qed: Fail driver load in 100g MSI mode.
[deliverable/linux.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time.
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/clockchips.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <linux/clk-provider.h>
58 #include <linux/suspend.h>
59 #include <asm/trace.h>
60
61 #include <asm/io.h>
62 #include <asm/processor.h>
63 #include <asm/nvram.h>
64 #include <asm/cache.h>
65 #include <asm/machdep.h>
66 #include <asm/uaccess.h>
67 #include <asm/time.h>
68 #include <asm/prom.h>
69 #include <asm/irq.h>
70 #include <asm/div64.h>
71 #include <asm/smp.h>
72 #include <asm/vdso_datapage.h>
73 #include <asm/firmware.h>
74 #include <asm/cputime.h>
75
76 /* powerpc clocksource/clockevent code */
77
78 #include <linux/clockchips.h>
79 #include <linux/timekeeper_internal.h>
80
81 static cycle_t rtc_read(struct clocksource *);
82 static struct clocksource clocksource_rtc = {
83 .name = "rtc",
84 .rating = 400,
85 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
86 .mask = CLOCKSOURCE_MASK(64),
87 .read = rtc_read,
88 };
89
90 static cycle_t timebase_read(struct clocksource *);
91 static struct clocksource clocksource_timebase = {
92 .name = "timebase",
93 .rating = 400,
94 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
95 .mask = CLOCKSOURCE_MASK(64),
96 .read = timebase_read,
97 };
98
99 #define DECREMENTER_MAX 0x7fffffff
100
101 static int decrementer_set_next_event(unsigned long evt,
102 struct clock_event_device *dev);
103 static int decrementer_shutdown(struct clock_event_device *evt);
104
105 struct clock_event_device decrementer_clockevent = {
106 .name = "decrementer",
107 .rating = 200,
108 .irq = 0,
109 .set_next_event = decrementer_set_next_event,
110 .set_state_shutdown = decrementer_shutdown,
111 .tick_resume = decrementer_shutdown,
112 .features = CLOCK_EVT_FEAT_ONESHOT |
113 CLOCK_EVT_FEAT_C3STOP,
114 };
115 EXPORT_SYMBOL(decrementer_clockevent);
116
117 DEFINE_PER_CPU(u64, decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119
120 #define XSEC_PER_SEC (1024*1024)
121
122 #ifdef CONFIG_PPC64
123 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
124 #else
125 /* compute ((xsec << 12) * max) >> 32 */
126 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
127 #endif
128
129 unsigned long tb_ticks_per_jiffy;
130 unsigned long tb_ticks_per_usec = 100; /* sane default */
131 EXPORT_SYMBOL(tb_ticks_per_usec);
132 unsigned long tb_ticks_per_sec;
133 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
134
135 DEFINE_SPINLOCK(rtc_lock);
136 EXPORT_SYMBOL_GPL(rtc_lock);
137
138 static u64 tb_to_ns_scale __read_mostly;
139 static unsigned tb_to_ns_shift __read_mostly;
140 static u64 boot_tb __read_mostly;
141
142 extern struct timezone sys_tz;
143 static long timezone_offset;
144
145 unsigned long ppc_proc_freq;
146 EXPORT_SYMBOL_GPL(ppc_proc_freq);
147 unsigned long ppc_tb_freq;
148 EXPORT_SYMBOL_GPL(ppc_tb_freq);
149
150 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
151 /*
152 * Factors for converting from cputime_t (timebase ticks) to
153 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
154 * These are all stored as 0.64 fixed-point binary fractions.
155 */
156 u64 __cputime_jiffies_factor;
157 EXPORT_SYMBOL(__cputime_jiffies_factor);
158 u64 __cputime_usec_factor;
159 EXPORT_SYMBOL(__cputime_usec_factor);
160 u64 __cputime_sec_factor;
161 EXPORT_SYMBOL(__cputime_sec_factor);
162 u64 __cputime_clockt_factor;
163 EXPORT_SYMBOL(__cputime_clockt_factor);
164 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
165 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
166
167 cputime_t cputime_one_jiffy;
168
169 void (*dtl_consumer)(struct dtl_entry *, u64);
170
171 static void calc_cputime_factors(void)
172 {
173 struct div_result res;
174
175 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
176 __cputime_jiffies_factor = res.result_low;
177 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
178 __cputime_usec_factor = res.result_low;
179 div128_by_32(1, 0, tb_ticks_per_sec, &res);
180 __cputime_sec_factor = res.result_low;
181 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
182 __cputime_clockt_factor = res.result_low;
183 }
184
185 /*
186 * Read the SPURR on systems that have it, otherwise the PURR,
187 * or if that doesn't exist return the timebase value passed in.
188 */
189 static u64 read_spurr(u64 tb)
190 {
191 if (cpu_has_feature(CPU_FTR_SPURR))
192 return mfspr(SPRN_SPURR);
193 if (cpu_has_feature(CPU_FTR_PURR))
194 return mfspr(SPRN_PURR);
195 return tb;
196 }
197
198 #ifdef CONFIG_PPC_SPLPAR
199
200 /*
201 * Scan the dispatch trace log and count up the stolen time.
202 * Should be called with interrupts disabled.
203 */
204 static u64 scan_dispatch_log(u64 stop_tb)
205 {
206 u64 i = local_paca->dtl_ridx;
207 struct dtl_entry *dtl = local_paca->dtl_curr;
208 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
209 struct lppaca *vpa = local_paca->lppaca_ptr;
210 u64 tb_delta;
211 u64 stolen = 0;
212 u64 dtb;
213
214 if (!dtl)
215 return 0;
216
217 if (i == be64_to_cpu(vpa->dtl_idx))
218 return 0;
219 while (i < be64_to_cpu(vpa->dtl_idx)) {
220 dtb = be64_to_cpu(dtl->timebase);
221 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
222 be32_to_cpu(dtl->ready_to_enqueue_time);
223 barrier();
224 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
225 /* buffer has overflowed */
226 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
227 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
228 continue;
229 }
230 if (dtb > stop_tb)
231 break;
232 if (dtl_consumer)
233 dtl_consumer(dtl, i);
234 stolen += tb_delta;
235 ++i;
236 ++dtl;
237 if (dtl == dtl_end)
238 dtl = local_paca->dispatch_log;
239 }
240 local_paca->dtl_ridx = i;
241 local_paca->dtl_curr = dtl;
242 return stolen;
243 }
244
245 /*
246 * Accumulate stolen time by scanning the dispatch trace log.
247 * Called on entry from user mode.
248 */
249 void accumulate_stolen_time(void)
250 {
251 u64 sst, ust;
252
253 u8 save_soft_enabled = local_paca->soft_enabled;
254
255 /* We are called early in the exception entry, before
256 * soft/hard_enabled are sync'ed to the expected state
257 * for the exception. We are hard disabled but the PACA
258 * needs to reflect that so various debug stuff doesn't
259 * complain
260 */
261 local_paca->soft_enabled = 0;
262
263 sst = scan_dispatch_log(local_paca->starttime_user);
264 ust = scan_dispatch_log(local_paca->starttime);
265 local_paca->system_time -= sst;
266 local_paca->user_time -= ust;
267 local_paca->stolen_time += ust + sst;
268
269 local_paca->soft_enabled = save_soft_enabled;
270 }
271
272 static inline u64 calculate_stolen_time(u64 stop_tb)
273 {
274 u64 stolen = 0;
275
276 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
277 stolen = scan_dispatch_log(stop_tb);
278 get_paca()->system_time -= stolen;
279 }
280
281 stolen += get_paca()->stolen_time;
282 get_paca()->stolen_time = 0;
283 return stolen;
284 }
285
286 #else /* CONFIG_PPC_SPLPAR */
287 static inline u64 calculate_stolen_time(u64 stop_tb)
288 {
289 return 0;
290 }
291
292 #endif /* CONFIG_PPC_SPLPAR */
293
294 /*
295 * Account time for a transition between system, hard irq
296 * or soft irq state.
297 */
298 static u64 vtime_delta(struct task_struct *tsk,
299 u64 *sys_scaled, u64 *stolen)
300 {
301 u64 now, nowscaled, deltascaled;
302 u64 udelta, delta, user_scaled;
303
304 WARN_ON_ONCE(!irqs_disabled());
305
306 now = mftb();
307 nowscaled = read_spurr(now);
308 get_paca()->system_time += now - get_paca()->starttime;
309 get_paca()->starttime = now;
310 deltascaled = nowscaled - get_paca()->startspurr;
311 get_paca()->startspurr = nowscaled;
312
313 *stolen = calculate_stolen_time(now);
314
315 delta = get_paca()->system_time;
316 get_paca()->system_time = 0;
317 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
318 get_paca()->utime_sspurr = get_paca()->user_time;
319
320 /*
321 * Because we don't read the SPURR on every kernel entry/exit,
322 * deltascaled includes both user and system SPURR ticks.
323 * Apportion these ticks to system SPURR ticks and user
324 * SPURR ticks in the same ratio as the system time (delta)
325 * and user time (udelta) values obtained from the timebase
326 * over the same interval. The system ticks get accounted here;
327 * the user ticks get saved up in paca->user_time_scaled to be
328 * used by account_process_tick.
329 */
330 *sys_scaled = delta;
331 user_scaled = udelta;
332 if (deltascaled != delta + udelta) {
333 if (udelta) {
334 *sys_scaled = deltascaled * delta / (delta + udelta);
335 user_scaled = deltascaled - *sys_scaled;
336 } else {
337 *sys_scaled = deltascaled;
338 }
339 }
340 get_paca()->user_time_scaled += user_scaled;
341
342 return delta;
343 }
344
345 void vtime_account_system(struct task_struct *tsk)
346 {
347 u64 delta, sys_scaled, stolen;
348
349 delta = vtime_delta(tsk, &sys_scaled, &stolen);
350 account_system_time(tsk, 0, delta, sys_scaled);
351 if (stolen)
352 account_steal_time(stolen);
353 }
354 EXPORT_SYMBOL_GPL(vtime_account_system);
355
356 void vtime_account_idle(struct task_struct *tsk)
357 {
358 u64 delta, sys_scaled, stolen;
359
360 delta = vtime_delta(tsk, &sys_scaled, &stolen);
361 account_idle_time(delta + stolen);
362 }
363
364 /*
365 * Transfer the user time accumulated in the paca
366 * by the exception entry and exit code to the generic
367 * process user time records.
368 * Must be called with interrupts disabled.
369 * Assumes that vtime_account_system/idle() has been called
370 * recently (i.e. since the last entry from usermode) so that
371 * get_paca()->user_time_scaled is up to date.
372 */
373 void vtime_account_user(struct task_struct *tsk)
374 {
375 cputime_t utime, utimescaled;
376
377 utime = get_paca()->user_time;
378 utimescaled = get_paca()->user_time_scaled;
379 get_paca()->user_time = 0;
380 get_paca()->user_time_scaled = 0;
381 get_paca()->utime_sspurr = 0;
382 account_user_time(tsk, utime, utimescaled);
383 }
384
385 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
386 #define calc_cputime_factors()
387 #endif
388
389 void __delay(unsigned long loops)
390 {
391 unsigned long start;
392 int diff;
393
394 if (__USE_RTC()) {
395 start = get_rtcl();
396 do {
397 /* the RTCL register wraps at 1000000000 */
398 diff = get_rtcl() - start;
399 if (diff < 0)
400 diff += 1000000000;
401 } while (diff < loops);
402 } else {
403 start = get_tbl();
404 while (get_tbl() - start < loops)
405 HMT_low();
406 HMT_medium();
407 }
408 }
409 EXPORT_SYMBOL(__delay);
410
411 void udelay(unsigned long usecs)
412 {
413 __delay(tb_ticks_per_usec * usecs);
414 }
415 EXPORT_SYMBOL(udelay);
416
417 #ifdef CONFIG_SMP
418 unsigned long profile_pc(struct pt_regs *regs)
419 {
420 unsigned long pc = instruction_pointer(regs);
421
422 if (in_lock_functions(pc))
423 return regs->link;
424
425 return pc;
426 }
427 EXPORT_SYMBOL(profile_pc);
428 #endif
429
430 #ifdef CONFIG_IRQ_WORK
431
432 /*
433 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
434 */
435 #ifdef CONFIG_PPC64
436 static inline unsigned long test_irq_work_pending(void)
437 {
438 unsigned long x;
439
440 asm volatile("lbz %0,%1(13)"
441 : "=r" (x)
442 : "i" (offsetof(struct paca_struct, irq_work_pending)));
443 return x;
444 }
445
446 static inline void set_irq_work_pending_flag(void)
447 {
448 asm volatile("stb %0,%1(13)" : :
449 "r" (1),
450 "i" (offsetof(struct paca_struct, irq_work_pending)));
451 }
452
453 static inline void clear_irq_work_pending(void)
454 {
455 asm volatile("stb %0,%1(13)" : :
456 "r" (0),
457 "i" (offsetof(struct paca_struct, irq_work_pending)));
458 }
459
460 #else /* 32-bit */
461
462 DEFINE_PER_CPU(u8, irq_work_pending);
463
464 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
465 #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
466 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
467
468 #endif /* 32 vs 64 bit */
469
470 void arch_irq_work_raise(void)
471 {
472 preempt_disable();
473 set_irq_work_pending_flag();
474 set_dec(1);
475 preempt_enable();
476 }
477
478 #else /* CONFIG_IRQ_WORK */
479
480 #define test_irq_work_pending() 0
481 #define clear_irq_work_pending()
482
483 #endif /* CONFIG_IRQ_WORK */
484
485 static void __timer_interrupt(void)
486 {
487 struct pt_regs *regs = get_irq_regs();
488 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
489 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
490 u64 now;
491
492 trace_timer_interrupt_entry(regs);
493
494 if (test_irq_work_pending()) {
495 clear_irq_work_pending();
496 irq_work_run();
497 }
498
499 now = get_tb_or_rtc();
500 if (now >= *next_tb) {
501 *next_tb = ~(u64)0;
502 if (evt->event_handler)
503 evt->event_handler(evt);
504 __this_cpu_inc(irq_stat.timer_irqs_event);
505 } else {
506 now = *next_tb - now;
507 if (now <= DECREMENTER_MAX)
508 set_dec((int)now);
509 /* We may have raced with new irq work */
510 if (test_irq_work_pending())
511 set_dec(1);
512 __this_cpu_inc(irq_stat.timer_irqs_others);
513 }
514
515 #ifdef CONFIG_PPC64
516 /* collect purr register values often, for accurate calculations */
517 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
518 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
519 cu->current_tb = mfspr(SPRN_PURR);
520 }
521 #endif
522
523 trace_timer_interrupt_exit(regs);
524 }
525
526 /*
527 * timer_interrupt - gets called when the decrementer overflows,
528 * with interrupts disabled.
529 */
530 void timer_interrupt(struct pt_regs * regs)
531 {
532 struct pt_regs *old_regs;
533 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
534
535 /* Ensure a positive value is written to the decrementer, or else
536 * some CPUs will continue to take decrementer exceptions.
537 */
538 set_dec(DECREMENTER_MAX);
539
540 /* Some implementations of hotplug will get timer interrupts while
541 * offline, just ignore these and we also need to set
542 * decrementers_next_tb as MAX to make sure __check_irq_replay
543 * don't replay timer interrupt when return, otherwise we'll trap
544 * here infinitely :(
545 */
546 if (!cpu_online(smp_processor_id())) {
547 *next_tb = ~(u64)0;
548 return;
549 }
550
551 /* Conditionally hard-enable interrupts now that the DEC has been
552 * bumped to its maximum value
553 */
554 may_hard_irq_enable();
555
556
557 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
558 if (atomic_read(&ppc_n_lost_interrupts) != 0)
559 do_IRQ(regs);
560 #endif
561
562 old_regs = set_irq_regs(regs);
563 irq_enter();
564
565 __timer_interrupt();
566 irq_exit();
567 set_irq_regs(old_regs);
568 }
569
570 /*
571 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
572 * left pending on exit from a KVM guest. We don't need to do anything
573 * to clear them, as they are edge-triggered.
574 */
575 void hdec_interrupt(struct pt_regs *regs)
576 {
577 }
578
579 #ifdef CONFIG_SUSPEND
580 static void generic_suspend_disable_irqs(void)
581 {
582 /* Disable the decrementer, so that it doesn't interfere
583 * with suspending.
584 */
585
586 set_dec(DECREMENTER_MAX);
587 local_irq_disable();
588 set_dec(DECREMENTER_MAX);
589 }
590
591 static void generic_suspend_enable_irqs(void)
592 {
593 local_irq_enable();
594 }
595
596 /* Overrides the weak version in kernel/power/main.c */
597 void arch_suspend_disable_irqs(void)
598 {
599 if (ppc_md.suspend_disable_irqs)
600 ppc_md.suspend_disable_irqs();
601 generic_suspend_disable_irqs();
602 }
603
604 /* Overrides the weak version in kernel/power/main.c */
605 void arch_suspend_enable_irqs(void)
606 {
607 generic_suspend_enable_irqs();
608 if (ppc_md.suspend_enable_irqs)
609 ppc_md.suspend_enable_irqs();
610 }
611 #endif
612
613 unsigned long long tb_to_ns(unsigned long long ticks)
614 {
615 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
616 }
617 EXPORT_SYMBOL_GPL(tb_to_ns);
618
619 /*
620 * Scheduler clock - returns current time in nanosec units.
621 *
622 * Note: mulhdu(a, b) (multiply high double unsigned) returns
623 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
624 * are 64-bit unsigned numbers.
625 */
626 unsigned long long sched_clock(void)
627 {
628 if (__USE_RTC())
629 return get_rtc();
630 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
631 }
632
633
634 #ifdef CONFIG_PPC_PSERIES
635
636 /*
637 * Running clock - attempts to give a view of time passing for a virtualised
638 * kernels.
639 * Uses the VTB register if available otherwise a next best guess.
640 */
641 unsigned long long running_clock(void)
642 {
643 /*
644 * Don't read the VTB as a host since KVM does not switch in host
645 * timebase into the VTB when it takes a guest off the CPU, reading the
646 * VTB would result in reading 'last switched out' guest VTB.
647 *
648 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
649 * would be unsafe to rely only on the #ifdef above.
650 */
651 if (firmware_has_feature(FW_FEATURE_LPAR) &&
652 cpu_has_feature(CPU_FTR_ARCH_207S))
653 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
654
655 /*
656 * This is a next best approximation without a VTB.
657 * On a host which is running bare metal there should never be any stolen
658 * time and on a host which doesn't do any virtualisation TB *should* equal
659 * VTB so it makes no difference anyway.
660 */
661 return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
662 }
663 #endif
664
665 static int __init get_freq(char *name, int cells, unsigned long *val)
666 {
667 struct device_node *cpu;
668 const __be32 *fp;
669 int found = 0;
670
671 /* The cpu node should have timebase and clock frequency properties */
672 cpu = of_find_node_by_type(NULL, "cpu");
673
674 if (cpu) {
675 fp = of_get_property(cpu, name, NULL);
676 if (fp) {
677 found = 1;
678 *val = of_read_ulong(fp, cells);
679 }
680
681 of_node_put(cpu);
682 }
683
684 return found;
685 }
686
687 static void start_cpu_decrementer(void)
688 {
689 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
690 /* Clear any pending timer interrupts */
691 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
692
693 /* Enable decrementer interrupt */
694 mtspr(SPRN_TCR, TCR_DIE);
695 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
696 }
697
698 void __init generic_calibrate_decr(void)
699 {
700 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
701
702 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
703 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
704
705 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
706 "(not found)\n");
707 }
708
709 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
710
711 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
712 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
713
714 printk(KERN_ERR "WARNING: Estimating processor frequency "
715 "(not found)\n");
716 }
717 }
718
719 int update_persistent_clock(struct timespec now)
720 {
721 struct rtc_time tm;
722
723 if (!ppc_md.set_rtc_time)
724 return -ENODEV;
725
726 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
727 tm.tm_year -= 1900;
728 tm.tm_mon -= 1;
729
730 return ppc_md.set_rtc_time(&tm);
731 }
732
733 static void __read_persistent_clock(struct timespec *ts)
734 {
735 struct rtc_time tm;
736 static int first = 1;
737
738 ts->tv_nsec = 0;
739 /* XXX this is a litle fragile but will work okay in the short term */
740 if (first) {
741 first = 0;
742 if (ppc_md.time_init)
743 timezone_offset = ppc_md.time_init();
744
745 /* get_boot_time() isn't guaranteed to be safe to call late */
746 if (ppc_md.get_boot_time) {
747 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
748 return;
749 }
750 }
751 if (!ppc_md.get_rtc_time) {
752 ts->tv_sec = 0;
753 return;
754 }
755 ppc_md.get_rtc_time(&tm);
756
757 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
758 tm.tm_hour, tm.tm_min, tm.tm_sec);
759 }
760
761 void read_persistent_clock(struct timespec *ts)
762 {
763 __read_persistent_clock(ts);
764
765 /* Sanitize it in case real time clock is set below EPOCH */
766 if (ts->tv_sec < 0) {
767 ts->tv_sec = 0;
768 ts->tv_nsec = 0;
769 }
770
771 }
772
773 /* clocksource code */
774 static cycle_t rtc_read(struct clocksource *cs)
775 {
776 return (cycle_t)get_rtc();
777 }
778
779 static cycle_t timebase_read(struct clocksource *cs)
780 {
781 return (cycle_t)get_tb();
782 }
783
784 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
785 struct clocksource *clock, u32 mult, cycle_t cycle_last)
786 {
787 u64 new_tb_to_xs, new_stamp_xsec;
788 u32 frac_sec;
789
790 if (clock != &clocksource_timebase)
791 return;
792
793 /* Make userspace gettimeofday spin until we're done. */
794 ++vdso_data->tb_update_count;
795 smp_mb();
796
797 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
798 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
799 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
800 do_div(new_stamp_xsec, 1000000000);
801 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
802
803 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
804 /* this is tv_nsec / 1e9 as a 0.32 fraction */
805 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
806
807 /*
808 * tb_update_count is used to allow the userspace gettimeofday code
809 * to assure itself that it sees a consistent view of the tb_to_xs and
810 * stamp_xsec variables. It reads the tb_update_count, then reads
811 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
812 * the two values of tb_update_count match and are even then the
813 * tb_to_xs and stamp_xsec values are consistent. If not, then it
814 * loops back and reads them again until this criteria is met.
815 * We expect the caller to have done the first increment of
816 * vdso_data->tb_update_count already.
817 */
818 vdso_data->tb_orig_stamp = cycle_last;
819 vdso_data->stamp_xsec = new_stamp_xsec;
820 vdso_data->tb_to_xs = new_tb_to_xs;
821 vdso_data->wtom_clock_sec = wtm->tv_sec;
822 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
823 vdso_data->stamp_xtime = *wall_time;
824 vdso_data->stamp_sec_fraction = frac_sec;
825 smp_wmb();
826 ++(vdso_data->tb_update_count);
827 }
828
829 void update_vsyscall_tz(void)
830 {
831 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
832 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
833 }
834
835 static void __init clocksource_init(void)
836 {
837 struct clocksource *clock;
838
839 if (__USE_RTC())
840 clock = &clocksource_rtc;
841 else
842 clock = &clocksource_timebase;
843
844 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
845 printk(KERN_ERR "clocksource: %s is already registered\n",
846 clock->name);
847 return;
848 }
849
850 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
851 clock->name, clock->mult, clock->shift);
852 }
853
854 static int decrementer_set_next_event(unsigned long evt,
855 struct clock_event_device *dev)
856 {
857 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
858 set_dec(evt);
859
860 /* We may have raced with new irq work */
861 if (test_irq_work_pending())
862 set_dec(1);
863
864 return 0;
865 }
866
867 static int decrementer_shutdown(struct clock_event_device *dev)
868 {
869 decrementer_set_next_event(DECREMENTER_MAX, dev);
870 return 0;
871 }
872
873 /* Interrupt handler for the timer broadcast IPI */
874 void tick_broadcast_ipi_handler(void)
875 {
876 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
877
878 *next_tb = get_tb_or_rtc();
879 __timer_interrupt();
880 }
881
882 static void register_decrementer_clockevent(int cpu)
883 {
884 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
885
886 *dec = decrementer_clockevent;
887 dec->cpumask = cpumask_of(cpu);
888
889 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
890 dec->name, dec->mult, dec->shift, cpu);
891
892 clockevents_register_device(dec);
893 }
894
895 static void __init init_decrementer_clockevent(void)
896 {
897 int cpu = smp_processor_id();
898
899 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
900
901 decrementer_clockevent.max_delta_ns =
902 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
903 decrementer_clockevent.min_delta_ns =
904 clockevent_delta2ns(2, &decrementer_clockevent);
905
906 register_decrementer_clockevent(cpu);
907 }
908
909 void secondary_cpu_time_init(void)
910 {
911 /* Start the decrementer on CPUs that have manual control
912 * such as BookE
913 */
914 start_cpu_decrementer();
915
916 /* FIME: Should make unrelatred change to move snapshot_timebase
917 * call here ! */
918 register_decrementer_clockevent(smp_processor_id());
919 }
920
921 /* This function is only called on the boot processor */
922 void __init time_init(void)
923 {
924 struct div_result res;
925 u64 scale;
926 unsigned shift;
927
928 if (__USE_RTC()) {
929 /* 601 processor: dec counts down by 128 every 128ns */
930 ppc_tb_freq = 1000000000;
931 } else {
932 /* Normal PowerPC with timebase register */
933 ppc_md.calibrate_decr();
934 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
935 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
936 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
937 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
938 }
939
940 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
941 tb_ticks_per_sec = ppc_tb_freq;
942 tb_ticks_per_usec = ppc_tb_freq / 1000000;
943 calc_cputime_factors();
944 setup_cputime_one_jiffy();
945
946 /*
947 * Compute scale factor for sched_clock.
948 * The calibrate_decr() function has set tb_ticks_per_sec,
949 * which is the timebase frequency.
950 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
951 * the 128-bit result as a 64.64 fixed-point number.
952 * We then shift that number right until it is less than 1.0,
953 * giving us the scale factor and shift count to use in
954 * sched_clock().
955 */
956 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
957 scale = res.result_low;
958 for (shift = 0; res.result_high != 0; ++shift) {
959 scale = (scale >> 1) | (res.result_high << 63);
960 res.result_high >>= 1;
961 }
962 tb_to_ns_scale = scale;
963 tb_to_ns_shift = shift;
964 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
965 boot_tb = get_tb_or_rtc();
966
967 /* If platform provided a timezone (pmac), we correct the time */
968 if (timezone_offset) {
969 sys_tz.tz_minuteswest = -timezone_offset / 60;
970 sys_tz.tz_dsttime = 0;
971 }
972
973 vdso_data->tb_update_count = 0;
974 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
975
976 /* Start the decrementer on CPUs that have manual control
977 * such as BookE
978 */
979 start_cpu_decrementer();
980
981 /* Register the clocksource */
982 clocksource_init();
983
984 init_decrementer_clockevent();
985 tick_setup_hrtimer_broadcast();
986
987 #ifdef CONFIG_COMMON_CLK
988 of_clk_init(NULL);
989 #endif
990 }
991
992
993 #define FEBRUARY 2
994 #define STARTOFTIME 1970
995 #define SECDAY 86400L
996 #define SECYR (SECDAY * 365)
997 #define leapyear(year) ((year) % 4 == 0 && \
998 ((year) % 100 != 0 || (year) % 400 == 0))
999 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1000 #define days_in_month(a) (month_days[(a) - 1])
1001
1002 static int month_days[12] = {
1003 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1004 };
1005
1006 void to_tm(int tim, struct rtc_time * tm)
1007 {
1008 register int i;
1009 register long hms, day;
1010
1011 day = tim / SECDAY;
1012 hms = tim % SECDAY;
1013
1014 /* Hours, minutes, seconds are easy */
1015 tm->tm_hour = hms / 3600;
1016 tm->tm_min = (hms % 3600) / 60;
1017 tm->tm_sec = (hms % 3600) % 60;
1018
1019 /* Number of years in days */
1020 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1021 day -= days_in_year(i);
1022 tm->tm_year = i;
1023
1024 /* Number of months in days left */
1025 if (leapyear(tm->tm_year))
1026 days_in_month(FEBRUARY) = 29;
1027 for (i = 1; day >= days_in_month(i); i++)
1028 day -= days_in_month(i);
1029 days_in_month(FEBRUARY) = 28;
1030 tm->tm_mon = i;
1031
1032 /* Days are what is left over (+1) from all that. */
1033 tm->tm_mday = day + 1;
1034
1035 /*
1036 * No-one uses the day of the week.
1037 */
1038 tm->tm_wday = -1;
1039 }
1040 EXPORT_SYMBOL(to_tm);
1041
1042 /*
1043 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1044 * result.
1045 */
1046 void div128_by_32(u64 dividend_high, u64 dividend_low,
1047 unsigned divisor, struct div_result *dr)
1048 {
1049 unsigned long a, b, c, d;
1050 unsigned long w, x, y, z;
1051 u64 ra, rb, rc;
1052
1053 a = dividend_high >> 32;
1054 b = dividend_high & 0xffffffff;
1055 c = dividend_low >> 32;
1056 d = dividend_low & 0xffffffff;
1057
1058 w = a / divisor;
1059 ra = ((u64)(a - (w * divisor)) << 32) + b;
1060
1061 rb = ((u64) do_div(ra, divisor) << 32) + c;
1062 x = ra;
1063
1064 rc = ((u64) do_div(rb, divisor) << 32) + d;
1065 y = rb;
1066
1067 do_div(rc, divisor);
1068 z = rc;
1069
1070 dr->result_high = ((u64)w << 32) + x;
1071 dr->result_low = ((u64)y << 32) + z;
1072
1073 }
1074
1075 /* We don't need to calibrate delay, we use the CPU timebase for that */
1076 void calibrate_delay(void)
1077 {
1078 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1079 * as the number of __delay(1) in a jiffy, so make it so
1080 */
1081 loops_per_jiffy = tb_ticks_per_jiffy;
1082 }
1083
1084 static int __init rtc_init(void)
1085 {
1086 struct platform_device *pdev;
1087
1088 if (!ppc_md.get_rtc_time)
1089 return -ENODEV;
1090
1091 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1092
1093 return PTR_ERR_OR_ZERO(pdev);
1094 }
1095
1096 device_initcall(rtc_init);
This page took 0.051716 seconds and 5 git commands to generate.