cputime: Optimize jiffies_to_cputime(1)
[deliverable/linux.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_counter.h>
57
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 #ifdef CONFIG_PPC_ISERIES
73 #include <asm/iseries/it_lp_queue.h>
74 #include <asm/iseries/hv_call_xm.h>
75 #endif
76
77 /* powerpc clocksource/clockevent code */
78
79 #include <linux/clockchips.h>
80 #include <linux/clocksource.h>
81
82 static cycle_t rtc_read(struct clocksource *);
83 static struct clocksource clocksource_rtc = {
84 .name = "rtc",
85 .rating = 400,
86 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
87 .mask = CLOCKSOURCE_MASK(64),
88 .shift = 22,
89 .mult = 0, /* To be filled in */
90 .read = rtc_read,
91 };
92
93 static cycle_t timebase_read(struct clocksource *);
94 static struct clocksource clocksource_timebase = {
95 .name = "timebase",
96 .rating = 400,
97 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
98 .mask = CLOCKSOURCE_MASK(64),
99 .shift = 22,
100 .mult = 0, /* To be filled in */
101 .read = timebase_read,
102 };
103
104 #define DECREMENTER_MAX 0x7fffffff
105
106 static int decrementer_set_next_event(unsigned long evt,
107 struct clock_event_device *dev);
108 static void decrementer_set_mode(enum clock_event_mode mode,
109 struct clock_event_device *dev);
110
111 static struct clock_event_device decrementer_clockevent = {
112 .name = "decrementer",
113 .rating = 200,
114 .shift = 0, /* To be filled in */
115 .mult = 0, /* To be filled in */
116 .irq = 0,
117 .set_next_event = decrementer_set_next_event,
118 .set_mode = decrementer_set_mode,
119 .features = CLOCK_EVT_FEAT_ONESHOT,
120 };
121
122 struct decrementer_clock {
123 struct clock_event_device event;
124 u64 next_tb;
125 };
126
127 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
128
129 #ifdef CONFIG_PPC_ISERIES
130 static unsigned long __initdata iSeries_recal_titan;
131 static signed long __initdata iSeries_recal_tb;
132
133 /* Forward declaration is only needed for iSereis compiles */
134 static void __init clocksource_init(void);
135 #endif
136
137 #define XSEC_PER_SEC (1024*1024)
138
139 #ifdef CONFIG_PPC64
140 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
141 #else
142 /* compute ((xsec << 12) * max) >> 32 */
143 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
144 #endif
145
146 unsigned long tb_ticks_per_jiffy;
147 unsigned long tb_ticks_per_usec = 100; /* sane default */
148 EXPORT_SYMBOL(tb_ticks_per_usec);
149 unsigned long tb_ticks_per_sec;
150 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
151 u64 tb_to_xs;
152 unsigned tb_to_us;
153
154 #define TICKLEN_SCALE NTP_SCALE_SHIFT
155 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
156 static u64 ticklen_to_xs; /* 0.64 fraction */
157
158 /* If last_tick_len corresponds to about 1/HZ seconds, then
159 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
160 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
161
162 DEFINE_SPINLOCK(rtc_lock);
163 EXPORT_SYMBOL_GPL(rtc_lock);
164
165 static u64 tb_to_ns_scale __read_mostly;
166 static unsigned tb_to_ns_shift __read_mostly;
167 static unsigned long boot_tb __read_mostly;
168
169 extern struct timezone sys_tz;
170 static long timezone_offset;
171
172 unsigned long ppc_proc_freq;
173 EXPORT_SYMBOL(ppc_proc_freq);
174 unsigned long ppc_tb_freq;
175
176 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
177 static DEFINE_PER_CPU(u64, last_jiffy);
178
179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
180 /*
181 * Factors for converting from cputime_t (timebase ticks) to
182 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
183 * These are all stored as 0.64 fixed-point binary fractions.
184 */
185 u64 __cputime_jiffies_factor;
186 EXPORT_SYMBOL(__cputime_jiffies_factor);
187 u64 __cputime_msec_factor;
188 EXPORT_SYMBOL(__cputime_msec_factor);
189 u64 __cputime_sec_factor;
190 EXPORT_SYMBOL(__cputime_sec_factor);
191 u64 __cputime_clockt_factor;
192 EXPORT_SYMBOL(__cputime_clockt_factor);
193 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
195
196 cputime_t cputime_one_jiffy;
197
198 static void calc_cputime_factors(void)
199 {
200 struct div_result res;
201
202 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
203 __cputime_jiffies_factor = res.result_low;
204 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
205 __cputime_msec_factor = res.result_low;
206 div128_by_32(1, 0, tb_ticks_per_sec, &res);
207 __cputime_sec_factor = res.result_low;
208 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
209 __cputime_clockt_factor = res.result_low;
210 }
211
212 /*
213 * Read the PURR on systems that have it, otherwise the timebase.
214 */
215 static u64 read_purr(void)
216 {
217 if (cpu_has_feature(CPU_FTR_PURR))
218 return mfspr(SPRN_PURR);
219 return mftb();
220 }
221
222 /*
223 * Read the SPURR on systems that have it, otherwise the purr
224 */
225 static u64 read_spurr(u64 purr)
226 {
227 /*
228 * cpus without PURR won't have a SPURR
229 * We already know the former when we use this, so tell gcc
230 */
231 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
232 return mfspr(SPRN_SPURR);
233 return purr;
234 }
235
236 /*
237 * Account time for a transition between system, hard irq
238 * or soft irq state.
239 */
240 void account_system_vtime(struct task_struct *tsk)
241 {
242 u64 now, nowscaled, delta, deltascaled, sys_time;
243 unsigned long flags;
244
245 local_irq_save(flags);
246 now = read_purr();
247 nowscaled = read_spurr(now);
248 delta = now - get_paca()->startpurr;
249 deltascaled = nowscaled - get_paca()->startspurr;
250 get_paca()->startpurr = now;
251 get_paca()->startspurr = nowscaled;
252 if (!in_interrupt()) {
253 /* deltascaled includes both user and system time.
254 * Hence scale it based on the purr ratio to estimate
255 * the system time */
256 sys_time = get_paca()->system_time;
257 if (get_paca()->user_time)
258 deltascaled = deltascaled * sys_time /
259 (sys_time + get_paca()->user_time);
260 delta += sys_time;
261 get_paca()->system_time = 0;
262 }
263 if (in_irq() || idle_task(smp_processor_id()) != tsk)
264 account_system_time(tsk, 0, delta, deltascaled);
265 else
266 account_idle_time(delta);
267 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
268 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
269 local_irq_restore(flags);
270 }
271
272 /*
273 * Transfer the user and system times accumulated in the paca
274 * by the exception entry and exit code to the generic process
275 * user and system time records.
276 * Must be called with interrupts disabled.
277 */
278 void account_process_tick(struct task_struct *tsk, int user_tick)
279 {
280 cputime_t utime, utimescaled;
281
282 utime = get_paca()->user_time;
283 get_paca()->user_time = 0;
284 utimescaled = cputime_to_scaled(utime);
285 account_user_time(tsk, utime, utimescaled);
286 }
287
288 /*
289 * Stuff for accounting stolen time.
290 */
291 struct cpu_purr_data {
292 int initialized; /* thread is running */
293 u64 tb; /* last TB value read */
294 u64 purr; /* last PURR value read */
295 u64 spurr; /* last SPURR value read */
296 };
297
298 /*
299 * Each entry in the cpu_purr_data array is manipulated only by its
300 * "owner" cpu -- usually in the timer interrupt but also occasionally
301 * in process context for cpu online. As long as cpus do not touch
302 * each others' cpu_purr_data, disabling local interrupts is
303 * sufficient to serialize accesses.
304 */
305 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
306
307 static void snapshot_tb_and_purr(void *data)
308 {
309 unsigned long flags;
310 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
311
312 local_irq_save(flags);
313 p->tb = get_tb_or_rtc();
314 p->purr = mfspr(SPRN_PURR);
315 wmb();
316 p->initialized = 1;
317 local_irq_restore(flags);
318 }
319
320 /*
321 * Called during boot when all cpus have come up.
322 */
323 void snapshot_timebases(void)
324 {
325 if (!cpu_has_feature(CPU_FTR_PURR))
326 return;
327 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
328 }
329
330 /*
331 * Must be called with interrupts disabled.
332 */
333 void calculate_steal_time(void)
334 {
335 u64 tb, purr;
336 s64 stolen;
337 struct cpu_purr_data *pme;
338
339 pme = &__get_cpu_var(cpu_purr_data);
340 if (!pme->initialized)
341 return; /* !CPU_FTR_PURR or early in early boot */
342 tb = mftb();
343 purr = mfspr(SPRN_PURR);
344 stolen = (tb - pme->tb) - (purr - pme->purr);
345 if (stolen > 0) {
346 if (idle_task(smp_processor_id()) != current)
347 account_steal_time(stolen);
348 else
349 account_idle_time(stolen);
350 }
351 pme->tb = tb;
352 pme->purr = purr;
353 }
354
355 #ifdef CONFIG_PPC_SPLPAR
356 /*
357 * Must be called before the cpu is added to the online map when
358 * a cpu is being brought up at runtime.
359 */
360 static void snapshot_purr(void)
361 {
362 struct cpu_purr_data *pme;
363 unsigned long flags;
364
365 if (!cpu_has_feature(CPU_FTR_PURR))
366 return;
367 local_irq_save(flags);
368 pme = &__get_cpu_var(cpu_purr_data);
369 pme->tb = mftb();
370 pme->purr = mfspr(SPRN_PURR);
371 pme->initialized = 1;
372 local_irq_restore(flags);
373 }
374
375 #endif /* CONFIG_PPC_SPLPAR */
376
377 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
378 #define calc_cputime_factors()
379 #define calculate_steal_time() do { } while (0)
380 #endif
381
382 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
383 #define snapshot_purr() do { } while (0)
384 #endif
385
386 /*
387 * Called when a cpu comes up after the system has finished booting,
388 * i.e. as a result of a hotplug cpu action.
389 */
390 void snapshot_timebase(void)
391 {
392 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
393 snapshot_purr();
394 }
395
396 void __delay(unsigned long loops)
397 {
398 unsigned long start;
399 int diff;
400
401 if (__USE_RTC()) {
402 start = get_rtcl();
403 do {
404 /* the RTCL register wraps at 1000000000 */
405 diff = get_rtcl() - start;
406 if (diff < 0)
407 diff += 1000000000;
408 } while (diff < loops);
409 } else {
410 start = get_tbl();
411 while (get_tbl() - start < loops)
412 HMT_low();
413 HMT_medium();
414 }
415 }
416 EXPORT_SYMBOL(__delay);
417
418 void udelay(unsigned long usecs)
419 {
420 __delay(tb_ticks_per_usec * usecs);
421 }
422 EXPORT_SYMBOL(udelay);
423
424 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
425 u64 new_tb_to_xs)
426 {
427 /*
428 * tb_update_count is used to allow the userspace gettimeofday code
429 * to assure itself that it sees a consistent view of the tb_to_xs and
430 * stamp_xsec variables. It reads the tb_update_count, then reads
431 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
432 * the two values of tb_update_count match and are even then the
433 * tb_to_xs and stamp_xsec values are consistent. If not, then it
434 * loops back and reads them again until this criteria is met.
435 * We expect the caller to have done the first increment of
436 * vdso_data->tb_update_count already.
437 */
438 vdso_data->tb_orig_stamp = new_tb_stamp;
439 vdso_data->stamp_xsec = new_stamp_xsec;
440 vdso_data->tb_to_xs = new_tb_to_xs;
441 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
442 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
443 vdso_data->stamp_xtime = xtime;
444 smp_wmb();
445 ++(vdso_data->tb_update_count);
446 }
447
448 #ifdef CONFIG_SMP
449 unsigned long profile_pc(struct pt_regs *regs)
450 {
451 unsigned long pc = instruction_pointer(regs);
452
453 if (in_lock_functions(pc))
454 return regs->link;
455
456 return pc;
457 }
458 EXPORT_SYMBOL(profile_pc);
459 #endif
460
461 #ifdef CONFIG_PPC_ISERIES
462
463 /*
464 * This function recalibrates the timebase based on the 49-bit time-of-day
465 * value in the Titan chip. The Titan is much more accurate than the value
466 * returned by the service processor for the timebase frequency.
467 */
468
469 static int __init iSeries_tb_recal(void)
470 {
471 struct div_result divres;
472 unsigned long titan, tb;
473
474 /* Make sure we only run on iSeries */
475 if (!firmware_has_feature(FW_FEATURE_ISERIES))
476 return -ENODEV;
477
478 tb = get_tb();
479 titan = HvCallXm_loadTod();
480 if ( iSeries_recal_titan ) {
481 unsigned long tb_ticks = tb - iSeries_recal_tb;
482 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
483 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
484 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
485 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
486 char sign = '+';
487 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
488 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
489
490 if ( tick_diff < 0 ) {
491 tick_diff = -tick_diff;
492 sign = '-';
493 }
494 if ( tick_diff ) {
495 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
496 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
497 new_tb_ticks_per_jiffy, sign, tick_diff );
498 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
499 tb_ticks_per_sec = new_tb_ticks_per_sec;
500 calc_cputime_factors();
501 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
502 tb_to_xs = divres.result_low;
503 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
504 vdso_data->tb_to_xs = tb_to_xs;
505 setup_cputime_one_jiffy();
506 }
507 else {
508 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
509 " new tb_ticks_per_jiffy = %lu\n"
510 " old tb_ticks_per_jiffy = %lu\n",
511 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
512 }
513 }
514 }
515 iSeries_recal_titan = titan;
516 iSeries_recal_tb = tb;
517
518 /* Called here as now we know accurate values for the timebase */
519 clocksource_init();
520 return 0;
521 }
522 late_initcall(iSeries_tb_recal);
523
524 /* Called from platform early init */
525 void __init iSeries_time_init_early(void)
526 {
527 iSeries_recal_tb = get_tb();
528 iSeries_recal_titan = HvCallXm_loadTod();
529 }
530 #endif /* CONFIG_PPC_ISERIES */
531
532 #if defined(CONFIG_PERF_COUNTERS) && defined(CONFIG_PPC32)
533 DEFINE_PER_CPU(u8, perf_counter_pending);
534
535 void set_perf_counter_pending(void)
536 {
537 get_cpu_var(perf_counter_pending) = 1;
538 set_dec(1);
539 put_cpu_var(perf_counter_pending);
540 }
541
542 #define test_perf_counter_pending() __get_cpu_var(perf_counter_pending)
543 #define clear_perf_counter_pending() __get_cpu_var(perf_counter_pending) = 0
544
545 #else /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */
546
547 #define test_perf_counter_pending() 0
548 #define clear_perf_counter_pending()
549
550 #endif /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */
551
552 /*
553 * For iSeries shared processors, we have to let the hypervisor
554 * set the hardware decrementer. We set a virtual decrementer
555 * in the lppaca and call the hypervisor if the virtual
556 * decrementer is less than the current value in the hardware
557 * decrementer. (almost always the new decrementer value will
558 * be greater than the current hardware decementer so the hypervisor
559 * call will not be needed)
560 */
561
562 /*
563 * timer_interrupt - gets called when the decrementer overflows,
564 * with interrupts disabled.
565 */
566 void timer_interrupt(struct pt_regs * regs)
567 {
568 struct pt_regs *old_regs;
569 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
570 struct clock_event_device *evt = &decrementer->event;
571 u64 now;
572
573 /* Ensure a positive value is written to the decrementer, or else
574 * some CPUs will continuue to take decrementer exceptions */
575 set_dec(DECREMENTER_MAX);
576
577 #ifdef CONFIG_PPC32
578 if (test_perf_counter_pending()) {
579 clear_perf_counter_pending();
580 perf_counter_do_pending();
581 }
582 if (atomic_read(&ppc_n_lost_interrupts) != 0)
583 do_IRQ(regs);
584 #endif
585
586 now = get_tb_or_rtc();
587 if (now < decrementer->next_tb) {
588 /* not time for this event yet */
589 now = decrementer->next_tb - now;
590 if (now <= DECREMENTER_MAX)
591 set_dec((int)now);
592 return;
593 }
594 old_regs = set_irq_regs(regs);
595 irq_enter();
596
597 calculate_steal_time();
598
599 #ifdef CONFIG_PPC_ISERIES
600 if (firmware_has_feature(FW_FEATURE_ISERIES))
601 get_lppaca()->int_dword.fields.decr_int = 0;
602 #endif
603
604 if (evt->event_handler)
605 evt->event_handler(evt);
606
607 #ifdef CONFIG_PPC_ISERIES
608 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
609 process_hvlpevents();
610 #endif
611
612 #ifdef CONFIG_PPC64
613 /* collect purr register values often, for accurate calculations */
614 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
615 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
616 cu->current_tb = mfspr(SPRN_PURR);
617 }
618 #endif
619
620 irq_exit();
621 set_irq_regs(old_regs);
622 }
623
624 void wakeup_decrementer(void)
625 {
626 unsigned long ticks;
627
628 /*
629 * The timebase gets saved on sleep and restored on wakeup,
630 * so all we need to do is to reset the decrementer.
631 */
632 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
633 if (ticks < tb_ticks_per_jiffy)
634 ticks = tb_ticks_per_jiffy - ticks;
635 else
636 ticks = 1;
637 set_dec(ticks);
638 }
639
640 #ifdef CONFIG_SUSPEND
641 void generic_suspend_disable_irqs(void)
642 {
643 preempt_disable();
644
645 /* Disable the decrementer, so that it doesn't interfere
646 * with suspending.
647 */
648
649 set_dec(0x7fffffff);
650 local_irq_disable();
651 set_dec(0x7fffffff);
652 }
653
654 void generic_suspend_enable_irqs(void)
655 {
656 wakeup_decrementer();
657
658 local_irq_enable();
659 preempt_enable();
660 }
661
662 /* Overrides the weak version in kernel/power/main.c */
663 void arch_suspend_disable_irqs(void)
664 {
665 if (ppc_md.suspend_disable_irqs)
666 ppc_md.suspend_disable_irqs();
667 generic_suspend_disable_irqs();
668 }
669
670 /* Overrides the weak version in kernel/power/main.c */
671 void arch_suspend_enable_irqs(void)
672 {
673 generic_suspend_enable_irqs();
674 if (ppc_md.suspend_enable_irqs)
675 ppc_md.suspend_enable_irqs();
676 }
677 #endif
678
679 #ifdef CONFIG_SMP
680 void __init smp_space_timers(unsigned int max_cpus)
681 {
682 int i;
683 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
684
685 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
686 previous_tb -= tb_ticks_per_jiffy;
687
688 for_each_possible_cpu(i) {
689 if (i == boot_cpuid)
690 continue;
691 per_cpu(last_jiffy, i) = previous_tb;
692 }
693 }
694 #endif
695
696 /*
697 * Scheduler clock - returns current time in nanosec units.
698 *
699 * Note: mulhdu(a, b) (multiply high double unsigned) returns
700 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
701 * are 64-bit unsigned numbers.
702 */
703 unsigned long long sched_clock(void)
704 {
705 if (__USE_RTC())
706 return get_rtc();
707 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
708 }
709
710 static int __init get_freq(char *name, int cells, unsigned long *val)
711 {
712 struct device_node *cpu;
713 const unsigned int *fp;
714 int found = 0;
715
716 /* The cpu node should have timebase and clock frequency properties */
717 cpu = of_find_node_by_type(NULL, "cpu");
718
719 if (cpu) {
720 fp = of_get_property(cpu, name, NULL);
721 if (fp) {
722 found = 1;
723 *val = of_read_ulong(fp, cells);
724 }
725
726 of_node_put(cpu);
727 }
728
729 return found;
730 }
731
732 void __init generic_calibrate_decr(void)
733 {
734 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
735
736 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
737 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
738
739 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
740 "(not found)\n");
741 }
742
743 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
744
745 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
746 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
747
748 printk(KERN_ERR "WARNING: Estimating processor frequency "
749 "(not found)\n");
750 }
751
752 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
753 /* Clear any pending timer interrupts */
754 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
755
756 /* Enable decrementer interrupt */
757 mtspr(SPRN_TCR, TCR_DIE);
758 #endif
759 }
760
761 int update_persistent_clock(struct timespec now)
762 {
763 struct rtc_time tm;
764
765 if (!ppc_md.set_rtc_time)
766 return 0;
767
768 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
769 tm.tm_year -= 1900;
770 tm.tm_mon -= 1;
771
772 return ppc_md.set_rtc_time(&tm);
773 }
774
775 unsigned long read_persistent_clock(void)
776 {
777 struct rtc_time tm;
778 static int first = 1;
779
780 /* XXX this is a litle fragile but will work okay in the short term */
781 if (first) {
782 first = 0;
783 if (ppc_md.time_init)
784 timezone_offset = ppc_md.time_init();
785
786 /* get_boot_time() isn't guaranteed to be safe to call late */
787 if (ppc_md.get_boot_time)
788 return ppc_md.get_boot_time() -timezone_offset;
789 }
790 if (!ppc_md.get_rtc_time)
791 return 0;
792 ppc_md.get_rtc_time(&tm);
793 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
794 tm.tm_hour, tm.tm_min, tm.tm_sec);
795 }
796
797 /* clocksource code */
798 static cycle_t rtc_read(struct clocksource *cs)
799 {
800 return (cycle_t)get_rtc();
801 }
802
803 static cycle_t timebase_read(struct clocksource *cs)
804 {
805 return (cycle_t)get_tb();
806 }
807
808 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
809 {
810 u64 t2x, stamp_xsec;
811
812 if (clock != &clocksource_timebase)
813 return;
814
815 /* Make userspace gettimeofday spin until we're done. */
816 ++vdso_data->tb_update_count;
817 smp_mb();
818
819 /* XXX this assumes clock->shift == 22 */
820 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
821 t2x = (u64) clock->mult * 4611686018ULL;
822 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
823 do_div(stamp_xsec, 1000000000);
824 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
825 update_gtod(clock->cycle_last, stamp_xsec, t2x);
826 }
827
828 void update_vsyscall_tz(void)
829 {
830 /* Make userspace gettimeofday spin until we're done. */
831 ++vdso_data->tb_update_count;
832 smp_mb();
833 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
834 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
835 smp_mb();
836 ++vdso_data->tb_update_count;
837 }
838
839 static void __init clocksource_init(void)
840 {
841 struct clocksource *clock;
842
843 if (__USE_RTC())
844 clock = &clocksource_rtc;
845 else
846 clock = &clocksource_timebase;
847
848 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
849
850 if (clocksource_register(clock)) {
851 printk(KERN_ERR "clocksource: %s is already registered\n",
852 clock->name);
853 return;
854 }
855
856 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
857 clock->name, clock->mult, clock->shift);
858 }
859
860 static int decrementer_set_next_event(unsigned long evt,
861 struct clock_event_device *dev)
862 {
863 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
864 set_dec(evt);
865 return 0;
866 }
867
868 static void decrementer_set_mode(enum clock_event_mode mode,
869 struct clock_event_device *dev)
870 {
871 if (mode != CLOCK_EVT_MODE_ONESHOT)
872 decrementer_set_next_event(DECREMENTER_MAX, dev);
873 }
874
875 static void __init setup_clockevent_multiplier(unsigned long hz)
876 {
877 u64 mult, shift = 32;
878
879 while (1) {
880 mult = div_sc(hz, NSEC_PER_SEC, shift);
881 if (mult && (mult >> 32UL) == 0UL)
882 break;
883
884 shift--;
885 }
886
887 decrementer_clockevent.shift = shift;
888 decrementer_clockevent.mult = mult;
889 }
890
891 static void register_decrementer_clockevent(int cpu)
892 {
893 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
894
895 *dec = decrementer_clockevent;
896 dec->cpumask = cpumask_of(cpu);
897
898 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
899 dec->name, dec->mult, dec->shift, cpu);
900
901 clockevents_register_device(dec);
902 }
903
904 static void __init init_decrementer_clockevent(void)
905 {
906 int cpu = smp_processor_id();
907
908 setup_clockevent_multiplier(ppc_tb_freq);
909 decrementer_clockevent.max_delta_ns =
910 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
911 decrementer_clockevent.min_delta_ns =
912 clockevent_delta2ns(2, &decrementer_clockevent);
913
914 register_decrementer_clockevent(cpu);
915 }
916
917 void secondary_cpu_time_init(void)
918 {
919 /* FIME: Should make unrelatred change to move snapshot_timebase
920 * call here ! */
921 register_decrementer_clockevent(smp_processor_id());
922 }
923
924 /* This function is only called on the boot processor */
925 void __init time_init(void)
926 {
927 unsigned long flags;
928 struct div_result res;
929 u64 scale, x;
930 unsigned shift;
931
932 if (__USE_RTC()) {
933 /* 601 processor: dec counts down by 128 every 128ns */
934 ppc_tb_freq = 1000000000;
935 tb_last_jiffy = get_rtcl();
936 } else {
937 /* Normal PowerPC with timebase register */
938 ppc_md.calibrate_decr();
939 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
940 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
941 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
942 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
943 tb_last_jiffy = get_tb();
944 }
945
946 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
947 tb_ticks_per_sec = ppc_tb_freq;
948 tb_ticks_per_usec = ppc_tb_freq / 1000000;
949 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
950 calc_cputime_factors();
951 setup_cputime_one_jiffy();
952
953 /*
954 * Calculate the length of each tick in ns. It will not be
955 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
956 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
957 * rounded up.
958 */
959 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
960 do_div(x, ppc_tb_freq);
961 tick_nsec = x;
962 last_tick_len = x << TICKLEN_SCALE;
963
964 /*
965 * Compute ticklen_to_xs, which is a factor which gets multiplied
966 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
967 * It is computed as:
968 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
969 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
970 * which turns out to be N = 51 - SHIFT_HZ.
971 * This gives the result as a 0.64 fixed-point fraction.
972 * That value is reduced by an offset amounting to 1 xsec per
973 * 2^31 timebase ticks to avoid problems with time going backwards
974 * by 1 xsec when we do timer_recalc_offset due to losing the
975 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
976 * since there are 2^20 xsec in a second.
977 */
978 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
979 tb_ticks_per_jiffy << SHIFT_HZ, &res);
980 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
981 ticklen_to_xs = res.result_low;
982
983 /* Compute tb_to_xs from tick_nsec */
984 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
985
986 /*
987 * Compute scale factor for sched_clock.
988 * The calibrate_decr() function has set tb_ticks_per_sec,
989 * which is the timebase frequency.
990 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
991 * the 128-bit result as a 64.64 fixed-point number.
992 * We then shift that number right until it is less than 1.0,
993 * giving us the scale factor and shift count to use in
994 * sched_clock().
995 */
996 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
997 scale = res.result_low;
998 for (shift = 0; res.result_high != 0; ++shift) {
999 scale = (scale >> 1) | (res.result_high << 63);
1000 res.result_high >>= 1;
1001 }
1002 tb_to_ns_scale = scale;
1003 tb_to_ns_shift = shift;
1004 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1005 boot_tb = get_tb_or_rtc();
1006
1007 write_seqlock_irqsave(&xtime_lock, flags);
1008
1009 /* If platform provided a timezone (pmac), we correct the time */
1010 if (timezone_offset) {
1011 sys_tz.tz_minuteswest = -timezone_offset / 60;
1012 sys_tz.tz_dsttime = 0;
1013 }
1014
1015 vdso_data->tb_orig_stamp = tb_last_jiffy;
1016 vdso_data->tb_update_count = 0;
1017 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1018 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1019 vdso_data->tb_to_xs = tb_to_xs;
1020
1021 write_sequnlock_irqrestore(&xtime_lock, flags);
1022
1023 /* Register the clocksource, if we're not running on iSeries */
1024 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1025 clocksource_init();
1026
1027 init_decrementer_clockevent();
1028 }
1029
1030
1031 #define FEBRUARY 2
1032 #define STARTOFTIME 1970
1033 #define SECDAY 86400L
1034 #define SECYR (SECDAY * 365)
1035 #define leapyear(year) ((year) % 4 == 0 && \
1036 ((year) % 100 != 0 || (year) % 400 == 0))
1037 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1038 #define days_in_month(a) (month_days[(a) - 1])
1039
1040 static int month_days[12] = {
1041 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1042 };
1043
1044 /*
1045 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1046 */
1047 void GregorianDay(struct rtc_time * tm)
1048 {
1049 int leapsToDate;
1050 int lastYear;
1051 int day;
1052 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1053
1054 lastYear = tm->tm_year - 1;
1055
1056 /*
1057 * Number of leap corrections to apply up to end of last year
1058 */
1059 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1060
1061 /*
1062 * This year is a leap year if it is divisible by 4 except when it is
1063 * divisible by 100 unless it is divisible by 400
1064 *
1065 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1066 */
1067 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1068
1069 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1070 tm->tm_mday;
1071
1072 tm->tm_wday = day % 7;
1073 }
1074
1075 void to_tm(int tim, struct rtc_time * tm)
1076 {
1077 register int i;
1078 register long hms, day;
1079
1080 day = tim / SECDAY;
1081 hms = tim % SECDAY;
1082
1083 /* Hours, minutes, seconds are easy */
1084 tm->tm_hour = hms / 3600;
1085 tm->tm_min = (hms % 3600) / 60;
1086 tm->tm_sec = (hms % 3600) % 60;
1087
1088 /* Number of years in days */
1089 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1090 day -= days_in_year(i);
1091 tm->tm_year = i;
1092
1093 /* Number of months in days left */
1094 if (leapyear(tm->tm_year))
1095 days_in_month(FEBRUARY) = 29;
1096 for (i = 1; day >= days_in_month(i); i++)
1097 day -= days_in_month(i);
1098 days_in_month(FEBRUARY) = 28;
1099 tm->tm_mon = i;
1100
1101 /* Days are what is left over (+1) from all that. */
1102 tm->tm_mday = day + 1;
1103
1104 /*
1105 * Determine the day of week
1106 */
1107 GregorianDay(tm);
1108 }
1109
1110 /* Auxiliary function to compute scaling factors */
1111 /* Actually the choice of a timebase running at 1/4 the of the bus
1112 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1113 * It makes this computation very precise (27-28 bits typically) which
1114 * is optimistic considering the stability of most processor clock
1115 * oscillators and the precision with which the timebase frequency
1116 * is measured but does not harm.
1117 */
1118 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1119 {
1120 unsigned mlt=0, tmp, err;
1121 /* No concern for performance, it's done once: use a stupid
1122 * but safe and compact method to find the multiplier.
1123 */
1124
1125 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1126 if (mulhwu(inscale, mlt|tmp) < outscale)
1127 mlt |= tmp;
1128 }
1129
1130 /* We might still be off by 1 for the best approximation.
1131 * A side effect of this is that if outscale is too large
1132 * the returned value will be zero.
1133 * Many corner cases have been checked and seem to work,
1134 * some might have been forgotten in the test however.
1135 */
1136
1137 err = inscale * (mlt+1);
1138 if (err <= inscale/2)
1139 mlt++;
1140 return mlt;
1141 }
1142
1143 /*
1144 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1145 * result.
1146 */
1147 void div128_by_32(u64 dividend_high, u64 dividend_low,
1148 unsigned divisor, struct div_result *dr)
1149 {
1150 unsigned long a, b, c, d;
1151 unsigned long w, x, y, z;
1152 u64 ra, rb, rc;
1153
1154 a = dividend_high >> 32;
1155 b = dividend_high & 0xffffffff;
1156 c = dividend_low >> 32;
1157 d = dividend_low & 0xffffffff;
1158
1159 w = a / divisor;
1160 ra = ((u64)(a - (w * divisor)) << 32) + b;
1161
1162 rb = ((u64) do_div(ra, divisor) << 32) + c;
1163 x = ra;
1164
1165 rc = ((u64) do_div(rb, divisor) << 32) + d;
1166 y = rb;
1167
1168 do_div(rc, divisor);
1169 z = rc;
1170
1171 dr->result_high = ((u64)w << 32) + x;
1172 dr->result_low = ((u64)y << 32) + z;
1173
1174 }
1175
1176 /* We don't need to calibrate delay, we use the CPU timebase for that */
1177 void calibrate_delay(void)
1178 {
1179 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1180 * as the number of __delay(1) in a jiffy, so make it so
1181 */
1182 loops_per_jiffy = tb_ticks_per_jiffy;
1183 }
1184
1185 static int __init rtc_init(void)
1186 {
1187 struct platform_device *pdev;
1188
1189 if (!ppc_md.get_rtc_time)
1190 return -ENODEV;
1191
1192 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1193 if (IS_ERR(pdev))
1194 return PTR_ERR(pdev);
1195
1196 return 0;
1197 }
1198
1199 module_init(rtc_init);
This page took 0.071025 seconds and 5 git commands to generate.