powerpc/tm: Fix writing top half of MSR on 32 bit signals
[deliverable/linux.git] / arch / powerpc / kernel / signal_32.c
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
54
55 #include "signal.h"
56
57 #undef DEBUG_SIG
58
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn compat_sys_rt_sigreturn
61 #define sys_swapcontext compat_sys_swapcontext
62 #define sys_sigreturn compat_sys_sigreturn
63
64 #define old_sigaction old_sigaction32
65 #define sigcontext sigcontext32
66 #define mcontext mcontext32
67 #define ucontext ucontext32
68
69 #define __save_altstack __compat_save_altstack
70
71 /*
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end. We need to check for this case.
74 */
75 #define UCONTEXTSIZEWITHOUTVSX \
76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77
78 /*
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs. This is what we need
82 * to do when a signal has been delivered.
83 */
84
85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG ELF_NVRREG32
90
91 /*
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
94 */
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96 {
97 compat_sigset_t cset;
98
99 switch (_NSIG_WORDS) {
100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 cset.sig[7] = set->sig[3] >> 32;
102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 cset.sig[5] = set->sig[2] >> 32;
104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 cset.sig[3] = set->sig[1] >> 32;
106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 cset.sig[1] = set->sig[0] >> 32;
108 }
109 return copy_to_user(uset, &cset, sizeof(*uset));
110 }
111
112 static inline int get_sigset_t(sigset_t *set,
113 const compat_sigset_t __user *uset)
114 {
115 compat_sigset_t s32;
116
117 if (copy_from_user(&s32, uset, sizeof(*uset)))
118 return -EFAULT;
119
120 /*
121 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 * in the "wrong" endian in 32-bit user storage).
123 */
124 switch (_NSIG_WORDS) {
125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129 }
130 return 0;
131 }
132
133 #define to_user_ptr(p) ptr_to_compat(p)
134 #define from_user_ptr(p) compat_ptr(p)
135
136 static inline int save_general_regs(struct pt_regs *regs,
137 struct mcontext __user *frame)
138 {
139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 int i;
141
142 WARN_ON(!FULL_REGS(regs));
143
144 for (i = 0; i <= PT_RESULT; i ++) {
145 if (i == 14 && !FULL_REGS(regs))
146 i = 32;
147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 return -EFAULT;
149 }
150 return 0;
151 }
152
153 static inline int restore_general_regs(struct pt_regs *regs,
154 struct mcontext __user *sr)
155 {
156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 int i;
158
159 for (i = 0; i <= PT_RESULT; i++) {
160 if ((i == PT_MSR) || (i == PT_SOFTE))
161 continue;
162 if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 return -EFAULT;
164 }
165 return 0;
166 }
167
168 #else /* CONFIG_PPC64 */
169
170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173 {
174 return copy_to_user(uset, set, sizeof(*uset));
175 }
176
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178 {
179 return copy_from_user(set, uset, sizeof(*uset));
180 }
181
182 #define to_user_ptr(p) ((unsigned long)(p))
183 #define from_user_ptr(p) ((void __user *)(p))
184
185 static inline int save_general_regs(struct pt_regs *regs,
186 struct mcontext __user *frame)
187 {
188 WARN_ON(!FULL_REGS(regs));
189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190 }
191
192 static inline int restore_general_regs(struct pt_regs *regs,
193 struct mcontext __user *sr)
194 {
195 /* copy up to but not including MSR */
196 if (__copy_from_user(regs, &sr->mc_gregs,
197 PT_MSR * sizeof(elf_greg_t)))
198 return -EFAULT;
199 /* copy from orig_r3 (the word after the MSR) up to the end */
200 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 return -EFAULT;
203 return 0;
204 }
205 #endif
206
207 /*
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 * an ABI gap of 56 words
211 * an mcontext struct
212 * a sigcontext struct
213 * a gap of __SIGNAL_FRAMESIZE bytes
214 *
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217 *
218 */
219 struct sigframe {
220 struct sigcontext sctx; /* the sigcontext */
221 struct mcontext mctx; /* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 struct sigcontext sctx_transact;
224 struct mcontext mctx_transact;
225 #endif
226 /*
227 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 * regs and 18 fp regs below sp before decrementing it.
229 */
230 int abigap[56];
231 };
232
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp mc_pad
235
236 /*
237 * When we have rt signals to deliver, we set up on the
238 * user stack, going down from the original stack pointer:
239 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 * a gap of __SIGNAL_FRAMESIZE+16 bytes
241 * (the +16 is to get the siginfo and ucontext in the same
242 * positions as in older kernels).
243 *
244 * Each of these things must be a multiple of 16 bytes in size.
245 *
246 */
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 compat_siginfo_t info;
250 #else
251 struct siginfo info;
252 #endif
253 struct ucontext uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 struct ucontext uc_transact;
256 #endif
257 /*
258 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 * regs and 18 fp regs below sp before decrementing it.
260 */
261 int abigap[56];
262 };
263
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 struct task_struct *task)
267 {
268 double buf[ELF_NFPREG];
269 int i;
270
271 /* save FPR copy to local buffer then write to the thread_struct */
272 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 buf[i] = task->thread.TS_FPR(i);
274 memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276 }
277
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 void __user *from)
280 {
281 double buf[ELF_NFPREG];
282 int i;
283
284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 return 1;
286 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 task->thread.TS_FPR(i) = buf[i];
288 memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
289
290 return 0;
291 }
292
293 unsigned long copy_vsx_to_user(void __user *to,
294 struct task_struct *task)
295 {
296 double buf[ELF_NVSRHALFREG];
297 int i;
298
299 /* save FPR copy to local buffer then write to the thread_struct */
300 for (i = 0; i < ELF_NVSRHALFREG; i++)
301 buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303 }
304
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 void __user *from)
307 {
308 double buf[ELF_NVSRHALFREG];
309 int i;
310
311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 return 1;
313 for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 return 0;
316 }
317
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_transact_fpr_to_user(void __user *to,
320 struct task_struct *task)
321 {
322 double buf[ELF_NFPREG];
323 int i;
324
325 /* save FPR copy to local buffer then write to the thread_struct */
326 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 buf[i] = task->thread.TS_TRANS_FPR(i);
328 memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double));
329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330 }
331
332 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333 void __user *from)
334 {
335 double buf[ELF_NFPREG];
336 int i;
337
338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 return 1;
340 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 task->thread.TS_TRANS_FPR(i) = buf[i];
342 memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double));
343
344 return 0;
345 }
346
347 unsigned long copy_transact_vsx_to_user(void __user *to,
348 struct task_struct *task)
349 {
350 double buf[ELF_NVSRHALFREG];
351 int i;
352
353 /* save FPR copy to local buffer then write to the thread_struct */
354 for (i = 0; i < ELF_NVSRHALFREG; i++)
355 buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET];
356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357 }
358
359 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360 void __user *from)
361 {
362 double buf[ELF_NVSRHALFREG];
363 int i;
364
365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 return 1;
367 for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 return 0;
370 }
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 struct task_struct *task)
375 {
376 return __copy_to_user(to, task->thread.fpr,
377 ELF_NFPREG * sizeof(double));
378 }
379
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 void __user *from)
382 {
383 return __copy_from_user(task->thread.fpr, from,
384 ELF_NFPREG * sizeof(double));
385 }
386
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_transact_fpr_to_user(void __user *to,
389 struct task_struct *task)
390 {
391 return __copy_to_user(to, task->thread.transact_fpr,
392 ELF_NFPREG * sizeof(double));
393 }
394
395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396 void __user *from)
397 {
398 return __copy_from_user(task->thread.transact_fpr, from,
399 ELF_NFPREG * sizeof(double));
400 }
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
403
404 /*
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
408 */
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 struct mcontext __user *tm_frame, int sigret,
411 int ctx_has_vsx_region)
412 {
413 unsigned long msr = regs->msr;
414
415 /* Make sure floating point registers are stored in regs */
416 flush_fp_to_thread(current);
417
418 /* save general registers */
419 if (save_general_regs(regs, frame))
420 return 1;
421
422 #ifdef CONFIG_ALTIVEC
423 /* save altivec registers */
424 if (current->thread.used_vr) {
425 flush_altivec_to_thread(current);
426 if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
427 ELF_NVRREG * sizeof(vector128)))
428 return 1;
429 /* set MSR_VEC in the saved MSR value to indicate that
430 frame->mc_vregs contains valid data */
431 msr |= MSR_VEC;
432 }
433 /* else assert((regs->msr & MSR_VEC) == 0) */
434
435 /* We always copy to/from vrsave, it's 0 if we don't have or don't
436 * use altivec. Since VSCR only contains 32 bits saved in the least
437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438 * most significant bits of that same vector. --BenH
439 */
440 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
441 return 1;
442 #endif /* CONFIG_ALTIVEC */
443 if (copy_fpr_to_user(&frame->mc_fregs, current))
444 return 1;
445 #ifdef CONFIG_VSX
446 /*
447 * Copy VSR 0-31 upper half from thread_struct to local
448 * buffer, then write that to userspace. Also set MSR_VSX in
449 * the saved MSR value to indicate that frame->mc_vregs
450 * contains valid data
451 */
452 if (current->thread.used_vsr && ctx_has_vsx_region) {
453 __giveup_vsx(current);
454 if (copy_vsx_to_user(&frame->mc_vsregs, current))
455 return 1;
456 msr |= MSR_VSX;
457 }
458 #endif /* CONFIG_VSX */
459 #ifdef CONFIG_SPE
460 /* save spe registers */
461 if (current->thread.used_spe) {
462 flush_spe_to_thread(current);
463 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
464 ELF_NEVRREG * sizeof(u32)))
465 return 1;
466 /* set MSR_SPE in the saved MSR value to indicate that
467 frame->mc_vregs contains valid data */
468 msr |= MSR_SPE;
469 }
470 /* else assert((regs->msr & MSR_SPE) == 0) */
471
472 /* We always copy to/from spefscr */
473 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
474 return 1;
475 #endif /* CONFIG_SPE */
476
477 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
478 return 1;
479 /* We need to write 0 the MSR top 32 bits in the tm frame so that we
480 * can check it on the restore to see if TM is active
481 */
482 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
483 return 1;
484
485 if (sigret) {
486 /* Set up the sigreturn trampoline: li r0,sigret; sc */
487 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
488 || __put_user(0x44000002UL, &frame->tramp[1]))
489 return 1;
490 flush_icache_range((unsigned long) &frame->tramp[0],
491 (unsigned long) &frame->tramp[2]);
492 }
493
494 return 0;
495 }
496
497 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
498 /*
499 * Save the current user registers on the user stack.
500 * We only save the altivec/spe registers if the process has used
501 * altivec/spe instructions at some point.
502 * We also save the transactional registers to a second ucontext in the
503 * frame.
504 *
505 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
506 */
507 static int save_tm_user_regs(struct pt_regs *regs,
508 struct mcontext __user *frame,
509 struct mcontext __user *tm_frame, int sigret)
510 {
511 unsigned long msr = regs->msr;
512
513 /* Make sure floating point registers are stored in regs */
514 flush_fp_to_thread(current);
515
516 /* Save both sets of general registers */
517 if (save_general_regs(&current->thread.ckpt_regs, frame)
518 || save_general_regs(regs, tm_frame))
519 return 1;
520
521 /* Stash the top half of the 64bit MSR into the 32bit MSR word
522 * of the transactional mcontext. This way we have a backward-compatible
523 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
524 * also look at what type of transaction (T or S) was active at the
525 * time of the signal.
526 */
527 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
528 return 1;
529
530 #ifdef CONFIG_ALTIVEC
531 /* save altivec registers */
532 if (current->thread.used_vr) {
533 flush_altivec_to_thread(current);
534 if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
535 ELF_NVRREG * sizeof(vector128)))
536 return 1;
537 if (msr & MSR_VEC) {
538 if (__copy_to_user(&tm_frame->mc_vregs,
539 current->thread.transact_vr,
540 ELF_NVRREG * sizeof(vector128)))
541 return 1;
542 } else {
543 if (__copy_to_user(&tm_frame->mc_vregs,
544 current->thread.vr,
545 ELF_NVRREG * sizeof(vector128)))
546 return 1;
547 }
548
549 /* set MSR_VEC in the saved MSR value to indicate that
550 * frame->mc_vregs contains valid data
551 */
552 msr |= MSR_VEC;
553 }
554
555 /* We always copy to/from vrsave, it's 0 if we don't have or don't
556 * use altivec. Since VSCR only contains 32 bits saved in the least
557 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
558 * most significant bits of that same vector. --BenH
559 */
560 if (__put_user(current->thread.vrsave,
561 (u32 __user *)&frame->mc_vregs[32]))
562 return 1;
563 if (msr & MSR_VEC) {
564 if (__put_user(current->thread.transact_vrsave,
565 (u32 __user *)&tm_frame->mc_vregs[32]))
566 return 1;
567 } else {
568 if (__put_user(current->thread.vrsave,
569 (u32 __user *)&tm_frame->mc_vregs[32]))
570 return 1;
571 }
572 #endif /* CONFIG_ALTIVEC */
573
574 if (copy_fpr_to_user(&frame->mc_fregs, current))
575 return 1;
576 if (msr & MSR_FP) {
577 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
578 return 1;
579 } else {
580 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
581 return 1;
582 }
583
584 #ifdef CONFIG_VSX
585 /*
586 * Copy VSR 0-31 upper half from thread_struct to local
587 * buffer, then write that to userspace. Also set MSR_VSX in
588 * the saved MSR value to indicate that frame->mc_vregs
589 * contains valid data
590 */
591 if (current->thread.used_vsr) {
592 __giveup_vsx(current);
593 if (copy_vsx_to_user(&frame->mc_vsregs, current))
594 return 1;
595 if (msr & MSR_VSX) {
596 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
597 current))
598 return 1;
599 } else {
600 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
601 return 1;
602 }
603
604 msr |= MSR_VSX;
605 }
606 #endif /* CONFIG_VSX */
607 #ifdef CONFIG_SPE
608 /* SPE regs are not checkpointed with TM, so this section is
609 * simply the same as in save_user_regs().
610 */
611 if (current->thread.used_spe) {
612 flush_spe_to_thread(current);
613 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
614 ELF_NEVRREG * sizeof(u32)))
615 return 1;
616 /* set MSR_SPE in the saved MSR value to indicate that
617 * frame->mc_vregs contains valid data */
618 msr |= MSR_SPE;
619 }
620
621 /* We always copy to/from spefscr */
622 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
623 return 1;
624 #endif /* CONFIG_SPE */
625
626 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
627 return 1;
628 if (sigret) {
629 /* Set up the sigreturn trampoline: li r0,sigret; sc */
630 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
631 || __put_user(0x44000002UL, &frame->tramp[1]))
632 return 1;
633 flush_icache_range((unsigned long) &frame->tramp[0],
634 (unsigned long) &frame->tramp[2]);
635 }
636
637 return 0;
638 }
639 #endif
640
641 /*
642 * Restore the current user register values from the user stack,
643 * (except for MSR).
644 */
645 static long restore_user_regs(struct pt_regs *regs,
646 struct mcontext __user *sr, int sig)
647 {
648 long err;
649 unsigned int save_r2 = 0;
650 unsigned long msr;
651 #ifdef CONFIG_VSX
652 int i;
653 #endif
654
655 /*
656 * restore general registers but not including MSR or SOFTE. Also
657 * take care of keeping r2 (TLS) intact if not a signal
658 */
659 if (!sig)
660 save_r2 = (unsigned int)regs->gpr[2];
661 err = restore_general_regs(regs, sr);
662 regs->trap = 0;
663 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
664 if (!sig)
665 regs->gpr[2] = (unsigned long) save_r2;
666 if (err)
667 return 1;
668
669 /* if doing signal return, restore the previous little-endian mode */
670 if (sig)
671 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
672
673 /*
674 * Do this before updating the thread state in
675 * current->thread.fpr/vr/evr. That way, if we get preempted
676 * and another task grabs the FPU/Altivec/SPE, it won't be
677 * tempted to save the current CPU state into the thread_struct
678 * and corrupt what we are writing there.
679 */
680 discard_lazy_cpu_state();
681
682 #ifdef CONFIG_ALTIVEC
683 /*
684 * Force the process to reload the altivec registers from
685 * current->thread when it next does altivec instructions
686 */
687 regs->msr &= ~MSR_VEC;
688 if (msr & MSR_VEC) {
689 /* restore altivec registers from the stack */
690 if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
691 sizeof(sr->mc_vregs)))
692 return 1;
693 } else if (current->thread.used_vr)
694 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
695
696 /* Always get VRSAVE back */
697 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
698 return 1;
699 #endif /* CONFIG_ALTIVEC */
700 if (copy_fpr_from_user(current, &sr->mc_fregs))
701 return 1;
702
703 #ifdef CONFIG_VSX
704 /*
705 * Force the process to reload the VSX registers from
706 * current->thread when it next does VSX instruction.
707 */
708 regs->msr &= ~MSR_VSX;
709 if (msr & MSR_VSX) {
710 /*
711 * Restore altivec registers from the stack to a local
712 * buffer, then write this out to the thread_struct
713 */
714 if (copy_vsx_from_user(current, &sr->mc_vsregs))
715 return 1;
716 } else if (current->thread.used_vsr)
717 for (i = 0; i < 32 ; i++)
718 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
719 #endif /* CONFIG_VSX */
720 /*
721 * force the process to reload the FP registers from
722 * current->thread when it next does FP instructions
723 */
724 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
725
726 #ifdef CONFIG_SPE
727 /* force the process to reload the spe registers from
728 current->thread when it next does spe instructions */
729 regs->msr &= ~MSR_SPE;
730 if (msr & MSR_SPE) {
731 /* restore spe registers from the stack */
732 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
733 ELF_NEVRREG * sizeof(u32)))
734 return 1;
735 } else if (current->thread.used_spe)
736 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
737
738 /* Always get SPEFSCR back */
739 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
740 return 1;
741 #endif /* CONFIG_SPE */
742
743 return 0;
744 }
745
746 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
747 /*
748 * Restore the current user register values from the user stack, except for
749 * MSR, and recheckpoint the original checkpointed register state for processes
750 * in transactions.
751 */
752 static long restore_tm_user_regs(struct pt_regs *regs,
753 struct mcontext __user *sr,
754 struct mcontext __user *tm_sr)
755 {
756 long err;
757 unsigned long msr;
758 #ifdef CONFIG_VSX
759 int i;
760 #endif
761
762 /*
763 * restore general registers but not including MSR or SOFTE. Also
764 * take care of keeping r2 (TLS) intact if not a signal.
765 * See comment in signal_64.c:restore_tm_sigcontexts();
766 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
767 * were set by the signal delivery.
768 */
769 err = restore_general_regs(regs, tm_sr);
770 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
771
772 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
773
774 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
775 if (err)
776 return 1;
777
778 /* Restore the previous little-endian mode */
779 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
780
781 /*
782 * Do this before updating the thread state in
783 * current->thread.fpr/vr/evr. That way, if we get preempted
784 * and another task grabs the FPU/Altivec/SPE, it won't be
785 * tempted to save the current CPU state into the thread_struct
786 * and corrupt what we are writing there.
787 */
788 discard_lazy_cpu_state();
789
790 #ifdef CONFIG_ALTIVEC
791 regs->msr &= ~MSR_VEC;
792 if (msr & MSR_VEC) {
793 /* restore altivec registers from the stack */
794 if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
795 sizeof(sr->mc_vregs)) ||
796 __copy_from_user(current->thread.transact_vr,
797 &tm_sr->mc_vregs,
798 sizeof(sr->mc_vregs)))
799 return 1;
800 } else if (current->thread.used_vr) {
801 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
802 memset(current->thread.transact_vr, 0,
803 ELF_NVRREG * sizeof(vector128));
804 }
805
806 /* Always get VRSAVE back */
807 if (__get_user(current->thread.vrsave,
808 (u32 __user *)&sr->mc_vregs[32]) ||
809 __get_user(current->thread.transact_vrsave,
810 (u32 __user *)&tm_sr->mc_vregs[32]))
811 return 1;
812 #endif /* CONFIG_ALTIVEC */
813
814 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
815
816 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
817 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
818 return 1;
819
820 #ifdef CONFIG_VSX
821 regs->msr &= ~MSR_VSX;
822 if (msr & MSR_VSX) {
823 /*
824 * Restore altivec registers from the stack to a local
825 * buffer, then write this out to the thread_struct
826 */
827 if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
828 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
829 return 1;
830 } else if (current->thread.used_vsr)
831 for (i = 0; i < 32 ; i++) {
832 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
833 current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
834 }
835 #endif /* CONFIG_VSX */
836
837 #ifdef CONFIG_SPE
838 /* SPE regs are not checkpointed with TM, so this section is
839 * simply the same as in restore_user_regs().
840 */
841 regs->msr &= ~MSR_SPE;
842 if (msr & MSR_SPE) {
843 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
844 ELF_NEVRREG * sizeof(u32)))
845 return 1;
846 } else if (current->thread.used_spe)
847 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
848
849 /* Always get SPEFSCR back */
850 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
851 + ELF_NEVRREG))
852 return 1;
853 #endif /* CONFIG_SPE */
854
855 /* Now, recheckpoint. This loads up all of the checkpointed (older)
856 * registers, including FP and V[S]Rs. After recheckpointing, the
857 * transactional versions should be loaded.
858 */
859 tm_enable();
860 /* This loads the checkpointed FP/VEC state, if used */
861 tm_recheckpoint(&current->thread, msr);
862 /* The task has moved into TM state S, so ensure MSR reflects this */
863 regs->msr = (regs->msr & ~MSR_TS_MASK) | MSR_TS_S;
864
865 /* This loads the speculative FP/VEC state, if used */
866 if (msr & MSR_FP) {
867 do_load_up_transact_fpu(&current->thread);
868 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
869 }
870 #ifdef CONFIG_ALTIVEC
871 if (msr & MSR_VEC) {
872 do_load_up_transact_altivec(&current->thread);
873 regs->msr |= MSR_VEC;
874 }
875 #endif
876
877 return 0;
878 }
879 #endif
880
881 #ifdef CONFIG_PPC64
882 int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
883 {
884 int err;
885
886 if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
887 return -EFAULT;
888
889 /* If you change siginfo_t structure, please be sure
890 * this code is fixed accordingly.
891 * It should never copy any pad contained in the structure
892 * to avoid security leaks, but must copy the generic
893 * 3 ints plus the relevant union member.
894 * This routine must convert siginfo from 64bit to 32bit as well
895 * at the same time.
896 */
897 err = __put_user(s->si_signo, &d->si_signo);
898 err |= __put_user(s->si_errno, &d->si_errno);
899 err |= __put_user((short)s->si_code, &d->si_code);
900 if (s->si_code < 0)
901 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
902 SI_PAD_SIZE32);
903 else switch(s->si_code >> 16) {
904 case __SI_CHLD >> 16:
905 err |= __put_user(s->si_pid, &d->si_pid);
906 err |= __put_user(s->si_uid, &d->si_uid);
907 err |= __put_user(s->si_utime, &d->si_utime);
908 err |= __put_user(s->si_stime, &d->si_stime);
909 err |= __put_user(s->si_status, &d->si_status);
910 break;
911 case __SI_FAULT >> 16:
912 err |= __put_user((unsigned int)(unsigned long)s->si_addr,
913 &d->si_addr);
914 break;
915 case __SI_POLL >> 16:
916 err |= __put_user(s->si_band, &d->si_band);
917 err |= __put_user(s->si_fd, &d->si_fd);
918 break;
919 case __SI_TIMER >> 16:
920 err |= __put_user(s->si_tid, &d->si_tid);
921 err |= __put_user(s->si_overrun, &d->si_overrun);
922 err |= __put_user(s->si_int, &d->si_int);
923 break;
924 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */
925 case __SI_MESGQ >> 16:
926 err |= __put_user(s->si_int, &d->si_int);
927 /* fallthrough */
928 case __SI_KILL >> 16:
929 default:
930 err |= __put_user(s->si_pid, &d->si_pid);
931 err |= __put_user(s->si_uid, &d->si_uid);
932 break;
933 }
934 return err;
935 }
936
937 #define copy_siginfo_to_user copy_siginfo_to_user32
938
939 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
940 {
941 memset(to, 0, sizeof *to);
942
943 if (copy_from_user(to, from, 3*sizeof(int)) ||
944 copy_from_user(to->_sifields._pad,
945 from->_sifields._pad, SI_PAD_SIZE32))
946 return -EFAULT;
947
948 return 0;
949 }
950 #endif /* CONFIG_PPC64 */
951
952 /*
953 * Set up a signal frame for a "real-time" signal handler
954 * (one which gets siginfo).
955 */
956 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
957 siginfo_t *info, sigset_t *oldset,
958 struct pt_regs *regs)
959 {
960 struct rt_sigframe __user *rt_sf;
961 struct mcontext __user *frame;
962 struct mcontext __user *tm_frame = NULL;
963 void __user *addr;
964 unsigned long newsp = 0;
965 int sigret;
966 unsigned long tramp;
967
968 /* Set up Signal Frame */
969 /* Put a Real Time Context onto stack */
970 rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
971 addr = rt_sf;
972 if (unlikely(rt_sf == NULL))
973 goto badframe;
974
975 /* Put the siginfo & fill in most of the ucontext */
976 if (copy_siginfo_to_user(&rt_sf->info, info)
977 || __put_user(0, &rt_sf->uc.uc_flags)
978 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
979 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
980 &rt_sf->uc.uc_regs)
981 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
982 goto badframe;
983
984 /* Save user registers on the stack */
985 frame = &rt_sf->uc.uc_mcontext;
986 addr = frame;
987 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
988 sigret = 0;
989 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
990 } else {
991 sigret = __NR_rt_sigreturn;
992 tramp = (unsigned long) frame->tramp;
993 }
994
995 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
996 tm_frame = &rt_sf->uc_transact.uc_mcontext;
997 if (MSR_TM_ACTIVE(regs->msr)) {
998 if (save_tm_user_regs(regs, frame, tm_frame, sigret))
999 goto badframe;
1000 }
1001 else
1002 #endif
1003 {
1004 if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1005 goto badframe;
1006 }
1007 regs->link = tramp;
1008
1009 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1010 if (MSR_TM_ACTIVE(regs->msr)) {
1011 if (__put_user((unsigned long)&rt_sf->uc_transact,
1012 &rt_sf->uc.uc_link)
1013 || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs))
1014 goto badframe;
1015 }
1016 else
1017 #endif
1018 if (__put_user(0, &rt_sf->uc.uc_link))
1019 goto badframe;
1020
1021 current->thread.fpscr.val = 0; /* turn off all fp exceptions */
1022
1023 /* create a stack frame for the caller of the handler */
1024 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1025 addr = (void __user *)regs->gpr[1];
1026 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1027 goto badframe;
1028
1029 /* Fill registers for signal handler */
1030 regs->gpr[1] = newsp;
1031 regs->gpr[3] = sig;
1032 regs->gpr[4] = (unsigned long) &rt_sf->info;
1033 regs->gpr[5] = (unsigned long) &rt_sf->uc;
1034 regs->gpr[6] = (unsigned long) rt_sf;
1035 regs->nip = (unsigned long) ka->sa.sa_handler;
1036 /* enter the signal handler in big-endian mode */
1037 regs->msr &= ~MSR_LE;
1038 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1039 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
1040 * just indicates to userland that we were doing a transaction, but we
1041 * don't want to return in transactional state:
1042 */
1043 regs->msr &= ~MSR_TS_MASK;
1044 #endif
1045 return 1;
1046
1047 badframe:
1048 #ifdef DEBUG_SIG
1049 printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1050 regs, frame, newsp);
1051 #endif
1052 if (show_unhandled_signals)
1053 printk_ratelimited(KERN_INFO
1054 "%s[%d]: bad frame in handle_rt_signal32: "
1055 "%p nip %08lx lr %08lx\n",
1056 current->comm, current->pid,
1057 addr, regs->nip, regs->link);
1058
1059 force_sigsegv(sig, current);
1060 return 0;
1061 }
1062
1063 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1064 {
1065 sigset_t set;
1066 struct mcontext __user *mcp;
1067
1068 if (get_sigset_t(&set, &ucp->uc_sigmask))
1069 return -EFAULT;
1070 #ifdef CONFIG_PPC64
1071 {
1072 u32 cmcp;
1073
1074 if (__get_user(cmcp, &ucp->uc_regs))
1075 return -EFAULT;
1076 mcp = (struct mcontext __user *)(u64)cmcp;
1077 /* no need to check access_ok(mcp), since mcp < 4GB */
1078 }
1079 #else
1080 if (__get_user(mcp, &ucp->uc_regs))
1081 return -EFAULT;
1082 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1083 return -EFAULT;
1084 #endif
1085 set_current_blocked(&set);
1086 if (restore_user_regs(regs, mcp, sig))
1087 return -EFAULT;
1088
1089 return 0;
1090 }
1091
1092 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1093 static int do_setcontext_tm(struct ucontext __user *ucp,
1094 struct ucontext __user *tm_ucp,
1095 struct pt_regs *regs)
1096 {
1097 sigset_t set;
1098 struct mcontext __user *mcp;
1099 struct mcontext __user *tm_mcp;
1100 u32 cmcp;
1101 u32 tm_cmcp;
1102
1103 if (get_sigset_t(&set, &ucp->uc_sigmask))
1104 return -EFAULT;
1105
1106 if (__get_user(cmcp, &ucp->uc_regs) ||
1107 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1108 return -EFAULT;
1109 mcp = (struct mcontext __user *)(u64)cmcp;
1110 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1111 /* no need to check access_ok(mcp), since mcp < 4GB */
1112
1113 set_current_blocked(&set);
1114 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1115 return -EFAULT;
1116
1117 return 0;
1118 }
1119 #endif
1120
1121 long sys_swapcontext(struct ucontext __user *old_ctx,
1122 struct ucontext __user *new_ctx,
1123 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1124 {
1125 unsigned char tmp;
1126 int ctx_has_vsx_region = 0;
1127
1128 #ifdef CONFIG_PPC64
1129 unsigned long new_msr = 0;
1130
1131 if (new_ctx) {
1132 struct mcontext __user *mcp;
1133 u32 cmcp;
1134
1135 /*
1136 * Get pointer to the real mcontext. No need for
1137 * access_ok since we are dealing with compat
1138 * pointers.
1139 */
1140 if (__get_user(cmcp, &new_ctx->uc_regs))
1141 return -EFAULT;
1142 mcp = (struct mcontext __user *)(u64)cmcp;
1143 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1144 return -EFAULT;
1145 }
1146 /*
1147 * Check that the context is not smaller than the original
1148 * size (with VMX but without VSX)
1149 */
1150 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1151 return -EINVAL;
1152 /*
1153 * If the new context state sets the MSR VSX bits but
1154 * it doesn't provide VSX state.
1155 */
1156 if ((ctx_size < sizeof(struct ucontext)) &&
1157 (new_msr & MSR_VSX))
1158 return -EINVAL;
1159 /* Does the context have enough room to store VSX data? */
1160 if (ctx_size >= sizeof(struct ucontext))
1161 ctx_has_vsx_region = 1;
1162 #else
1163 /* Context size is for future use. Right now, we only make sure
1164 * we are passed something we understand
1165 */
1166 if (ctx_size < sizeof(struct ucontext))
1167 return -EINVAL;
1168 #endif
1169 if (old_ctx != NULL) {
1170 struct mcontext __user *mctx;
1171
1172 /*
1173 * old_ctx might not be 16-byte aligned, in which
1174 * case old_ctx->uc_mcontext won't be either.
1175 * Because we have the old_ctx->uc_pad2 field
1176 * before old_ctx->uc_mcontext, we need to round down
1177 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1178 */
1179 mctx = (struct mcontext __user *)
1180 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1181 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1182 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1183 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1184 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1185 return -EFAULT;
1186 }
1187 if (new_ctx == NULL)
1188 return 0;
1189 if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1190 || __get_user(tmp, (u8 __user *) new_ctx)
1191 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1192 return -EFAULT;
1193
1194 /*
1195 * If we get a fault copying the context into the kernel's
1196 * image of the user's registers, we can't just return -EFAULT
1197 * because the user's registers will be corrupted. For instance
1198 * the NIP value may have been updated but not some of the
1199 * other registers. Given that we have done the access_ok
1200 * and successfully read the first and last bytes of the region
1201 * above, this should only happen in an out-of-memory situation
1202 * or if another thread unmaps the region containing the context.
1203 * We kill the task with a SIGSEGV in this situation.
1204 */
1205 if (do_setcontext(new_ctx, regs, 0))
1206 do_exit(SIGSEGV);
1207
1208 set_thread_flag(TIF_RESTOREALL);
1209 return 0;
1210 }
1211
1212 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1213 struct pt_regs *regs)
1214 {
1215 struct rt_sigframe __user *rt_sf;
1216 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1217 struct ucontext __user *uc_transact;
1218 unsigned long msr_hi;
1219 unsigned long tmp;
1220 int tm_restore = 0;
1221 #endif
1222 /* Always make any pending restarted system calls return -EINTR */
1223 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1224
1225 rt_sf = (struct rt_sigframe __user *)
1226 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1227 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1228 goto bad;
1229 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1230 if (__get_user(tmp, &rt_sf->uc.uc_link))
1231 goto bad;
1232 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1233 if (uc_transact) {
1234 u32 cmcp;
1235 struct mcontext __user *mcp;
1236
1237 if (__get_user(cmcp, &uc_transact->uc_regs))
1238 return -EFAULT;
1239 mcp = (struct mcontext __user *)(u64)cmcp;
1240 /* The top 32 bits of the MSR are stashed in the transactional
1241 * ucontext. */
1242 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1243 goto bad;
1244
1245 if (MSR_TM_SUSPENDED(msr_hi<<32)) {
1246 /* We only recheckpoint on return if we're
1247 * transaction.
1248 */
1249 tm_restore = 1;
1250 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1251 goto bad;
1252 }
1253 }
1254 if (!tm_restore)
1255 /* Fall through, for non-TM restore */
1256 #endif
1257 if (do_setcontext(&rt_sf->uc, regs, 1))
1258 goto bad;
1259
1260 /*
1261 * It's not clear whether or why it is desirable to save the
1262 * sigaltstack setting on signal delivery and restore it on
1263 * signal return. But other architectures do this and we have
1264 * always done it up until now so it is probably better not to
1265 * change it. -- paulus
1266 */
1267 #ifdef CONFIG_PPC64
1268 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1269 goto bad;
1270 #else
1271 if (restore_altstack(&rt_sf->uc.uc_stack))
1272 goto bad;
1273 #endif
1274 set_thread_flag(TIF_RESTOREALL);
1275 return 0;
1276
1277 bad:
1278 if (show_unhandled_signals)
1279 printk_ratelimited(KERN_INFO
1280 "%s[%d]: bad frame in sys_rt_sigreturn: "
1281 "%p nip %08lx lr %08lx\n",
1282 current->comm, current->pid,
1283 rt_sf, regs->nip, regs->link);
1284
1285 force_sig(SIGSEGV, current);
1286 return 0;
1287 }
1288
1289 #ifdef CONFIG_PPC32
1290 int sys_debug_setcontext(struct ucontext __user *ctx,
1291 int ndbg, struct sig_dbg_op __user *dbg,
1292 int r6, int r7, int r8,
1293 struct pt_regs *regs)
1294 {
1295 struct sig_dbg_op op;
1296 int i;
1297 unsigned char tmp;
1298 unsigned long new_msr = regs->msr;
1299 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1300 unsigned long new_dbcr0 = current->thread.dbcr0;
1301 #endif
1302
1303 for (i=0; i<ndbg; i++) {
1304 if (copy_from_user(&op, dbg + i, sizeof(op)))
1305 return -EFAULT;
1306 switch (op.dbg_type) {
1307 case SIG_DBG_SINGLE_STEPPING:
1308 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1309 if (op.dbg_value) {
1310 new_msr |= MSR_DE;
1311 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1312 } else {
1313 new_dbcr0 &= ~DBCR0_IC;
1314 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1315 current->thread.dbcr1)) {
1316 new_msr &= ~MSR_DE;
1317 new_dbcr0 &= ~DBCR0_IDM;
1318 }
1319 }
1320 #else
1321 if (op.dbg_value)
1322 new_msr |= MSR_SE;
1323 else
1324 new_msr &= ~MSR_SE;
1325 #endif
1326 break;
1327 case SIG_DBG_BRANCH_TRACING:
1328 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1329 return -EINVAL;
1330 #else
1331 if (op.dbg_value)
1332 new_msr |= MSR_BE;
1333 else
1334 new_msr &= ~MSR_BE;
1335 #endif
1336 break;
1337
1338 default:
1339 return -EINVAL;
1340 }
1341 }
1342
1343 /* We wait until here to actually install the values in the
1344 registers so if we fail in the above loop, it will not
1345 affect the contents of these registers. After this point,
1346 failure is a problem, anyway, and it's very unlikely unless
1347 the user is really doing something wrong. */
1348 regs->msr = new_msr;
1349 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1350 current->thread.dbcr0 = new_dbcr0;
1351 #endif
1352
1353 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1354 || __get_user(tmp, (u8 __user *) ctx)
1355 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1356 return -EFAULT;
1357
1358 /*
1359 * If we get a fault copying the context into the kernel's
1360 * image of the user's registers, we can't just return -EFAULT
1361 * because the user's registers will be corrupted. For instance
1362 * the NIP value may have been updated but not some of the
1363 * other registers. Given that we have done the access_ok
1364 * and successfully read the first and last bytes of the region
1365 * above, this should only happen in an out-of-memory situation
1366 * or if another thread unmaps the region containing the context.
1367 * We kill the task with a SIGSEGV in this situation.
1368 */
1369 if (do_setcontext(ctx, regs, 1)) {
1370 if (show_unhandled_signals)
1371 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1372 "sys_debug_setcontext: %p nip %08lx "
1373 "lr %08lx\n",
1374 current->comm, current->pid,
1375 ctx, regs->nip, regs->link);
1376
1377 force_sig(SIGSEGV, current);
1378 goto out;
1379 }
1380
1381 /*
1382 * It's not clear whether or why it is desirable to save the
1383 * sigaltstack setting on signal delivery and restore it on
1384 * signal return. But other architectures do this and we have
1385 * always done it up until now so it is probably better not to
1386 * change it. -- paulus
1387 */
1388 restore_altstack(&ctx->uc_stack);
1389
1390 set_thread_flag(TIF_RESTOREALL);
1391 out:
1392 return 0;
1393 }
1394 #endif
1395
1396 /*
1397 * OK, we're invoking a handler
1398 */
1399 int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1400 siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1401 {
1402 struct sigcontext __user *sc;
1403 struct sigframe __user *frame;
1404 struct mcontext __user *tm_mctx = NULL;
1405 unsigned long newsp = 0;
1406 int sigret;
1407 unsigned long tramp;
1408
1409 /* Set up Signal Frame */
1410 frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1411 if (unlikely(frame == NULL))
1412 goto badframe;
1413 sc = (struct sigcontext __user *) &frame->sctx;
1414
1415 #if _NSIG != 64
1416 #error "Please adjust handle_signal()"
1417 #endif
1418 if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1419 || __put_user(oldset->sig[0], &sc->oldmask)
1420 #ifdef CONFIG_PPC64
1421 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1422 #else
1423 || __put_user(oldset->sig[1], &sc->_unused[3])
1424 #endif
1425 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1426 || __put_user(sig, &sc->signal))
1427 goto badframe;
1428
1429 if (vdso32_sigtramp && current->mm->context.vdso_base) {
1430 sigret = 0;
1431 tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1432 } else {
1433 sigret = __NR_sigreturn;
1434 tramp = (unsigned long) frame->mctx.tramp;
1435 }
1436
1437 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1438 tm_mctx = &frame->mctx_transact;
1439 if (MSR_TM_ACTIVE(regs->msr)) {
1440 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1441 sigret))
1442 goto badframe;
1443 }
1444 else
1445 #endif
1446 {
1447 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1448 goto badframe;
1449 }
1450
1451 regs->link = tramp;
1452
1453 current->thread.fpscr.val = 0; /* turn off all fp exceptions */
1454
1455 /* create a stack frame for the caller of the handler */
1456 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1457 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1458 goto badframe;
1459
1460 regs->gpr[1] = newsp;
1461 regs->gpr[3] = sig;
1462 regs->gpr[4] = (unsigned long) sc;
1463 regs->nip = (unsigned long) ka->sa.sa_handler;
1464 /* enter the signal handler in big-endian mode */
1465 regs->msr &= ~MSR_LE;
1466 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1467 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
1468 * just indicates to userland that we were doing a transaction, but we
1469 * don't want to return in transactional state:
1470 */
1471 regs->msr &= ~MSR_TS_MASK;
1472 #endif
1473 return 1;
1474
1475 badframe:
1476 #ifdef DEBUG_SIG
1477 printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1478 regs, frame, newsp);
1479 #endif
1480 if (show_unhandled_signals)
1481 printk_ratelimited(KERN_INFO
1482 "%s[%d]: bad frame in handle_signal32: "
1483 "%p nip %08lx lr %08lx\n",
1484 current->comm, current->pid,
1485 frame, regs->nip, regs->link);
1486
1487 force_sigsegv(sig, current);
1488 return 0;
1489 }
1490
1491 /*
1492 * Do a signal return; undo the signal stack.
1493 */
1494 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1495 struct pt_regs *regs)
1496 {
1497 struct sigcontext __user *sc;
1498 struct sigcontext sigctx;
1499 struct mcontext __user *sr;
1500 void __user *addr;
1501 sigset_t set;
1502
1503 /* Always make any pending restarted system calls return -EINTR */
1504 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1505
1506 sc = (struct sigcontext __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1507 addr = sc;
1508 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1509 goto badframe;
1510
1511 #ifdef CONFIG_PPC64
1512 /*
1513 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1514 * unused part of the signal stackframe
1515 */
1516 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1517 #else
1518 set.sig[0] = sigctx.oldmask;
1519 set.sig[1] = sigctx._unused[3];
1520 #endif
1521 set_current_blocked(&set);
1522
1523 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1524 addr = sr;
1525 if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1526 || restore_user_regs(regs, sr, 1))
1527 goto badframe;
1528
1529 set_thread_flag(TIF_RESTOREALL);
1530 return 0;
1531
1532 badframe:
1533 if (show_unhandled_signals)
1534 printk_ratelimited(KERN_INFO
1535 "%s[%d]: bad frame in sys_sigreturn: "
1536 "%p nip %08lx lr %08lx\n",
1537 current->comm, current->pid,
1538 addr, regs->nip, regs->link);
1539
1540 force_sig(SIGSEGV, current);
1541 return 0;
1542 }
This page took 0.074841 seconds and 5 git commands to generate.