode;
179 }
180
181 static int set_user_msr(struct task_struct *task, unsigned long msr)
182 {
183 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
184 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
185 return 0;
186 }
187
188 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
189 static unsigned long get_user_ckpt_msr(struct task_struct *task)
190 {
191 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
192 }
193
194 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
195 {
196 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
197 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
198 return 0;
199 }
200
201 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
202 {
203 task->thread.ckpt_regs.trap = trap & 0xfff0;
204 return 0;
205 }
206 #endif
207
208 #ifdef CONFIG_PPC64
209 static int get_user_dscr(struct task_struct *task, unsigned long *data)
210 {
211 *data = task->thread.dscr;
212 return 0;
213 }
214
215 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
216 {
217 task->thread.dscr = dscr;
218 task->thread.dscr_inherit = 1;
219 return 0;
220 }
221 #else
222 static int get_user_dscr(struct task_struct *task, unsigned long *data)
223 {
224 return -EIO;
225 }
226
227 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
228 {
229 return -EIO;
230 }
231 #endif
232
233 /*
234 * We prevent mucking around with the reserved area of trap
235 * which are used internally by the kernel.
236 */
237 static int set_user_trap(struct task_struct *task, unsigned long trap)
238 {
239 task->thread.regs->trap = trap & 0xfff0;
240 return 0;
241 }
242
243 /*
244 * Get contents of register REGNO in task TASK.
245 */
246 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
247 {
248 if ((task->thread.regs == NULL) || !data)
249 return -EIO;
250
251 if (regno == PT_MSR) {
252 *data = get_user_msr(task);
253 return 0;
254 }
255
256 if (regno == PT_DSCR)
257 return get_user_dscr(task, data);
258
259 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
260 *data = ((unsigned long *)task->thread.regs)[regno];
261 return 0;
262 }
263
264 return -EIO;
265 }
266
267 /*
268 * Write contents of register REGNO in task TASK.
269 */
270 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
271 {
272 if (task->thread.regs == NULL)
273 return -EIO;
274
275 if (regno == PT_MSR)
276 return set_user_msr(task, data);
277 if (regno == PT_TRAP)
278 return set_user_trap(task, data);
279 if (regno == PT_DSCR)
280 return set_user_dscr(task, data);
281
282 if (regno <= PT_MAX_PUT_REG) {
283 ((unsigned long *)task->thread.regs)[regno] = data;
284 return 0;
285 }
286 return -EIO;
287 }
288
289 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
290 unsigned int pos, unsigned int count,
291 void *kbuf, void __user *ubuf)
292 {
293 int i, ret;
294
295 if (target->thread.regs == NULL)
296 return -EIO;
297
298 if (!FULL_REGS(target->thread.regs)) {
299 /* We have a partial register set. Fill 14-31 with bogus values */
300 for (i = 14; i < 32; i++)
301 target->thread.regs->gpr[i] = NV_REG_POISON;
302 }
303
304 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
305 target->thread.regs,
306 0, offsetof(struct pt_regs, msr));
307 if (!ret) {
308 unsigned long msr = get_user_msr(target);
309 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
310 offsetof(struct pt_regs, msr),
311 offsetof(struct pt_regs, msr) +
312 sizeof(msr));
313 }
314
315 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
316 offsetof(struct pt_regs, msr) + sizeof(long));
317
318 if (!ret)
319 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
320 &target->thread.regs->orig_gpr3,
321 offsetof(struct pt_regs, orig_gpr3),
322 sizeof(struct pt_regs));
323 if (!ret)
324 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
325 sizeof(struct pt_regs), -1);
326
327 return ret;
328 }
329
330 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
331 unsigned int pos, unsigned int count,
332 const void *kbuf, const void __user *ubuf)
333 {
334 unsigned long reg;
335 int ret;
336
337 if (target->thread.regs == NULL)
338 return -EIO;
339
340 CHECK_FULL_REGS(target->thread.regs);
341
342 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
343 target->thread.regs,
344 0, PT_MSR * sizeof(reg));
345
346 if (!ret && count > 0) {
347 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
348 PT_MSR * sizeof(reg),
349 (PT_MSR + 1) * sizeof(reg));
350 if (!ret)
351 ret = set_user_msr(target, reg);
352 }
353
354 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
355 offsetof(struct pt_regs, msr) + sizeof(long));
356
357 if (!ret)
358 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
359 &target->thread.regs->orig_gpr3,
360 PT_ORIG_R3 * sizeof(reg),
361 (PT_MAX_PUT_REG + 1) * sizeof(reg));
362
363 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
364 ret = user_regset_copyin_ignore(
365 &pos, &count, &kbuf, &ubuf,
366 (PT_MAX_PUT_REG + 1) * sizeof(reg),
367 PT_TRAP * sizeof(reg));
368
369 if (!ret && count > 0) {
370 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
371 PT_TRAP * sizeof(reg),
372 (PT_TRAP + 1) * sizeof(reg));
373 if (!ret)
374 ret = set_user_trap(target, reg);
375 }
376
377 if (!ret)
378 ret = user_regset_copyin_ignore(
379 &pos, &count, &kbuf, &ubuf,
380 (PT_TRAP + 1) * sizeof(reg), -1);
381
382 return ret;
383 }
384
385 /*
386 * When the transaction is active, 'transact_fp' holds the current running
387 * value of all FPR registers and 'fp_state' holds the last checkpointed
388 * value of all FPR registers for the current transaction. When transaction
389 * is not active 'fp_state' holds the current running state of all the FPR
390 * registers. So this function which returns the current running values of
391 * all the FPR registers, needs to know whether any transaction is active
392 * or not.
393 *
394 * Userspace interface buffer layout:
395 *
396 * struct data {
397 * u64 fpr[32];
398 * u64 fpscr;
399 * };
400 *
401 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
402 * which determines the final code in this function. All the combinations of
403 * these two config options are possible except the one below as transactional
404 * memory config pulls in CONFIG_VSX automatically.
405 *
406 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
407 */
408 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
409 unsigned int pos, unsigned int count,
410 void *kbuf, void __user *ubuf)
411 {
412 #ifdef CONFIG_VSX
413 u64 buf[33];
414 int i;
415 #endif
416 flush_fp_to_thread(target);
417
418 #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
419 /* copy to local buffer then write that out */
420 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
421 flush_altivec_to_thread(target);
422 flush_tmregs_to_thread(target);
423 for (i = 0; i < 32 ; i++)
424 buf[i] = target->thread.TS_TRANS_FPR(i);
425 buf[32] = target->thread.transact_fp.fpscr;
426 } else {
427 for (i = 0; i < 32 ; i++)
428 buf[i] = target->thread.TS_FPR(i);
429 buf[32] = target->thread.fp_state.fpscr;
430 }
431 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
432 #endif
433
434 #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
435 /* copy to local buffer then write that out */
436 for (i = 0; i < 32 ; i++)
437 buf[i] = target->thread.TS_FPR(i);
438 buf[32] = target->thread.fp_state.fpscr;
439 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
440 #endif
441
442 #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
443 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
444 offsetof(struct thread_fp_state, fpr[32]));
445
446 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
447 &target->thread.fp_state, 0, -1);
448 #endif
449 }
450
451 /*
452 * When the transaction is active, 'transact_fp' holds the current running
453 * value of all FPR registers and 'fp_state' holds the last checkpointed
454 * value of all FPR registers for the current transaction. When transaction
455 * is not active 'fp_state' holds the current running state of all the FPR
456 * registers. So this function which setss the current running values of
457 * all the FPR registers, needs to know whether any transaction is active
458 * or not.
459 *
460 * Userspace interface buffer layout:
461 *
462 * struct data {
463 * u64 fpr[32];
464 * u64 fpscr;
465 * };
466 *
467 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
468 * which determines the final code in this function. All the combinations of
469 * these two config options are possible except the one below as transactional
470 * memory config pulls in CONFIG_VSX automatically.
471 *
472 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
473 */
474 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
475 unsigned int pos, unsigned int count,
476 const void *kbuf, const void __user *ubuf)
477 {
478 #ifdef CONFIG_VSX
479 u64 buf[33];
480 int i;
481 #endif
482 flush_fp_to_thread(target);
483
484 #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
485 /* copy to local buffer then write that out */
486 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
487 if (i)
488 return i;
489
490 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
491 flush_altivec_to_thread(target);
492 flush_tmregs_to_thread(target);
493 for (i = 0; i < 32 ; i++)
494 target->thread.TS_TRANS_FPR(i) = buf[i];
495 target->thread.transact_fp.fpscr = buf[32];
496 } else {
497 for (i = 0; i < 32 ; i++)
498 target->thread.TS_FPR(i) = buf[i];
499 target->thread.fp_state.fpscr = buf[32];
500 }
501 return 0;
502 #endif
503
504 #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
505 /* copy to local buffer then write that out */
506 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
507 if (i)
508 return i;
509 for (i = 0; i < 32 ; i++)
510 target->thread.TS_FPR(i) = buf[i];
511 target->thread.fp_state.fpscr = buf[32];
512 return 0;
513 #endif
514
515 #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
516 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
517 offsetof(struct thread_fp_state, fpr[32]));
518
519 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
520 &target->thread.fp_state, 0, -1);
521 #endif
522 }
523
524 #ifdef CONFIG_ALTIVEC
525 /*
526 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
527 * The transfer totals 34 quadword. Quadwords 0-31 contain the
528 * corresponding vector registers. Quadword 32 contains the vscr as the
529 * last word (offset 12) within that quadword. Quadword 33 contains the
530 * vrsave as the first word (offset 0) within the quadword.
531 *
532 * This definition of the VMX state is compatible with the current PPC32
533 * ptrace interface. This allows signal handling and ptrace to use the
534 * same structures. This also simplifies the implementation of a bi-arch
535 * (combined (32- and 64-bit) gdb.
536 */
537
538 static int vr_active(struct task_struct *target,
539 const struct user_regset *regset)
540 {
541 flush_altivec_to_thread(target);
542 return target->thread.used_vr ? regset->n : 0;
543 }
544
545 /*
546 * When the transaction is active, 'transact_vr' holds the current running
547 * value of all the VMX registers and 'vr_state' holds the last checkpointed
548 * value of all the VMX registers for the current transaction to fall back
549 * on in case it aborts. When transaction is not active 'vr_state' holds
550 * the current running state of all the VMX registers. So this function which
551 * gets the current running values of all the VMX registers, needs to know
552 * whether any transaction is active or not.
553 *
554 * Userspace interface buffer layout:
555 *
556 * struct data {
557 * vector128 vr[32];
558 * vector128 vscr;
559 * vector128 vrsave;
560 * };
561 */
562 static int vr_get(struct task_struct *target, const struct user_regset *regset,
563 unsigned int pos, unsigned int count,
564 void *kbuf, void __user *ubuf)
565 {
566 struct thread_vr_state *addr;
567 int ret;
568
569 flush_altivec_to_thread(target);
570
571 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
572 offsetof(struct thread_vr_state, vr[32]));
573
574 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
575 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
576 flush_fp_to_thread(target);
577 flush_tmregs_to_thread(target);
578 addr = &target->thread.transact_vr;
579 } else {
580 addr = &target->thread.vr_state;
581 }
582 #else
583 addr = &target->thread.vr_state;
584 #endif
585 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
586 addr, 0,
587 33 * sizeof(vector128));
588 if (!ret) {
589 /*
590 * Copy out only the low-order word of vrsave.
591 */
592 union {
593 elf_vrreg_t reg;
594 u32 word;
595 } vrsave;
596 memset(&vrsave, 0, sizeof(vrsave));
597
598 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
599 if (MSR_TM_ACTIVE(target->thread.regs->msr))
600 vrsave.word = target->thread.transact_vrsave;
601 else
602 vrsave.word = target->thread.vrsave;
603 #else
604 vrsave.word = target->thread.vrsave;
605 #endif
606
607 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
608 33 * sizeof(vector128), -1);
609 }
610
611 return ret;
612 }
613
614 /*
615 * When the transaction is active, 'transact_vr' holds the current running
616 * value of all the VMX registers and 'vr_state' holds the last checkpointed
617 * value of all the VMX registers for the current transaction to fall back
618 * on in case it aborts. When transaction is not active 'vr_state' holds
619 * the current running state of all the VMX registers. So this function which
620 * sets the current running values of all the VMX registers, needs to know
621 * whether any transaction is active or not.
622 *
623 * Userspace interface buffer layout:
624 *
625 * struct data {
626 * vector128 vr[32];
627 * vector128 vscr;
628 * vector128 vrsave;
629 * };
630 */
631 static int vr_set(struct task_struct *target, const struct user_regset *regset,
632 unsigned int pos, unsigned int count,
633 const void *kbuf, const void __user *ubuf)
634 {
635 struct thread_vr_state *addr;
636 int ret;
637
638 flush_altivec_to_thread(target);
639
640 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
641 offsetof(struct thread_vr_state, vr[32]));
642
643 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
644 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
645 flush_fp_to_thread(target);
646 flush_tmregs_to_thread(target);
647 addr = &target->thread.transact_vr;
648 } else {
649 addr = &target->thread.vr_state;
650 }
651 #else
652 addr = &target->thread.vr_state;
653 #endif
654 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
655 addr, 0,
656 33 * sizeof(vector128));
657 if (!ret && count > 0) {
658 /*
659 * We use only the first word of vrsave.
660 */
661 union {
662 elf_vrreg_t reg;
663 u32 word;
664 } vrsave;
665 memset(&vrsave, 0, sizeof(vrsave));
666
667 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
668 if (MSR_TM_ACTIVE(target->thread.regs->msr))
669 vrsave.word = target->thread.transact_vrsave;
670 else
671 vrsave.word = target->thread.vrsave;
672 #else
673 vrsave.word = target->thread.vrsave;
674 #endif
675 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
676 33 * sizeof(vector128), -1);
677 if (!ret) {
678
679 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
680 if (MSR_TM_ACTIVE(target->thread.regs->msr))
681 target->thread.transact_vrsave = vrsave.word;
682 else
683 target->thread.vrsave = vrsave.word;
684 #else
685 target->thread.vrsave = vrsave.word;
686 #endif
687 }
688 }
689
690 return ret;
691 }
692 #endif /* CONFIG_ALTIVEC */
693
694 #ifdef CONFIG_VSX
695 /*
696 * Currently to set and and get all the vsx state, you need to call
697 * the fp and VMX calls as well. This only get/sets the lower 32
698 * 128bit VSX registers.
699 */
700
701 static int vsr_active(struct task_struct *target,
702 const struct user_regset *regset)
703 {
704 flush_vsx_to_thread(target);
705 return target->thread.used_vsr ? regset->n : 0;
706 }
707
708 /*
709 * When the transaction is active, 'transact_fp' holds the current running
710 * value of all FPR registers and 'fp_state' holds the last checkpointed
711 * value of all FPR registers for the current transaction. When transaction
712 * is not active 'fp_state' holds the current running state of all the FPR
713 * registers. So this function which returns the current running values of
714 * all the FPR registers, needs to know whether any transaction is active
715 * or not.
716 *
717 * Userspace interface buffer layout:
718 *
719 * struct data {
720 * u64 vsx[32];
721 * };
722 */
723 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
724 unsigned int pos, unsigned int count,
725 void *kbuf, void __user *ubuf)
726 {
727 u64 buf[32];
728 int ret, i;
729
730 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
731 flush_fp_to_thread(target);
732 flush_altivec_to_thread(target);
733 flush_tmregs_to_thread(target);
734 #endif
735 flush_vsx_to_thread(target);
736
737 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
738 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
739 for (i = 0; i < 32 ; i++)
740 buf[i] = target->thread.
741 transact_fp.fpr[i][TS_VSRLOWOFFSET];
742 } else {
743 for (i = 0; i < 32 ; i++)
744 buf[i] = target->thread.
745 fp_state.fpr[i][TS_VSRLOWOFFSET];
746 }
747 #else
748 for (i = 0; i < 32 ; i++)
749 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
750 #endif
751 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
752 buf, 0, 32 * sizeof(double));
753
754 return ret;
755 }
756
757 /*
758 * When the transaction is active, 'transact_fp' holds the current running
759 * value of all FPR registers and 'fp_state' holds the last checkpointed
760 * value of all FPR registers for the current transaction. When transaction
761 * is not active 'fp_state' holds the current running state of all the FPR
762 * registers. So this function which sets the current running values of all
763 * the FPR registers, needs to know whether any transaction is active or not.
764 *
765 * Userspace interface buffer layout:
766 *
767 * struct data {
768 * u64 vsx[32];
769 * };
770 */
771 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
772 unsigned int pos, unsigned int count,
773 const void *kbuf, const void __user *ubuf)
774 {
775 u64 buf[32];
776 int ret,i;
777
778 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
779 flush_fp_to_thread(target);
780 flush_altivec_to_thread(target);
781 flush_tmregs_to_thread(target);
782 #endif
783 flush_vsx_to_thread(target);
784
785 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
786 buf, 0, 32 * sizeof(double));
787
788 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
789 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
790 for (i = 0; i < 32 ; i++)
791 target->thread.transact_fp.
792 fpr[i][TS_VSRLOWOFFSET] = buf[i];
793 } else {
794 for (i = 0; i < 32 ; i++)
795 target->thread.fp_state.
796 fpr[i][TS_VSRLOWOFFSET] = buf[i];
797 }
798 #else
799 for (i = 0; i < 32 ; i++)
800 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
801 #endif
802
803
804 return ret;
805 }
806 #endif /* CONFIG_VSX */
807
808 #ifdef CONFIG_SPE
809
810 /*
811 * For get_evrregs/set_evrregs functions 'data' has the following layout:
812 *
813 * struct {
814 * u32 evr[32];
815 * u64 acc;
816 * u32 spefscr;
817 * }
818 */
819
820 static int evr_active(struct task_struct *target,
821 const struct user_regset *regset)
822 {
823 flush_spe_to_thread(target);
824 return target->thread.used_spe ? regset->n : 0;
825 }
826
827 static int evr_get(struct task_struct *target, const struct user_regset *regset,
828 unsigned int pos, unsigned int count,
829 void *kbuf, void __user *ubuf)
830 {
831 int ret;
832
833 flush_spe_to_thread(target);
834
835 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
836 &target->thread.evr,
837 0, sizeof(target->thread.evr));
838
839 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
840 offsetof(struct thread_struct, spefscr));
841
842 if (!ret)
843 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
844 &target->thread.acc,
845 sizeof(target->thread.evr), -1);
846
847 return ret;
848 }
849
850 static int evr_set(struct task_struct *target, const struct user_regset *regset,
851 unsigned int pos, unsigned int count,
852 const void *kbuf, const void __user *ubuf)
853 {
854 int ret;
855
856 flush_spe_to_thread(target);
857
858 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
859 &target->thread.evr,
860 0, sizeof(target->thread.evr));
861
862 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
863 offsetof(struct thread_struct, spefscr));
864
865 if (!ret)
866 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
867 &target->thread.acc,
868 sizeof(target->thread.evr), -1);
869
870 return ret;
871 }
872 #endif /* CONFIG_SPE */
873
874 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
875 /**
876 * tm_cgpr_active - get active number of registers in CGPR
877 * @target: The target task.
878 * @regset: The user regset structure.
879 *
880 * This function checks for the active number of available
881 * regisers in transaction checkpointed GPR category.
882 */
883 static int tm_cgpr_active(struct task_struct *target,
884 const struct user_regset *regset)
885 {
886 if (!cpu_has_feature(CPU_FTR_TM))
887 return -ENODEV;
888
889 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
890 return 0;
891
892 return regset->n;
893 }
894
895 /**
896 * tm_cgpr_get - get CGPR registers
897 * @target: The target task.
898 * @regset: The user regset structure.
899 * @pos: The buffer position.
900 * @count: Number of bytes to copy.
901 * @kbuf: Kernel buffer to copy from.
902 * @ubuf: User buffer to copy into.
903 *
904 * This function gets transaction checkpointed GPR registers.
905 *
906 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
907 * GPR register values for the current transaction to fall back on if it
908 * aborts in between. This function gets those checkpointed GPR registers.
909 * The userspace interface buffer layout is as follows.
910 *
911 * struct data {
912 * struct pt_regs ckpt_regs;
913 * };
914 */
915 static int tm_cgpr_get(struct task_struct *target,
916 const struct user_regset *regset,
917 unsigned int pos, unsigned int count,
918 void *kbuf, void __user *ubuf)
919 {
920 int ret;
921
922 if (!cpu_has_feature(CPU_FTR_TM))
923 return -ENODEV;
924
925 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
926 return -ENODATA;
927
928 flush_fp_to_thread(target);
929 flush_altivec_to_thread(target);
930 flush_tmregs_to_thread(target);
931
932 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
933 &target->thread.ckpt_regs,
934 0, offsetof(struct pt_regs, msr));
935 if (!ret) {
936 unsigned long msr = get_user_ckpt_msr(target);
937
938 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
939 offsetof(struct pt_regs, msr),
940 offsetof(struct pt_regs, msr) +
941 sizeof(msr));
942 }
943
944 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
945 offsetof(struct pt_regs, msr) + sizeof(long));
946
947 if (!ret)
948 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
949 &target->thread.ckpt_regs.orig_gpr3,
950 offsetof(struct pt_regs, orig_gpr3),
951 sizeof(struct pt_regs));
952 if (!ret)
953 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
954 sizeof(struct pt_regs), -1);
955
956 return ret;
957 }
958
959 /*
960 * tm_cgpr_set - set the CGPR registers
961 * @target: The target task.
962 * @regset: The user regset structure.
963 * @pos: The buffer position.
964 * @count: Number of bytes to copy.
965 * @kbuf: Kernel buffer to copy into.
966 * @ubuf: User buffer to copy from.
967 *
968 * This function sets in transaction checkpointed GPR registers.
969 *
970 * When the transaction is active, 'ckpt_regs' holds the checkpointed
971 * GPR register values for the current transaction to fall back on if it
972 * aborts in between. This function sets those checkpointed GPR registers.
973 * The userspace interface buffer layout is as follows.
974 *
975 * struct data {
976 * struct pt_regs ckpt_regs;
977 * };
978 */
979 static int tm_cgpr_set(struct task_struct *target,
980 const struct user_regset *regset,
981 unsigned int pos, unsigned int count,
982 const void *kbuf, const void __user *ubuf)
983 {
984 unsigned long reg;
985 int ret;
986
987 if (!cpu_has_feature(CPU_FTR_TM))
988 return -ENODEV;
989
990 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
991 return -ENODATA;
992
993 flush_fp_to_thread(target);
994 flush_altivec_to_thread(target);
995 flush_tmregs_to_thread(target);
996
997 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
998 &target->thread.ckpt_regs,
999 0, PT_MSR * sizeof(reg));
1000
1001 if (!ret && count > 0) {
1002 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
1003 PT_MSR * sizeof(reg),
1004 (PT_MSR + 1) * sizeof(reg));
1005 if (!ret)
1006 ret = set_user_ckpt_msr(target, reg);
1007 }
1008
1009 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
1010 offsetof(struct pt_regs, msr) + sizeof(long));
1011
1012 if (!ret)
1013 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1014 &target->thread.ckpt_regs.orig_gpr3,
1015 PT_ORIG_R3 * sizeof(reg),
1016 (PT_MAX_PUT_REG + 1) * sizeof(reg));
1017
1018 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
1019 ret = user_regset_copyin_ignore(
1020 &pos, &count, &kbuf, &ubuf,
1021 (PT_MAX_PUT_REG + 1) * sizeof(reg),
1022 PT_TRAP * sizeof(reg));
1023
1024 if (!ret && count > 0) {
1025 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
1026 PT_TRAP * sizeof(reg),
1027 (PT_TRAP + 1) * sizeof(reg));
1028 if (!ret)
1029 ret = set_user_ckpt_trap(target, reg);
1030 }
1031
1032 if (!ret)
1033 ret = user_regset_copyin_ignore(
1034 &pos, &count, &kbuf, &ubuf,
1035 (PT_TRAP + 1) * sizeof(reg), -1);
1036
1037 return ret;
1038 }
1039
1040 /**
1041 * tm_cfpr_active - get active number of registers in CFPR
1042 * @target: The target task.
1043 * @regset: The user regset structure.
1044 *
1045 * This function checks for the active number of available
1046 * regisers in transaction checkpointed FPR category.
1047 */
1048 static int tm_cfpr_active(struct task_struct *target,
1049 const struct user_regset *regset)
1050 {
1051 if (!cpu_has_feature(CPU_FTR_TM))
1052 return -ENODEV;
1053
1054 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1055 return 0;
1056
1057 return regset->n;
1058 }
1059
1060 /**
1061 * tm_cfpr_get - get CFPR registers
1062 * @target: The target task.
1063 * @regset: The user regset structure.
1064 * @pos: The buffer position.
1065 * @count: Number of bytes to copy.
1066 * @kbuf: Kernel buffer to copy from.
1067 * @ubuf: User buffer to copy into.
1068 *
1069 * This function gets in transaction checkpointed FPR registers.
1070 *
1071 * When the transaction is active 'fp_state' holds the checkpointed
1072 * values for the current transaction to fall back on if it aborts
1073 * in between. This function gets those checkpointed FPR registers.
1074 * The userspace interface buffer layout is as follows.
1075 *
1076 * struct data {
1077 * u64 fpr[32];
1078 * u64 fpscr;
1079 *};
1080 */
1081 static int tm_cfpr_get(struct task_struct *target,
1082 const struct user_regset *regset,
1083 unsigned int pos, unsigned int count,
1084 void *kbuf, void __user *ubuf)
1085 {
1086 u64 buf[33];
1087 int i;
1088
1089 if (!cpu_has_feature(CPU_FTR_TM))
1090 return -ENODEV;
1091
1092 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1093 return -ENODATA;
1094
1095 flush_fp_to_thread(target);
1096 flush_altivec_to_thread(target);
1097 flush_tmregs_to_thread(target);
1098
1099 /* copy to local buffer then write that out */
1100 for (i = 0; i < 32 ; i++)
1101 buf[i] = target->thread.TS_FPR(i);
1102 buf[32] = target->thread.fp_state.fpscr;
1103 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1104 }
1105
1106 /**
1107 * tm_cfpr_set - set CFPR registers
1108 * @target: The target task.
1109 * @regset: The user regset structure.
1110 * @pos: The buffer position.
1111 * @count: Number of bytes to copy.
1112 * @kbuf: Kernel buffer to copy into.
1113 * @ubuf: User buffer to copy from.
1114 *
1115 * This function sets in transaction checkpointed FPR registers.
1116 *
1117 * When the transaction is active 'fp_state' holds the checkpointed
1118 * FPR register values for the current transaction to fall back on
1119 * if it aborts in between. This function sets these checkpointed
1120 * FPR registers. The userspace interface buffer layout is as follows.
1121 *
1122 * struct data {
1123 * u64 fpr[32];
1124 * u64 fpscr;
1125 *};
1126 */
1127 static int tm_cfpr_set(struct task_struct *target,
1128 const struct user_regset *regset,
1129 unsigned int pos, unsigned int count,
1130 const void *kbuf, const void __user *ubuf)
1131 {
1132 u64 buf[33];
1133 int i;
1134
1135 if (!cpu_has_feature(CPU_FTR_TM))
1136 return -ENODEV;
1137
1138 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1139 return -ENODATA;
1140
1141 flush_fp_to_thread(target);
1142 flush_altivec_to_thread(target);
1143 flush_tmregs_to_thread(target);
1144
1145 /* copy to local buffer then write that out */
1146 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1147 if (i)
1148 return i;
1149 for (i = 0; i < 32 ; i++)
1150 target->thread.TS_FPR(i) = buf[i];
1151 target->thread.fp_state.fpscr = buf[32];
1152 return 0;
1153 }
1154
1155 /**
1156 * tm_cvmx_active - get active number of registers in CVMX
1157 * @target: The target task.
1158 * @regset: The user regset structure.
1159 *
1160 * This function checks for the active number of available
1161 * regisers in checkpointed VMX category.
1162 */
1163 static int tm_cvmx_active(struct task_struct *target,
1164 const struct user_regset *regset)
1165 {
1166 if (!cpu_has_feature(CPU_FTR_TM))
1167 return -ENODEV;
1168
1169 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1170 return 0;
1171
1172 return regset->n;
1173 }
1174
1175 /**
1176 * tm_cvmx_get - get CMVX registers
1177 * @target: The target task.
1178 * @regset: The user regset structure.
1179 * @pos: The buffer position.
1180 * @count: Number of bytes to copy.
1181 * @kbuf: Kernel buffer to copy from.
1182 * @ubuf: User buffer to copy into.
1183 *
1184 * This function gets in transaction checkpointed VMX registers.
1185 *
1186 * When the transaction is active 'vr_state' and 'vr_save' hold
1187 * the checkpointed values for the current transaction to fall
1188 * back on if it aborts in between. The userspace interface buffer
1189 * layout is as follows.
1190 *
1191 * struct data {
1192 * vector128 vr[32];
1193 * vector128 vscr;
1194 * vector128 vrsave;
1195 *};
1196 */
1197 static int tm_cvmx_get(struct task_struct *target,
1198 const struct user_regset *regset,
1199 unsigned int pos, unsigned int count,
1200 void *kbuf, void __user *ubuf)
1201 {
1202 int ret;
1203
1204 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1205
1206 if (!cpu_has_feature(CPU_FTR_TM))
1207 return -ENODEV;
1208
1209 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1210 return -ENODATA;
1211
1212 /* Flush the state */
1213 flush_fp_to_thread(target);
1214 flush_altivec_to_thread(target);
1215 flush_tmregs_to_thread(target);
1216
1217 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1218 &target->thread.vr_state, 0,
1219 33 * sizeof(vector128));
1220 if (!ret) {
1221 /*
1222 * Copy out only the low-order word of vrsave.
1223 */
1224 union {
1225 elf_vrreg_t reg;
1226 u32 word;
1227 } vrsave;
1228 memset(&vrsave, 0, sizeof(vrsave));
1229 vrsave.word = target->thread.vrsave;
1230 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1231 33 * sizeof(vector128), -1);
1232 }
1233
1234 return ret;
1235 }
1236
1237 /**
1238 * tm_cvmx_set - set CMVX registers
1239 * @target: The target task.
1240 * @regset: The user regset structure.
1241 * @pos: The buffer position.
1242 * @count: Number of bytes to copy.
1243 * @kbuf: Kernel buffer to copy into.
1244 * @ubuf: User buffer to copy from.
1245 *
1246 * This function sets in transaction checkpointed VMX registers.
1247 *
1248 * When the transaction is active 'vr_state' and 'vr_save' hold
1249 * the checkpointed values for the current transaction to fall
1250 * back on if it aborts in between. The userspace interface buffer
1251 * layout is as follows.
1252 *
1253 * struct data {
1254 * vector128 vr[32];
1255 * vector128 vscr;
1256 * vector128 vrsave;
1257 *};
1258 */
1259 static int tm_cvmx_set(struct task_struct *target,
1260 const struct user_regset *regset,
1261 unsigned int pos, unsigned int count,
1262 const void *kbuf, const void __user *ubuf)
1263 {
1264 int ret;
1265
1266 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1267
1268 if (!cpu_has_feature(CPU_FTR_TM))
1269 return -ENODEV;
1270
1271 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1272 return -ENODATA;
1273
1274 flush_fp_to_thread(target);
1275 flush_altivec_to_thread(target);
1276 flush_tmregs_to_thread(target);
1277
1278 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1279 &target->thread.vr_state, 0,
1280 33 * sizeof(vector128));
1281 if (!ret && count > 0) {
1282 /*
1283 * We use only the low-order word of vrsave.
1284 */
1285 union {
1286 elf_vrreg_t reg;
1287 u32 word;
1288 } vrsave;
1289 memset(&vrsave, 0, sizeof(vrsave));
1290 vrsave.word = target->thread.vrsave;
1291 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1292 33 * sizeof(vector128), -1);
1293 if (!ret)
1294 target->thread.vrsave = vrsave.word;
1295 }
1296
1297 return ret;
1298 }
1299
1300 /**
1301 * tm_cvsx_active - get active number of registers in CVSX
1302 * @target: The target task.
1303 * @regset: The user regset structure.
1304 *
1305 * This function checks for the active number of available
1306 * regisers in transaction checkpointed VSX category.
1307 */
1308 static int tm_cvsx_active(struct task_struct *target,
1309 const struct user_regset *regset)
1310 {
1311 if (!cpu_has_feature(CPU_FTR_TM))
1312 return -ENODEV;
1313
1314 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1315 return 0;
1316
1317 flush_vsx_to_thread(target);
1318 return target->thread.used_vsr ? regset->n : 0;
1319 }
1320
1321 /**
1322 * tm_cvsx_get - get CVSX registers
1323 * @target: The target task.
1324 * @regset: The user regset structure.
1325 * @pos: The buffer position.
1326 * @count: Number of bytes to copy.
1327 * @kbuf: Kernel buffer to copy from.
1328 * @ubuf: User buffer to copy into.
1329 *
1330 * This function gets in transaction checkpointed VSX registers.
1331 *
1332 * When the transaction is active 'fp_state' holds the checkpointed
1333 * values for the current transaction to fall back on if it aborts
1334 * in between. This function gets those checkpointed VSX registers.
1335 * The userspace interface buffer layout is as follows.
1336 *
1337 * struct data {
1338 * u64 vsx[32];
1339 *};
1340 */
1341 static int tm_cvsx_get(struct task_struct *target,
1342 const struct user_regset *regset,
1343 unsigned int pos, unsigned int count,
1344 void *kbuf, void __user *ubuf)
1345 {
1346 u64 buf[32];
1347 int ret, i;
1348
1349 if (!cpu_has_feature(CPU_FTR_TM))
1350 return -ENODEV;
1351
1352 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1353 return -ENODATA;
1354
1355 /* Flush the state */
1356 flush_fp_to_thread(target);
1357 flush_altivec_to_thread(target);
1358 flush_tmregs_to_thread(target);
1359 flush_vsx_to_thread(target);
1360
1361 for (i = 0; i < 32 ; i++)
1362 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
1363 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1364 buf, 0, 32 * sizeof(double));
1365
1366 return ret;
1367 }
1368
1369 /**
1370 * tm_cvsx_set - set CFPR registers
1371 * @target: The target task.
1372 * @regset: The user regset structure.
1373 * @pos: The buffer position.
1374 * @count: Number of bytes to copy.
1375 * @kbuf: Kernel buffer to copy into.
1376 * @ubuf: User buffer to copy from.
1377 *
1378 * This function sets in transaction checkpointed VSX registers.
1379 *
1380 * When the transaction is active 'fp_state' holds the checkpointed
1381 * VSX register values for the current transaction to fall back on
1382 * if it aborts in between. This function sets these checkpointed
1383 * FPR registers. The userspace interface buffer layout is as follows.
1384 *
1385 * struct data {
1386 * u64 vsx[32];
1387 *};
1388 */
1389 static int tm_cvsx_set(struct task_struct *target,
1390 const struct user_regset *regset,
1391 unsigned int pos, unsigned int count,
1392 const void *kbuf, const void __user *ubuf)
1393 {
1394 u64 buf[32];
1395 int ret, i;
1396
1397 if (!cpu_has_feature(CPU_FTR_TM))
1398 return -ENODEV;
1399
1400 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1401 return -ENODATA;
1402
1403 /* Flush the state */
1404 flush_fp_to_thread(target);
1405 flush_altivec_to_thread(target);
1406 flush_tmregs_to_thread(target);
1407 flush_vsx_to_thread(target);
1408
1409 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1410 buf, 0, 32 * sizeof(double));
1411 for (i = 0; i < 32 ; i++)
1412 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1413
1414 return ret;
1415 }
1416
1417 /**
1418 * tm_spr_active - get active number of registers in TM SPR
1419 * @target: The target task.
1420 * @regset: The user regset structure.
1421 *
1422 * This function checks the active number of available
1423 * regisers in the transactional memory SPR category.
1424 */
1425 static int tm_spr_active(struct task_struct *target,
1426 const struct user_regset *regset)
1427 {
1428 if (!cpu_has_feature(CPU_FTR_TM))
1429 return -ENODEV;
1430
1431 return regset->n;
1432 }
1433
1434 /**
1435 * tm_spr_get - get the TM related SPR registers
1436 * @target: The target task.
1437 * @regset: The user regset structure.
1438 * @pos: The buffer position.
1439 * @count: Number of bytes to copy.
1440 * @kbuf: Kernel buffer to copy from.
1441 * @ubuf: User buffer to copy into.
1442 *
1443 * This function gets transactional memory related SPR registers.
1444 * The userspace interface buffer layout is as follows.
1445 *
1446 * struct {
1447 * u64 tm_tfhar;
1448 * u64 tm_texasr;
1449 * u64 tm_tfiar;
1450 * };
1451 */
1452 static int tm_spr_get(struct task_struct *target,
1453 const struct user_regset *regset,
1454 unsigned int pos, unsigned int count,
1455 void *kbuf, void __user *ubuf)
1456 {
1457 int ret;
1458
1459 /* Build tests */
1460 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1461 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1462 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1463
1464 if (!cpu_has_feature(CPU_FTR_TM))
1465 return -ENODEV;
1466
1467 /* Flush the states */
1468 flush_fp_to_thread(target);
1469 flush_altivec_to_thread(target);
1470 flush_tmregs_to_thread(target);
1471
1472 /* TFHAR register */
1473 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1474 &target->thread.tm_tfhar, 0, sizeof(u64));
1475
1476 /* TEXASR register */
1477 if (!ret)
1478 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1479 &target->thread.tm_texasr, sizeof(u64),
1480 2 * sizeof(u64));
1481
1482 /* TFIAR register */
1483 if (!ret)
1484 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1485 &target->thread.tm_tfiar,
1486 2 * sizeof(u64), 3 * sizeof(u64));
1487 return ret;
1488 }
1489
1490 /**
1491 * tm_spr_set - set the TM related SPR registers
1492 * @target: The target task.
1493 * @regset: The user regset structure.
1494 * @pos: The buffer position.
1495 * @count: Number of bytes to copy.
1496 * @kbuf: Kernel buffer to copy into.
1497 * @ubuf: User buffer to copy from.
1498 *
1499 * This function sets transactional memory related SPR registers.
1500 * The userspace interface buffer layout is as follows.
1501 *
1502 * struct {
1503 * u64 tm_tfhar;
1504 * u64 tm_texasr;
1505 * u64 tm_tfiar;
1506 * };
1507 */
1508 static int tm_spr_set(struct task_struct *target,
1509 const struct user_regset *regset,
1510 unsigned int pos, unsigned int count,
1511 const void *kbuf, const void __user *ubuf)
1512 {
1513 int ret;
1514
1515 /* Build tests */
1516 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1517 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1518 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1519
1520 if (!cpu_has_feature(CPU_FTR_TM))
1521 return -ENODEV;
1522
1523 /* Flush the states */
1524 flush_fp_to_thread(target);
1525 flush_altivec_to_thread(target);
1526 flush_tmregs_to_thread(target);
1527
1528 /* TFHAR register */
1529 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1530 &target->thread.tm_tfhar, 0, sizeof(u64));
1531
1532 /* TEXASR register */
1533 if (!ret)
1534 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1535 &target->thread.tm_texasr, sizeof(u64),
1536 2 * sizeof(u64));
1537
1538 /* TFIAR register */
1539 if (!ret)
1540 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1541 &target->thread.tm_tfiar,
1542 2 * sizeof(u64), 3 * sizeof(u64));
1543 return ret;
1544 }
1545
1546 static int tm_tar_active(struct task_struct *target,
1547 const struct user_regset *regset)
1548 {
1549 if (!cpu_has_feature(CPU_FTR_TM))
1550 return -ENODEV;
1551
1552 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1553 return regset->n;
1554
1555 return 0;
1556 }
1557
1558 static int tm_tar_get(struct task_struct *target,
1559 const struct user_regset *regset,
1560 unsigned int pos, unsigned int count,
1561 void *kbuf, void __user *ubuf)
1562 {
1563 int ret;
1564
1565 if (!cpu_has_feature(CPU_FTR_TM))
1566 return -ENODEV;
1567
1568 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1569 return -ENODATA;
1570
1571 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1572 &target->thread.tm_tar, 0, sizeof(u64));
1573 return ret;
1574 }
1575
1576 static int tm_tar_set(struct task_struct *target,
1577 const struct user_regset *regset,
1578 unsigned int pos, unsigned int count,
1579 const void *kbuf, const void __user *ubuf)
1580 {
1581 int ret;
1582
1583 if (!cpu_has_feature(CPU_FTR_TM))
1584 return -ENODEV;
1585
1586 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1587 return -ENODATA;
1588
1589 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1590 &target->thread.tm_tar, 0, sizeof(u64));
1591 return ret;
1592 }
1593
1594 static int tm_ppr_active(struct task_struct *target,
1595 const struct user_regset *regset)
1596 {
1597 if (!cpu_has_feature(CPU_FTR_TM))
1598 return -ENODEV;
1599
1600 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1601 return regset->n;
1602
1603 return 0;
1604 }
1605
1606
1607 static int tm_ppr_get(struct task_struct *target,
1608 const struct user_regset *regset,
1609 unsigned int pos, unsigned int count,
1610 void *kbuf, void __user *ubuf)
1611 {
1612 int ret;
1613
1614 if (!cpu_has_feature(CPU_FTR_TM))
1615 return -ENODEV;
1616
1617 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1618 return -ENODATA;
1619
1620 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1621 &target->thread.tm_ppr, 0, sizeof(u64));
1622 return ret;
1623 }
1624
1625 static int tm_ppr_set(struct task_struct *target,
1626 const struct user_regset *regset,
1627 unsigned int pos, unsigned int count,
1628 const void *kbuf, const void __user *ubuf)
1629 {
1630 int ret;
1631
1632 if (!cpu_has_feature(CPU_FTR_TM))
1633 return -ENODEV;
1634
1635 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1636 return -ENODATA;
1637
1638 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1639 &target->thread.tm_ppr, 0, sizeof(u64));
1640 return ret;
1641 }
1642
1643 static int tm_dscr_active(struct task_struct *target,
1644 const struct user_regset *regset)
1645 {
1646 if (!cpu_has_feature(CPU_FTR_TM))
1647 return -ENODEV;
1648
1649 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1650 return regset->n;
1651
1652 return 0;
1653 }
1654
1655 static int tm_dscr_get(struct task_struct *target,
1656 const struct user_regset *regset,
1657 unsigned int pos, unsigned int count,
1658 void *kbuf, void __user *ubuf)
1659 {
1660 int ret;
1661
1662 if (!cpu_has_feature(CPU_FTR_TM))
1663 return -ENODEV;
1664
1665 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1666 return -ENODATA;
1667
1668 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1669 &target->thread.tm_dscr, 0, sizeof(u64));
1670 return ret;
1671 }
1672
1673 static int tm_dscr_set(struct task_struct *target,
1674 const struct user_regset *regset,
1675 unsigned int pos, unsigned int count,
1676 const void *kbuf, const void __user *ubuf)
1677 {
1678 int ret;
1679
1680 if (!cpu_has_feature(CPU_FTR_TM))
1681 return -ENODEV;
1682
1683 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1684 return -ENODATA;
1685
1686 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1687 &target->thread.tm_dscr, 0, sizeof(u64));
1688 return ret;
1689 }
1690 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1691
1692 /*
1693 * These are our native regset flavors.
1694 */
1695 enum powerpc_regset {
1696 REGSET_GPR,
1697 REGSET_FPR,
1698 #ifdef CONFIG_ALTIVEC
1699 REGSET_VMX,
1700 #endif
1701 #ifdef CONFIG_VSX
1702 REGSET_VSX,
1703 #endif
1704 #ifdef CONFIG_SPE
1705 REGSET_SPE,
1706 #endif
1707 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1708 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1709 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1710 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1711 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1712 REGSET_TM_SPR, /* TM specific SPR registers */
1713 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1714 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1715 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1716 #endif
1717 };
1718
1719 static const struct user_regset native_regsets[] = {
1720 [REGSET_GPR] = {
1721 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1722 .size = sizeof(long), .align = sizeof(long),
1723 .get = gpr_get, .set = gpr_set
1724 },
1725 [REGSET_FPR] = {
1726 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1727 .size = sizeof(double), .align = sizeof(double),
1728 .get = fpr_get, .set = fpr_set
1729 },
1730 #ifdef CONFIG_ALTIVEC
1731 [REGSET_VMX] = {
1732 .core_note_type = NT_PPC_VMX, .n = 34,
1733 .size = sizeof(vector128), .align = sizeof(vector128),
1734 .active = vr_active, .get = vr_get, .set = vr_set
1735 },
1736 #endif
1737 #ifdef CONFIG_VSX
1738 [REGSET_VSX] = {
1739 .core_note_type = NT_PPC_VSX, .n = 32,
1740 .size = sizeof(double), .align = sizeof(double),
1741 .active = vsr_active, .get = vsr_get, .set = vsr_set
1742 },
1743 #endif
1744 #ifdef CONFIG_SPE
1745 [REGSET_SPE] = {
1746 .core_note_type = NT_PPC_SPE, .n = 35,
1747 .size = sizeof(u32), .align = sizeof(u32),
1748 .active = evr_active, .get = evr_get, .set = evr_set
1749 },
1750 #endif
1751 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1752 [REGSET_TM_CGPR] = {
1753 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1754 .size = sizeof(long), .align = sizeof(long),
1755 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1756 },
1757 [REGSET_TM_CFPR] = {
1758 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1759 .size = sizeof(double), .align = sizeof(double),
1760 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1761 },
1762 [REGSET_TM_CVMX] = {
1763 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1764 .size = sizeof(vector128), .align = sizeof(vector128),
1765 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1766 },
1767 [REGSET_TM_CVSX] = {
1768 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1769 .size = sizeof(double), .align = sizeof(double),
1770 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1771 },
1772 [REGSET_TM_SPR] = {
1773 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1774 .size = sizeof(u64), .align = sizeof(u64),
1775 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1776 },
1777 [REGSET_TM_CTAR] = {
1778 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1779 .size = sizeof(u64), .align = sizeof(u64),
1780 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1781 },
1782 [REGSET_TM_CPPR] = {
1783 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1784 .size = sizeof(u64), .align = sizeof(u64),
1785 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1786 },
1787 [REGSET_TM_CDSCR] = {
1788 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1789 .size = sizeof(u64), .align = sizeof(u64),
1790 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1791 },
1792 #endif
1793 };
1794
1795 static const struct user_regset_view user_ppc_native_view = {
1796 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1797 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1798 };
1799
1800 #ifdef CONFIG_PPC64
1801 #include <linux/compat.h>
1802
1803 static int gpr32_get_common(struct task_struct *target,
1804 const struct user_regset *regset,
1805 unsigned int pos, unsigned int count,
1806 void *kbuf, void __user *ubuf, bool tm_active)
1807 {
1808 const unsigned long *regs = &target->thread.regs->gpr[0];
1809 const unsigned long *ckpt_regs;
1810 compat_ulong_t *k = kbuf;
1811 compat_ulong_t __user *u = ubuf;
1812 compat_ulong_t reg;
1813 int i;
1814
1815 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1816 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
1817 #endif
1818 if (tm_active) {
1819 regs = ckpt_regs;
1820 } else {
1821 if (target->thread.regs == NULL)
1822 return -EIO;
1823
1824 if (!FULL_REGS(target->thread.regs)) {
1825 /*
1826 * We have a partial register set.
1827 * Fill 14-31 with bogus values.
1828 */
1829 for (i = 14; i < 32; i++)
1830 target->thread.regs->gpr[i] = NV_REG_POISON;
1831 }
1832 }
1833
1834 pos /= sizeof(reg);
1835 count /= sizeof(reg);
1836
1837 if (kbuf)
1838 for (; count > 0 && pos < PT_MSR; --count)
1839 *k++ = regs[pos++];
1840 else
1841 for (; count > 0 && pos < PT_MSR; --count)
1842 if (__put_user((compat_ulong_t) regs[pos++], u++))
1843 return -EFAULT;
1844
1845 if (count > 0 && pos == PT_MSR) {
1846 reg = get_user_msr(target);
1847 if (kbuf)
1848 *k++ = reg;
1849 else if (__put_user(reg, u++))
1850 return -EFAULT;
1851 ++pos;
1852 --count;
1853 }
1854
1855 if (kbuf)
1856 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1857 *k++ = regs[pos++];
1858 else
1859 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1860 if (__put_user((compat_ulong_t) regs[pos++], u++))
1861 return -EFAULT;
1862
1863 kbuf = k;
1864 ubuf = u;
1865 pos *= sizeof(reg);
1866 count *= sizeof(reg);
1867 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1868 PT_REGS_COUNT * sizeof(reg), -1);
1869 }
1870
1871 static int gpr32_set_common(struct task_struct *target,
1872 const struct user_regset *regset,
1873 unsigned int pos, unsigned int count,
1874 const void *kbuf, const void __user *ubuf, bool tm_active)
1875 {
1876 unsigned long *regs = &target->thread.regs->gpr[0];
1877 unsigned long *ckpt_regs;
1878 const compat_ulong_t *k = kbuf;
1879 const compat_ulong_t __user *u = ubuf;
1880 compat_ulong_t reg;
1881
1882 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1883 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
1884 #endif
1885
1886 if (tm_active) {
1887 regs = ckpt_regs;
1888 } else {
1889 regs = &target->thread.regs->gpr[0];
1890
1891 if (target->thread.regs == NULL)
1892 return -EIO;
1893
1894 CHECK_FULL_REGS(target->thread.regs);
1895 }
1896
1897 pos /= sizeof(reg);
1898 count /= sizeof(reg);
1899
1900 if (kbuf)
1901 for (; count > 0 && pos < PT_MSR; --count)
1902 regs[pos++] = *k++;
1903 else
1904 for (; count > 0 && pos < PT_MSR; --count) {
1905 if (__get_user(reg, u++))
1906 return -EFAULT;
1907 regs[pos++] = reg;
1908 }
1909
1910
1911 if (count > 0 && pos == PT_MSR) {
1912 if (kbuf)
1913 reg = *k++;
1914 else if (__get_user(reg, u++))
1915 return -EFAULT;
1916 set_user_msr(target, reg);
1917 ++pos;
1918 --count;
1919 }
1920
1921 if (kbuf) {
1922 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
1923 regs[pos++] = *k++;
1924 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
1925 ++k;
1926 } else {
1927 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
1928 if (__get_user(reg, u++))
1929 return -EFAULT;
1930 regs[pos++] = reg;
1931 }
1932 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
1933 if (__get_user(reg, u++))
1934 return -EFAULT;
1935 }
1936
1937 if (count > 0 && pos == PT_TRAP) {
1938 if (kbuf)
1939 reg = *k++;
1940 else if (__get_user(reg, u++))
1941 return -EFAULT;
1942 set_user_trap(target, reg);
1943 ++pos;
1944 --count;
1945 }
1946
1947 kbuf = k;
1948 ubuf = u;
1949 pos *= sizeof(reg);
1950 count *= sizeof(reg);
1951 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
1952 (PT_TRAP + 1) * sizeof(reg), -1);
1953 }
1954
1955 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1956 static int tm_cgpr32_get(struct task_struct *target,
1957 const struct user_regset *regset,
1958 unsigned int pos, unsigned int count,
1959 void *kbuf, void __user *ubuf)
1960 {
1961 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 1);
1962 }
1963
1964 static int tm_cgpr32_set(struct task_struct *target,
1965 const struct user_regset *regset,
1966 unsigned int pos, unsigned int count,
1967 const void *kbuf, const void __user *ubuf)
1968 {
1969 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 1);
1970 }
1971 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1972
1973 static int gpr32_get(struct task_struct *target,
1974 const struct user_regset *regset,
1975 unsigned int pos, unsigned int count,
1976 void *kbuf, void __user *ubuf)
1977 {
1978 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0);
1979 }
1980
1981 static int gpr32_set(struct task_struct *target,
1982 const struct user_regset *regset,
1983 unsigned int pos, unsigned int count,
1984 const void *kbuf, const void __user *ubuf)
1985 {
1986 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0);
1987 }
1988
1989 /*
1990 * These are the regset flavors matching the CONFIG_PPC32 native set.
1991 */
1992 static const struct user_regset compat_regsets[] = {
1993 [REGSET_GPR] = {
1994 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1995 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
1996 .get = gpr32_get, .set = gpr32_set
1997 },
1998 [REGSET_FPR] = {
1999 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2000 .size = sizeof(double), .align = sizeof(double),
2001 .get = fpr_get, .set = fpr_set
2002 },
2003 #ifdef CONFIG_ALTIVEC
2004 [REGSET_VMX] = {
2005 .core_note_type = NT_PPC_VMX, .n = 34,
2006 .size = sizeof(vector128), .align = sizeof(vector128),
2007 .active = vr_active, .get = vr_get, .set = vr_set
2008 },
2009 #endif
2010 #ifdef CONFIG_SPE
2011 [REGSET_SPE] = {
2012 .core_note_type = NT_PPC_SPE, .n = 35,
2013 .size = sizeof(u32), .align = sizeof(u32),
2014 .active = evr_active, .get = evr_get, .set = evr_set
2015 },
2016 #endif
2017 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2018 [REGSET_TM_CGPR] = {
2019 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2020 .size = sizeof(long), .align = sizeof(long),
2021 .active = tm_cgpr_active,
2022 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2023 },
2024 [REGSET_TM_CFPR] = {
2025 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2026 .size = sizeof(double), .align = sizeof(double),
2027 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2028 },
2029 [REGSET_TM_CVMX] = {
2030 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2031 .size = sizeof(vector128), .align = sizeof(vector128),
2032 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2033 },
2034 [REGSET_TM_CVSX] = {
2035 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2036 .size = sizeof(double), .align = sizeof(double),
2037 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2038 },
2039 [REGSET_TM_SPR] = {
2040 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2041 .size = sizeof(u64), .align = sizeof(u64),
2042 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2043 },
2044 [REGSET_TM_CTAR] = {
2045 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2046 .size = sizeof(u64), .align = sizeof(u64),
2047 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2048 },
2049 [REGSET_TM_CPPR] = {
2050 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2051 .size = sizeof(u64), .align = sizeof(u64),
2052 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2053 },
2054 [REGSET_TM_CDSCR] = {
2055 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2056 .size = sizeof(u64), .align = sizeof(u64),
2057 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2058 },
2059 #endif
2060 };
2061
2062 static const struct user_regset_view user_ppc_compat_view = {
2063 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2064 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2065 };
2066 #endif /* CONFIG_PPC64 */
2067
2068 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2069 {
2070 #ifdef CONFIG_PPC64
2071 if (test_tsk_thread_flag(task, TIF_32BIT))
2072 return &user_ppc_compat_view;
2073 #endif
2074 return &user_ppc_native_view;
2075 }
2076
2077
2078 void user_enable_single_step(struct task_struct *task)
2079 {
2080 struct pt_regs *regs = task->thread.regs;
2081
2082 if (regs != NULL) {
2083 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2084 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2085 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2086 regs->msr |= MSR_DE;
2087 #else
2088 regs->msr &= ~MSR_BE;
2089 regs->msr |= MSR_SE;
2090 #endif
2091 }
2092 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2093 }
2094
2095 void user_enable_block_step(struct task_struct *task)
2096 {
2097 struct pt_regs *regs = task->thread.regs;
2098
2099 if (regs != NULL) {
2100 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2101 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2102 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2103 regs->msr |= MSR_DE;
2104 #else
2105 regs->msr &= ~MSR_SE;
2106 regs->msr |= MSR_BE;
2107 #endif
2108 }
2109 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2110 }
2111
2112 void user_disable_single_step(struct task_struct *task)
2113 {
2114 struct pt_regs *regs = task->thread.regs;
2115
2116 if (regs != NULL) {
2117 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2118 /*
2119 * The logic to disable single stepping should be as
2120 * simple as turning off the Instruction Complete flag.
2121 * And, after doing so, if all debug flags are off, turn
2122 * off DBCR0(IDM) and MSR(DE) .... Torez
2123 */
2124 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2125 /*
2126 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2127 */
2128 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2129 task->thread.debug.dbcr1)) {
2130 /*
2131 * All debug events were off.....
2132 */
2133 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2134 regs->msr &= ~MSR_DE;
2135 }
2136 #else
2137 regs->msr &= ~(MSR_SE | MSR_BE);
2138 #endif
2139 }
2140 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2141 }
2142
2143 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2144 void ptrace_triggered(struct perf_event *bp,
2145 struct perf_sample_data *data, struct pt_regs *regs)
2146 {
2147 struct perf_event_attr attr;
2148
2149 /*
2150 * Disable the breakpoint request here since ptrace has defined a
2151 * one-shot behaviour for breakpoint exceptions in PPC64.
2152 * The SIGTRAP signal is generated automatically for us in do_dabr().
2153 * We don't have to do anything about that here
2154 */
2155 attr = bp->attr;
2156 attr.disabled = true;
2157 modify_user_hw_breakpoint(bp, &attr);
2158 }
2159 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2160
2161 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2162 unsigned long data)
2163 {
2164 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2165 int ret;
2166 struct thread_struct *thread = &(task->thread);
2167 struct perf_event *bp;
2168 struct perf_event_attr attr;
2169 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2170 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2171 struct arch_hw_breakpoint hw_brk;
2172 #endif
2173
2174 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2175 * For embedded processors we support one DAC and no IAC's at the
2176 * moment.
2177 */
2178 if (addr > 0)
2179 return -EINVAL;
2180
2181 /* The bottom 3 bits in dabr are flags */
2182 if ((data & ~0x7UL) >= TASK_SIZE)
2183 return -EIO;
2184
2185 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2186 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2187 * It was assumed, on previous implementations, that 3 bits were
2188 * passed together with the data address, fitting the design of the
2189 * DABR register, as follows:
2190 *
2191 * bit 0: Read flag
2192 * bit 1: Write flag
2193 * bit 2: Breakpoint translation
2194 *
2195 * Thus, we use them here as so.
2196 */
2197
2198 /* Ensure breakpoint translation bit is set */
2199 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2200 return -EIO;
2201 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2202 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2203 hw_brk.len = 8;
2204 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2205 bp = thread->ptrace_bps[0];
2206 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2207 if (bp) {
2208 unregister_hw_breakpoint(bp);
2209 thread->ptrace_bps[0] = NULL;
2210 }
2211 return 0;
2212 }
2213 if (bp) {
2214 attr = bp->attr;
2215 attr.bp_addr = hw_brk.address;
2216 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2217
2218 /* Enable breakpoint */
2219 attr.disabled = false;
2220
2221 ret = modify_user_hw_breakpoint(bp, &attr);
2222 if (ret) {
2223 return ret;
2224 }
2225 thread->ptrace_bps[0] = bp;
2226 thread->hw_brk = hw_brk;
2227 return 0;
2228 }
2229
2230 /* Create a new breakpoint request if one doesn't exist already */
2231 hw_breakpoint_init(&attr);
2232 attr.bp_addr = hw_brk.address;
2233 arch_bp_generic_fields(hw_brk.type,
2234 &attr.bp_type);
2235
2236 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2237 ptrace_triggered, NULL, task);
2238 if (IS_ERR(bp)) {
2239 thread->ptrace_bps[0] = NULL;
2240 return PTR_ERR(bp);
2241 }
2242
2243 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2244 task->thread.hw_brk = hw_brk;
2245 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2246 /* As described above, it was assumed 3 bits were passed with the data
2247 * address, but we will assume only the mode bits will be passed
2248 * as to not cause alignment restrictions for DAC-based processors.
2249 */
2250
2251 /* DAC's hold the whole address without any mode flags */
2252 task->thread.debug.dac1 = data & ~0x3UL;
2253
2254 if (task->thread.debug.dac1 == 0) {
2255 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2256 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2257 task->thread.debug.dbcr1)) {
2258 task->thread.regs->msr &= ~MSR_DE;
2259 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2260 }
2261 return 0;
2262 }
2263
2264 /* Read or Write bits must be set */
2265
2266 if (!(data & 0x3UL))
2267 return -EINVAL;
2268
2269 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2270 register */
2271 task->thread.debug.dbcr0 |= DBCR0_IDM;
2272
2273 /* Check for write and read flags and set DBCR0
2274 accordingly */
2275 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2276 if (data & 0x1UL)
2277 dbcr_dac(task) |= DBCR_DAC1R;
2278 if (data & 0x2UL)
2279 dbcr_dac(task) |= DBCR_DAC1W;
2280 task->thread.regs->msr |= MSR_DE;
2281 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2282 return 0;
2283 }
2284
2285 /*
2286 * Called by kernel/ptrace.c when detaching..
2287 *
2288 * Make sure single step bits etc are not set.
2289 */
2290 void ptrace_disable(struct task_struct *child)
2291 {
2292 /* make sure the single step bit is not set. */
2293 user_disable_single_step(child);
2294 }
2295
2296 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2297 static long set_instruction_bp(struct task_struct *child,
2298 struct ppc_hw_breakpoint *bp_info)
2299 {
2300 int slot;
2301 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2302 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2303 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2304 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2305
2306 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2307 slot2_in_use = 1;
2308 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2309 slot4_in_use = 1;
2310
2311 if (bp_info->addr >= TASK_SIZE)
2312 return -EIO;
2313
2314 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2315
2316 /* Make sure range is valid. */
2317 if (bp_info->addr2 >= TASK_SIZE)
2318 return -EIO;
2319
2320 /* We need a pair of IAC regsisters */
2321 if ((!slot1_in_use) && (!slot2_in_use)) {
2322 slot = 1;
2323 child->thread.debug.iac1 = bp_info->addr;
2324 child->thread.debug.iac2 = bp_info->addr2;
2325 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2326 if (bp_info->addr_mode ==
2327 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2328 dbcr_iac_range(child) |= DBCR_IAC12X;
2329 else
2330 dbcr_iac_range(child) |= DBCR_IAC12I;
2331 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2332 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2333 slot = 3;
2334 child->thread.debug.iac3 = bp_info->addr;
2335 child->thread.debug.iac4 = bp_info->addr2;
2336 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2337 if (bp_info->addr_mode ==
2338 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2339 dbcr_iac_range(child) |= DBCR_IAC34X;
2340 else
2341 dbcr_iac_range(child) |= DBCR_IAC34I;
2342 #endif
2343 } else
2344 return -ENOSPC;
2345 } else {
2346 /* We only need one. If possible leave a pair free in
2347 * case a range is needed later
2348 */
2349 if (!slot1_in_use) {
2350 /*
2351 * Don't use iac1 if iac1-iac2 are free and either
2352 * iac3 or iac4 (but not both) are free
2353 */
2354 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2355 slot = 1;
2356 child->thread.debug.iac1 = bp_info->addr;
2357 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2358 goto out;
2359 }
2360 }
2361 if (!slot2_in_use) {
2362 slot = 2;
2363 child->thread.debug.iac2 = bp_info->addr;
2364 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2365 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2366 } else if (!slot3_in_use) {
2367 slot = 3;
2368 child->thread.debug.iac3 = bp_info->addr;
2369 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2370 } else if (!slot4_in_use) {
2371 slot = 4;
2372 child->thread.debug.iac4 = bp_info->addr;
2373 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2374 #endif
2375 } else
2376 return -ENOSPC;
2377 }
2378 out:
2379 child->thread.debug.dbcr0 |= DBCR0_IDM;
2380 child->thread.regs->msr |= MSR_DE;
2381
2382 return slot;
2383 }
2384
2385 static int del_instruction_bp(struct task_struct *child, int slot)
2386 {
2387 switch (slot) {
2388 case 1:
2389 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2390 return -ENOENT;
2391
2392 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2393 /* address range - clear slots 1 & 2 */
2394 child->thread.debug.iac2 = 0;
2395 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2396 }
2397 child->thread.debug.iac1 = 0;
2398 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2399 break;
2400 case 2:
2401 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2402 return -ENOENT;
2403
2404 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2405 /* used in a range */
2406 return -EINVAL;
2407 child->thread.debug.iac2 = 0;
2408 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2409 break;
2410 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2411 case 3:
2412 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2413 return -ENOENT;
2414
2415 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2416 /* address range - clear slots 3 & 4 */
2417 child->thread.debug.iac4 = 0;
2418 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2419 }
2420 child->thread.debug.iac3 = 0;
2421 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2422 break;
2423 case 4:
2424 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2425 return -ENOENT;
2426
2427 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2428 /* Used in a range */
2429 return -EINVAL;
2430 child->thread.debug.iac4 = 0;
2431 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2432 break;
2433 #endif
2434 default:
2435 return -EINVAL;
2436 }
2437 return 0;
2438 }
2439
2440 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2441 {
2442 int byte_enable =
2443 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2444 & 0xf;
2445 int condition_mode =
2446 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2447 int slot;
2448
2449 if (byte_enable && (condition_mode == 0))
2450 return -EINVAL;
2451
2452 if (bp_info->addr >= TASK_SIZE)
2453 return -EIO;
2454
2455 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2456 slot = 1;
2457 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2458 dbcr_dac(child) |= DBCR_DAC1R;
2459 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2460 dbcr_dac(child) |= DBCR_DAC1W;
2461 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2462 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2463 if (byte_enable) {
2464 child->thread.debug.dvc1 =
2465 (unsigned long)bp_info->condition_value;
2466 child->thread.debug.dbcr2 |=
2467 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2468 (condition_mode << DBCR2_DVC1M_SHIFT));
2469 }
2470 #endif
2471 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2472 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2473 /* Both dac1 and dac2 are part of a range */
2474 return -ENOSPC;
2475 #endif
2476 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2477 slot = 2;
2478 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2479 dbcr_dac(child) |= DBCR_DAC2R;
2480 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2481 dbcr_dac(child) |= DBCR_DAC2W;
2482 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2483 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2484 if (byte_enable) {
2485 child->thread.debug.dvc2 =
2486 (unsigned long)bp_info->condition_value;
2487 child->thread.debug.dbcr2 |=
2488 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2489 (condition_mode << DBCR2_DVC2M_SHIFT));
2490 }
2491 #endif
2492 } else
2493 return -ENOSPC;
2494 child->thread.debug.dbcr0 |= DBCR0_IDM;
2495 child->thread.regs->msr |= MSR_DE;
2496
2497 return slot + 4;
2498 }
2499
2500 static int del_dac(struct task_struct *child, int slot)
2501 {
2502 if (slot == 1) {
2503 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2504 return -ENOENT;
2505
2506 child->thread.debug.dac1 = 0;
2507 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2508 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2509 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2510 child->thread.debug.dac2 = 0;
2511 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2512 }
2513 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2514 #endif
2515 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2516 child->thread.debug.dvc1 = 0;
2517 #endif
2518 } else if (slot == 2) {
2519 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2520 return -ENOENT;
2521
2522 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2523 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2524 /* Part of a range */
2525 return -EINVAL;
2526 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2527 #endif
2528 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2529 child->thread.debug.dvc2 = 0;
2530 #endif
2531 child->thread.debug.dac2 = 0;
2532 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2533 } else
2534 return -EINVAL;
2535
2536 return 0;
2537 }
2538 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2539
2540 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2541 static int set_dac_range(struct task_struct *child,
2542 struct ppc_hw_breakpoint *bp_info)
2543 {
2544 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2545
2546 /* We don't allow range watchpoints to be used with DVC */
2547 if (bp_info->condition_mode)
2548 return -EINVAL;
2549
2550 /*
2551 * Best effort to verify the address range. The user/supervisor bits
2552 * prevent trapping in kernel space, but let's fail on an obvious bad
2553 * range. The simple test on the mask is not fool-proof, and any
2554 * exclusive range will spill over into kernel space.
2555 */
2556 if (bp_info->addr >= TASK_SIZE)
2557 return -EIO;
2558 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2559 /*
2560 * dac2 is a bitmask. Don't allow a mask that makes a
2561 * kernel space address from a valid dac1 value
2562 */
2563 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2564 return -EIO;
2565 } else {
2566 /*
2567 * For range breakpoints, addr2 must also be a valid address
2568 */
2569 if (bp_info->addr2 >= TASK_SIZE)
2570 return -EIO;
2571 }
2572
2573 if (child->thread.debug.dbcr0 &
2574 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2575 return -ENOSPC;
2576
2577 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2578 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2579 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2580 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2581 child->thread.debug.dac1 = bp_info->addr;
2582 child->thread.debug.dac2 = bp_info->addr2;
2583 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2584 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2585 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2586 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2587 else /* PPC_BREAKPOINT_MODE_MASK */
2588 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2589 child->thread.regs->msr |= MSR_DE;
2590
2591 return 5;
2592 }
2593 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2594
2595 static long ppc_set_hwdebug(struct task_struct *child,
2596 struct ppc_hw_breakpoint *bp_info)
2597 {
2598 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2599 int len = 0;
2600 struct thread_struct *thread = &(child->thread);
2601 struct perf_event *bp;
2602 struct perf_event_attr attr;
2603 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2604 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2605 struct arch_hw_breakpoint brk;
2606 #endif
2607
2608 if (bp_info->version != 1)
2609 return -ENOTSUPP;
2610 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2611 /*
2612 * Check for invalid flags and combinations
2613 */
2614 if ((bp_info->trigger_type == 0) ||
2615 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2616 PPC_BREAKPOINT_TRIGGER_RW)) ||
2617 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2618 (bp_info->condition_mode &
2619 ~(PPC_BREAKPOINT_CONDITION_MODE |
2620 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2621 return -EINVAL;
2622 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2623 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2624 return -EINVAL;
2625 #endif
2626
2627 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2628 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2629 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2630 return -EINVAL;
2631 return set_instruction_bp(child, bp_info);
2632 }
2633 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2634 return set_dac(child, bp_info);
2635
2636 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2637 return set_dac_range(child, bp_info);
2638 #else
2639 return -EINVAL;
2640 #endif
2641 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2642 /*
2643 * We only support one data breakpoint
2644 */
2645 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2646 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2647 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2648 return -EINVAL;
2649
2650 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2651 return -EIO;
2652
2653 brk.address = bp_info->addr & ~7UL;
2654 brk.type = HW_BRK_TYPE_TRANSLATE;
2655 brk.len = 8;
2656 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2657 brk.type |= HW_BRK_TYPE_READ;
2658 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2659 brk.type |= HW_BRK_TYPE_WRITE;
2660 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2661 /*
2662 * Check if the request is for 'range' breakpoints. We can
2663 * support it if range < 8 bytes.
2664 */
2665 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2666 len = bp_info->addr2 - bp_info->addr;
2667 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2668 len = 1;
2669 else
2670 return -EINVAL;
2671 bp = thread->ptrace_bps[0];
2672 if (bp)
2673 return -ENOSPC;
2674
2675 /* Create a new breakpoint request if one doesn't exist already */
2676 hw_breakpoint_init(&attr);
2677 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2678 attr.bp_len = len;
2679 arch_bp_generic_fields(brk.type, &attr.bp_type);
2680
2681 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2682 ptrace_triggered, NULL, child);
2683 if (IS_ERR(bp)) {
2684 thread->ptrace_bps[0] = NULL;
2685 return PTR_ERR(bp);
2686 }
2687
2688 return 1;
2689 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2690
2691 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2692 return -EINVAL;
2693
2694 if (child->thread.hw_brk.address)
2695 return -ENOSPC;
2696
2697 child->thread.hw_brk = brk;
2698
2699 return 1;
2700 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2701 }
2702
2703 static long ppc_del_hwdebug(struct task_struct *child, long data)
2704 {
2705 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2706 int ret = 0;
2707 struct thread_struct *thread = &(child->thread);
2708 struct perf_event *bp;
2709 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2710 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2711 int rc;
2712
2713 if (data <= 4)
2714 rc = del_instruction_bp(child, (int)data);
2715 else
2716 rc = del_dac(child, (int)data - 4);
2717
2718 if (!rc) {
2719 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2720 child->thread.debug.dbcr1)) {
2721 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2722 child->thread.regs->msr &= ~MSR_DE;
2723 }
2724 }
2725 return rc;
2726 #else
2727 if (data != 1)
2728 return -EINVAL;
2729
2730 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2731 bp = thread->ptrace_bps[0];
2732 if (bp) {
2733 unregister_hw_breakpoint(bp);
2734 thread->ptrace_bps[0] = NULL;
2735 } else
2736 ret = -ENOENT;
2737 return ret;
2738 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2739 if (child->thread.hw_brk.address == 0)
2740 return -ENOENT;
2741
2742 child->thread.hw_brk.address = 0;
2743 child->thread.hw_brk.type = 0;
2744 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2745
2746 return 0;
2747 #endif
2748 }
2749
2750 long arch_ptrace(struct task_struct *child, long request,
2751 unsigned long addr, unsigned long data)
2752 {
2753 int ret = -EPERM;
2754 void __user *datavp = (void __user *) data;
2755 unsigned long __user *datalp = datavp;
2756
2757 switch (request) {
2758 /* read the word at location addr in the USER area. */
2759 case PTRACE_PEEKUSR: {
2760 unsigned long index, tmp;
2761
2762 ret = -EIO;
2763 /* convert to index and check */
2764 #ifdef CONFIG_PPC32
2765 index = addr >> 2;
2766 if ((addr & 3) || (index > PT_FPSCR)
2767 || (child->thread.regs == NULL))
2768 #else
2769 index = addr >> 3;
2770 if ((addr & 7) || (index > PT_FPSCR))
2771 #endif
2772 break;
2773
2774 CHECK_FULL_REGS(child->thread.regs);
2775 if (index < PT_FPR0) {
2776 ret = ptrace_get_reg(child, (int) index, &tmp);
2777 if (ret)
2778 break;
2779 } else {
2780 unsigned int fpidx = index - PT_FPR0;
2781
2782 flush_fp_to_thread(child);
2783 if (fpidx < (PT_FPSCR - PT_FPR0))
2784 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2785 sizeof(long));
2786 else
2787 tmp = child->thread.fp_state.fpscr;
2788 }
2789 ret = put_user(tmp, datalp);
2790 break;
2791 }
2792
2793 /* write the word at location addr in the USER area */
2794 case PTRACE_POKEUSR: {
2795 unsigned long index;
2796
2797 ret = -EIO;
2798 /* convert to index and check */
2799 #ifdef CONFIG_PPC32
2800 index = addr >> 2;
2801 if ((addr & 3) || (index > PT_FPSCR)
2802 || (child->thread.regs == NULL))
2803 #else
2804 index = addr >> 3;
2805 if ((addr & 7) || (index > PT_FPSCR))
2806 #endif
2807 break;
2808
2809 CHECK_FULL_REGS(child->thread.regs);
2810 if (index < PT_FPR0) {
2811 ret = ptrace_put_reg(child, index, data);
2812 } else {
2813 unsigned int fpidx = index - PT_FPR0;
2814
2815 flush_fp_to_thread(child);
2816 if (fpidx < (PT_FPSCR - PT_FPR0))
2817 memcpy(&child->thread.TS_FPR(fpidx), &data,
2818 sizeof(long));
2819 else
2820 child->thread.fp_state.fpscr = data;
2821 ret = 0;
2822 }
2823 break;
2824 }
2825
2826 case PPC_PTRACE_GETHWDBGINFO: {
2827 struct ppc_debug_info dbginfo;
2828
2829 dbginfo.version = 1;
2830 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2831 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2832 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2833 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2834 dbginfo.data_bp_alignment = 4;
2835 dbginfo.sizeof_condition = 4;
2836 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2837 PPC_DEBUG_FEATURE_INSN_BP_MASK;
2838 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2839 dbginfo.features |=
2840 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2841 PPC_DEBUG_FEATURE_DATA_BP_MASK;
2842 #endif
2843 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2844 dbginfo.num_instruction_bps = 0;
2845 dbginfo.num_data_bps = 1;
2846 dbginfo.num_condition_regs = 0;
2847 #ifdef CONFIG_PPC64
2848 dbginfo.data_bp_alignment = 8;
2849 #else
2850 dbginfo.data_bp_alignment = 4;
2851 #endif
2852 dbginfo.sizeof_condition = 0;
2853 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2854 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
2855 if (cpu_has_feature(CPU_FTR_DAWR))
2856 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
2857 #else
2858 dbginfo.features = 0;
2859 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2860 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2861
2862 if (!access_ok(VERIFY_WRITE, datavp,
2863 sizeof(struct ppc_debug_info)))
2864 return -EFAULT;
2865 ret = __copy_to_user(datavp, &dbginfo,
2866 sizeof(struct ppc_debug_info)) ?
2867 -EFAULT : 0;
2868 break;
2869 }
2870
2871 case PPC_PTRACE_SETHWDEBUG: {
2872 struct ppc_hw_breakpoint bp_info;
2873
2874 if (!access_ok(VERIFY_READ, datavp,
2875 sizeof(struct ppc_hw_breakpoint)))
2876 return -EFAULT;
2877 ret = __copy_from_user(&bp_info, datavp,
2878 sizeof(struct ppc_hw_breakpoint)) ?
2879 -EFAULT : 0;
2880 if (!ret)
2881 ret = ppc_set_hwdebug(child, &bp_info);
2882 break;
2883 }
2884
2885 case PPC_PTRACE_DELHWDEBUG: {
2886 ret = ppc_del_hwdebug(child, data);
2887 break;
2888 }
2889
2890 case PTRACE_GET_DEBUGREG: {
2891 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2892 unsigned long dabr_fake;
2893 #endif
2894 ret = -EINVAL;
2895 /* We only support one DABR and no IABRS at the moment */
2896 if (addr > 0)
2897 break;
2898 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2899 ret = put_user(child->thread.debug.dac1, datalp);
2900 #else
2901 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
2902 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
2903 ret = put_user(dabr_fake, datalp);
2904 #endif
2905 break;
2906 }
2907
2908 case PTRACE_SET_DEBUGREG:
2909 ret = ptrace_set_debugreg(child, addr, data);
2910 break;
2911
2912 #ifdef CONFIG_PPC64
2913 case PTRACE_GETREGS64:
2914 #endif
2915 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
2916 return copy_regset_to_user(child, &user_ppc_native_view,
2917 REGSET_GPR,
2918 0, sizeof(struct pt_regs),
2919 datavp);
2920
2921 #ifdef CONFIG_PPC64
2922 case PTRACE_SETREGS64:
2923 #endif
2924 case PTRACE_SETREGS: /* Set all gp regs in the child. */
2925 return copy_regset_from_user(child, &user_ppc_native_view,
2926 REGSET_GPR,
2927 0, sizeof(struct pt_regs),
2928 datavp);
2929
2930 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
2931 return copy_regset_to_user(child, &user_ppc_native_view,
2932 REGSET_FPR,
2933 0, sizeof(elf_fpregset_t),
2934 datavp);
2935
2936 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
2937 return copy_regset_from_user(child, &user_ppc_native_view,
2938 REGSET_FPR,
2939 0, sizeof(elf_fpregset_t),
2940 datavp);
2941
2942 #ifdef CONFIG_ALTIVEC
2943 case PTRACE_GETVRREGS:
2944 return copy_regset_to_user(child, &user_ppc_native_view,
2945 REGSET_VMX,
2946 0, (33 * sizeof(vector128) +
2947 sizeof(u32)),
2948 datavp);
2949
2950 case PTRACE_SETVRREGS:
2951 return copy_regset_from_user(child, &user_ppc_native_view,
2952 REGSET_VMX,
2953 0, (33 * sizeof(vector128) +
2954 sizeof(u32)),
2955 datavp);
2956 #endif
2957 #ifdef CONFIG_VSX
2958 case PTRACE_GETVSRREGS:
2959 return copy_regset_to_user(child, &user_ppc_native_view,
2960 REGSET_VSX,
2961 0, 32 * sizeof(double),
2962 datavp);
2963
2964 case PTRACE_SETVSRREGS:
2965 return copy_regset_from_user(child, &user_ppc_native_view,
2966 REGSET_VSX,
2967 0, 32 * sizeof(double),
2968 datavp);
2969 #endif
2970 #ifdef CONFIG_SPE
2971 case PTRACE_GETEVRREGS:
2972 /* Get the child spe register state. */
2973 return copy_regset_to_user(child, &user_ppc_native_view,
2974 REGSET_SPE, 0, 35 * sizeof(u32),
2975 datavp);
2976
2977 case PTRACE_SETEVRREGS:
2978 /* Set the child spe register state. */
2979 return copy_regset_from_user(child, &user_ppc_native_view,
2980 REGSET_SPE, 0, 35 * sizeof(u32),
2981 datavp);
2982 #endif
2983
2984 default:
2985 ret = ptrace_request(child, request, addr, data);
2986 break;
2987 }
2988 return ret;
2989 }
2990
2991 #ifdef CONFIG_SECCOMP
2992 static int do_seccomp(struct pt_regs *regs)
2993 {
2994 if (!test_thread_flag(TIF_SECCOMP))
2995 return 0;
2996
2997 /*
2998 * The ABI we present to seccomp tracers is that r3 contains
2999 * the syscall return value and orig_gpr3 contains the first
3000 * syscall parameter. This is different to the ptrace ABI where
3001 * both r3 and orig_gpr3 contain the first syscall parameter.
3002 */
3003 regs->gpr[3] = -ENOSYS;
3004
3005 /*
3006 * We use the __ version here because we have already checked
3007 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3008 * have already loaded -ENOSYS into r3, or seccomp has put
3009 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3010 */
3011 if (__secure_computing(NULL))
3012 return -1;
3013
3014 /*
3015 * The syscall was allowed by seccomp, restore the register
3016 * state to what audit expects.
3017 * Note that we use orig_gpr3, which means a seccomp tracer can
3018 * modify the first syscall parameter (in orig_gpr3) and also
3019 * allow the syscall to proceed.
3020 */
3021 regs->gpr[3] = regs->orig_gpr3;
3022
3023 return 0;
3024 }
3025 #else
3026 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3027 #endif /* CONFIG_SECCOMP */
3028
3029 /**
3030 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3031 * @regs: the pt_regs of the task to trace (current)
3032 *
3033 * Performs various types of tracing on syscall entry. This includes seccomp,
3034 * ptrace, syscall tracepoints and audit.
3035 *
3036 * The pt_regs are potentially visible to userspace via ptrace, so their
3037 * contents is ABI.
3038 *
3039 * One or more of the tracers may modify the contents of pt_regs, in particular
3040 * to modify arguments or even the syscall number itself.
3041 *
3042 * It's also possible that a tracer can choose to reject the system call. In
3043 * that case this function will return an illegal syscall number, and will put
3044 * an appropriate return value in regs->r3.
3045 *
3046 * Return: the (possibly changed) syscall number.
3047 */
3048 long do_syscall_trace_enter(struct pt_regs *regs)
3049 {
3050 user_exit();
3051
3052 /*
3053 * The tracer may decide to abort the syscall, if so tracehook
3054 * will return !0. Note that the tracer may also just change
3055 * regs->gpr[0] to an invalid syscall number, that is handled
3056 * below on the exit path.
3057 */
3058 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3059 tracehook_report_syscall_entry(regs))
3060 goto skip;
3061
3062 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3063 if (do_seccomp(regs))
3064 return -1;
3065
3066 /* Avoid trace and audit when syscall is invalid. */
3067 if (regs->gpr[0] >= NR_syscalls)
3068 goto skip;
3069
3070 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3071 trace_sys_enter(regs, regs->gpr[0]);
3072
3073 #ifdef CONFIG_PPC64
3074 if (!is_32bit_task())
3075 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3076 regs->gpr[5], regs->gpr[6]);
3077 else
3078 #endif
3079 audit_syscall_entry(regs->gpr[0],
3080 regs->gpr[3] & 0xffffffff,
3081 regs->gpr[4] & 0xffffffff,
3082 regs->gpr[5] & 0xffffffff,
3083 regs->gpr[6] & 0xffffffff);
3084
3085 /* Return the possibly modified but valid syscall number */
3086 return regs->gpr[0];
3087
3088 skip:
3089 /*
3090 * If we are aborting explicitly, or if the syscall number is
3091 * now invalid, set the return value to -ENOSYS.
3092 */
3093 regs->gpr[3] = -ENOSYS;
3094 return -1;
3095 }
3096
3097 void do_syscall_trace_leave(struct pt_regs *regs)
3098 {
3099 int step;
3100
3101 audit_syscall_exit(regs);
3102
3103 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3104 trace_sys_exit(regs, regs->result);
3105
3106 step = test_thread_flag(TIF_SINGLESTEP);
3107 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3108 tracehook_report_syscall_exit(regs, step);
3109
3110 user_enter();
3111 }
This page took 0.155748 seconds and 6 git commands to generate.