[POWERPC] Use __get_cpu_var in time.c
[deliverable/linux.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73
74 /* powerpc clocksource/clockevent code */
75
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
78
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
81 .name = "rtc",
82 .rating = 400,
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 .mask = CLOCKSOURCE_MASK(64),
85 .shift = 22,
86 .mult = 0, /* To be filled in */
87 .read = rtc_read,
88 };
89
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
92 .name = "timebase",
93 .rating = 400,
94 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
95 .mask = CLOCKSOURCE_MASK(64),
96 .shift = 22,
97 .mult = 0, /* To be filled in */
98 .read = timebase_read,
99 };
100
101 #define DECREMENTER_MAX 0x7fffffff
102
103 static int decrementer_set_next_event(unsigned long evt,
104 struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 struct clock_event_device *dev);
107
108 static struct clock_event_device decrementer_clockevent = {
109 .name = "decrementer",
110 .rating = 200,
111 .shift = 16,
112 .mult = 0, /* To be filled in */
113 .irq = 0,
114 .set_next_event = decrementer_set_next_event,
115 .set_mode = decrementer_set_mode,
116 .features = CLOCK_EVT_FEAT_ONESHOT,
117 };
118
119 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120 static DEFINE_PER_CPU(u64, decrementer_next_tb);
121
122 #ifdef CONFIG_PPC_ISERIES
123 static unsigned long __initdata iSeries_recal_titan;
124 static signed long __initdata iSeries_recal_tb;
125
126 /* Forward declaration is only needed for iSereis compiles */
127 void __init clocksource_init(void);
128 #endif
129
130 #define XSEC_PER_SEC (1024*1024)
131
132 #ifdef CONFIG_PPC64
133 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
134 #else
135 /* compute ((xsec << 12) * max) >> 32 */
136 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
137 #endif
138
139 unsigned long tb_ticks_per_jiffy;
140 unsigned long tb_ticks_per_usec = 100; /* sane default */
141 EXPORT_SYMBOL(tb_ticks_per_usec);
142 unsigned long tb_ticks_per_sec;
143 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
144 u64 tb_to_xs;
145 unsigned tb_to_us;
146
147 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
148 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
149 u64 ticklen_to_xs; /* 0.64 fraction */
150
151 /* If last_tick_len corresponds to about 1/HZ seconds, then
152 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
153 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
154
155 DEFINE_SPINLOCK(rtc_lock);
156 EXPORT_SYMBOL_GPL(rtc_lock);
157
158 static u64 tb_to_ns_scale __read_mostly;
159 static unsigned tb_to_ns_shift __read_mostly;
160 static unsigned long boot_tb __read_mostly;
161
162 struct gettimeofday_struct do_gtod;
163
164 extern struct timezone sys_tz;
165 static long timezone_offset;
166
167 unsigned long ppc_proc_freq;
168 EXPORT_SYMBOL(ppc_proc_freq);
169 unsigned long ppc_tb_freq;
170
171 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
172 static DEFINE_PER_CPU(u64, last_jiffy);
173
174 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
175 /*
176 * Factors for converting from cputime_t (timebase ticks) to
177 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
178 * These are all stored as 0.64 fixed-point binary fractions.
179 */
180 u64 __cputime_jiffies_factor;
181 EXPORT_SYMBOL(__cputime_jiffies_factor);
182 u64 __cputime_msec_factor;
183 EXPORT_SYMBOL(__cputime_msec_factor);
184 u64 __cputime_sec_factor;
185 EXPORT_SYMBOL(__cputime_sec_factor);
186 u64 __cputime_clockt_factor;
187 EXPORT_SYMBOL(__cputime_clockt_factor);
188
189 static void calc_cputime_factors(void)
190 {
191 struct div_result res;
192
193 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
194 __cputime_jiffies_factor = res.result_low;
195 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
196 __cputime_msec_factor = res.result_low;
197 div128_by_32(1, 0, tb_ticks_per_sec, &res);
198 __cputime_sec_factor = res.result_low;
199 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
200 __cputime_clockt_factor = res.result_low;
201 }
202
203 /*
204 * Read the PURR on systems that have it, otherwise the timebase.
205 */
206 static u64 read_purr(void)
207 {
208 if (cpu_has_feature(CPU_FTR_PURR))
209 return mfspr(SPRN_PURR);
210 return mftb();
211 }
212
213 /*
214 * Read the SPURR on systems that have it, otherwise the purr
215 */
216 static u64 read_spurr(u64 purr)
217 {
218 if (cpu_has_feature(CPU_FTR_SPURR))
219 return mfspr(SPRN_SPURR);
220 return purr;
221 }
222
223 /*
224 * Account time for a transition between system, hard irq
225 * or soft irq state.
226 */
227 void account_system_vtime(struct task_struct *tsk)
228 {
229 u64 now, nowscaled, delta, deltascaled;
230 unsigned long flags;
231
232 local_irq_save(flags);
233 now = read_purr();
234 delta = now - get_paca()->startpurr;
235 get_paca()->startpurr = now;
236 nowscaled = read_spurr(now);
237 deltascaled = nowscaled - get_paca()->startspurr;
238 get_paca()->startspurr = nowscaled;
239 if (!in_interrupt()) {
240 /* deltascaled includes both user and system time.
241 * Hence scale it based on the purr ratio to estimate
242 * the system time */
243 if (get_paca()->user_time)
244 deltascaled = deltascaled * get_paca()->system_time /
245 (get_paca()->system_time + get_paca()->user_time);
246 delta += get_paca()->system_time;
247 get_paca()->system_time = 0;
248 }
249 account_system_time(tsk, 0, delta);
250 get_paca()->purrdelta = delta;
251 account_system_time_scaled(tsk, deltascaled);
252 get_paca()->spurrdelta = deltascaled;
253 local_irq_restore(flags);
254 }
255
256 /*
257 * Transfer the user and system times accumulated in the paca
258 * by the exception entry and exit code to the generic process
259 * user and system time records.
260 * Must be called with interrupts disabled.
261 */
262 void account_process_tick(struct task_struct *tsk, int user_tick)
263 {
264 cputime_t utime, utimescaled;
265
266 utime = get_paca()->user_time;
267 get_paca()->user_time = 0;
268 account_user_time(tsk, utime);
269
270 /* Estimate the scaled utime by scaling the real utime based
271 * on the last spurr to purr ratio */
272 utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
273 get_paca()->spurrdelta = get_paca()->purrdelta = 0;
274 account_user_time_scaled(tsk, utimescaled);
275 }
276
277 /*
278 * Stuff for accounting stolen time.
279 */
280 struct cpu_purr_data {
281 int initialized; /* thread is running */
282 u64 tb; /* last TB value read */
283 u64 purr; /* last PURR value read */
284 u64 spurr; /* last SPURR value read */
285 };
286
287 /*
288 * Each entry in the cpu_purr_data array is manipulated only by its
289 * "owner" cpu -- usually in the timer interrupt but also occasionally
290 * in process context for cpu online. As long as cpus do not touch
291 * each others' cpu_purr_data, disabling local interrupts is
292 * sufficient to serialize accesses.
293 */
294 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
295
296 static void snapshot_tb_and_purr(void *data)
297 {
298 unsigned long flags;
299 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
300
301 local_irq_save(flags);
302 p->tb = get_tb_or_rtc();
303 p->purr = mfspr(SPRN_PURR);
304 wmb();
305 p->initialized = 1;
306 local_irq_restore(flags);
307 }
308
309 /*
310 * Called during boot when all cpus have come up.
311 */
312 void snapshot_timebases(void)
313 {
314 if (!cpu_has_feature(CPU_FTR_PURR))
315 return;
316 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
317 }
318
319 /*
320 * Must be called with interrupts disabled.
321 */
322 void calculate_steal_time(void)
323 {
324 u64 tb, purr;
325 s64 stolen;
326 struct cpu_purr_data *pme;
327
328 if (!cpu_has_feature(CPU_FTR_PURR))
329 return;
330 pme = &__get_cpu_var(cpu_purr_data);
331 if (!pme->initialized)
332 return; /* this can happen in early boot */
333 tb = mftb();
334 purr = mfspr(SPRN_PURR);
335 stolen = (tb - pme->tb) - (purr - pme->purr);
336 if (stolen > 0)
337 account_steal_time(current, stolen);
338 pme->tb = tb;
339 pme->purr = purr;
340 }
341
342 #ifdef CONFIG_PPC_SPLPAR
343 /*
344 * Must be called before the cpu is added to the online map when
345 * a cpu is being brought up at runtime.
346 */
347 static void snapshot_purr(void)
348 {
349 struct cpu_purr_data *pme;
350 unsigned long flags;
351
352 if (!cpu_has_feature(CPU_FTR_PURR))
353 return;
354 local_irq_save(flags);
355 pme = &__get_cpu_var(cpu_purr_data);
356 pme->tb = mftb();
357 pme->purr = mfspr(SPRN_PURR);
358 pme->initialized = 1;
359 local_irq_restore(flags);
360 }
361
362 #endif /* CONFIG_PPC_SPLPAR */
363
364 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
365 #define calc_cputime_factors()
366 #define calculate_steal_time() do { } while (0)
367 #endif
368
369 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
370 #define snapshot_purr() do { } while (0)
371 #endif
372
373 /*
374 * Called when a cpu comes up after the system has finished booting,
375 * i.e. as a result of a hotplug cpu action.
376 */
377 void snapshot_timebase(void)
378 {
379 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
380 snapshot_purr();
381 }
382
383 void __delay(unsigned long loops)
384 {
385 unsigned long start;
386 int diff;
387
388 if (__USE_RTC()) {
389 start = get_rtcl();
390 do {
391 /* the RTCL register wraps at 1000000000 */
392 diff = get_rtcl() - start;
393 if (diff < 0)
394 diff += 1000000000;
395 } while (diff < loops);
396 } else {
397 start = get_tbl();
398 while (get_tbl() - start < loops)
399 HMT_low();
400 HMT_medium();
401 }
402 }
403 EXPORT_SYMBOL(__delay);
404
405 void udelay(unsigned long usecs)
406 {
407 __delay(tb_ticks_per_usec * usecs);
408 }
409 EXPORT_SYMBOL(udelay);
410
411
412 /*
413 * There are two copies of tb_to_xs and stamp_xsec so that no
414 * lock is needed to access and use these values in
415 * do_gettimeofday. We alternate the copies and as long as a
416 * reasonable time elapses between changes, there will never
417 * be inconsistent values. ntpd has a minimum of one minute
418 * between updates.
419 */
420 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
421 u64 new_tb_to_xs)
422 {
423 unsigned temp_idx;
424 struct gettimeofday_vars *temp_varp;
425
426 temp_idx = (do_gtod.var_idx == 0);
427 temp_varp = &do_gtod.vars[temp_idx];
428
429 temp_varp->tb_to_xs = new_tb_to_xs;
430 temp_varp->tb_orig_stamp = new_tb_stamp;
431 temp_varp->stamp_xsec = new_stamp_xsec;
432 smp_mb();
433 do_gtod.varp = temp_varp;
434 do_gtod.var_idx = temp_idx;
435
436 /*
437 * tb_update_count is used to allow the userspace gettimeofday code
438 * to assure itself that it sees a consistent view of the tb_to_xs and
439 * stamp_xsec variables. It reads the tb_update_count, then reads
440 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
441 * the two values of tb_update_count match and are even then the
442 * tb_to_xs and stamp_xsec values are consistent. If not, then it
443 * loops back and reads them again until this criteria is met.
444 * We expect the caller to have done the first increment of
445 * vdso_data->tb_update_count already.
446 */
447 vdso_data->tb_orig_stamp = new_tb_stamp;
448 vdso_data->stamp_xsec = new_stamp_xsec;
449 vdso_data->tb_to_xs = new_tb_to_xs;
450 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
451 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
452 smp_wmb();
453 ++(vdso_data->tb_update_count);
454 }
455
456 #ifdef CONFIG_SMP
457 unsigned long profile_pc(struct pt_regs *regs)
458 {
459 unsigned long pc = instruction_pointer(regs);
460
461 if (in_lock_functions(pc))
462 return regs->link;
463
464 return pc;
465 }
466 EXPORT_SYMBOL(profile_pc);
467 #endif
468
469 #ifdef CONFIG_PPC_ISERIES
470
471 /*
472 * This function recalibrates the timebase based on the 49-bit time-of-day
473 * value in the Titan chip. The Titan is much more accurate than the value
474 * returned by the service processor for the timebase frequency.
475 */
476
477 static int __init iSeries_tb_recal(void)
478 {
479 struct div_result divres;
480 unsigned long titan, tb;
481
482 /* Make sure we only run on iSeries */
483 if (!firmware_has_feature(FW_FEATURE_ISERIES))
484 return -ENODEV;
485
486 tb = get_tb();
487 titan = HvCallXm_loadTod();
488 if ( iSeries_recal_titan ) {
489 unsigned long tb_ticks = tb - iSeries_recal_tb;
490 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
491 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
492 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
493 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
494 char sign = '+';
495 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
496 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
497
498 if ( tick_diff < 0 ) {
499 tick_diff = -tick_diff;
500 sign = '-';
501 }
502 if ( tick_diff ) {
503 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
504 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
505 new_tb_ticks_per_jiffy, sign, tick_diff );
506 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
507 tb_ticks_per_sec = new_tb_ticks_per_sec;
508 calc_cputime_factors();
509 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
510 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
511 tb_to_xs = divres.result_low;
512 do_gtod.varp->tb_to_xs = tb_to_xs;
513 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
514 vdso_data->tb_to_xs = tb_to_xs;
515 }
516 else {
517 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
518 " new tb_ticks_per_jiffy = %lu\n"
519 " old tb_ticks_per_jiffy = %lu\n",
520 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
521 }
522 }
523 }
524 iSeries_recal_titan = titan;
525 iSeries_recal_tb = tb;
526
527 /* Called here as now we know accurate values for the timebase */
528 clocksource_init();
529 return 0;
530 }
531 late_initcall(iSeries_tb_recal);
532
533 /* Called from platform early init */
534 void __init iSeries_time_init_early(void)
535 {
536 iSeries_recal_tb = get_tb();
537 iSeries_recal_titan = HvCallXm_loadTod();
538 }
539 #endif /* CONFIG_PPC_ISERIES */
540
541 /*
542 * For iSeries shared processors, we have to let the hypervisor
543 * set the hardware decrementer. We set a virtual decrementer
544 * in the lppaca and call the hypervisor if the virtual
545 * decrementer is less than the current value in the hardware
546 * decrementer. (almost always the new decrementer value will
547 * be greater than the current hardware decementer so the hypervisor
548 * call will not be needed)
549 */
550
551 /*
552 * timer_interrupt - gets called when the decrementer overflows,
553 * with interrupts disabled.
554 */
555 void timer_interrupt(struct pt_regs * regs)
556 {
557 struct pt_regs *old_regs;
558 int cpu = smp_processor_id();
559 struct clock_event_device *evt = &per_cpu(decrementers, cpu);
560 u64 now;
561
562 /* Ensure a positive value is written to the decrementer, or else
563 * some CPUs will continuue to take decrementer exceptions */
564 set_dec(DECREMENTER_MAX);
565
566 #ifdef CONFIG_PPC32
567 if (atomic_read(&ppc_n_lost_interrupts) != 0)
568 do_IRQ(regs);
569 #endif
570
571 now = get_tb_or_rtc();
572 if (now < per_cpu(decrementer_next_tb, cpu)) {
573 /* not time for this event yet */
574 now = per_cpu(decrementer_next_tb, cpu) - now;
575 if (now <= DECREMENTER_MAX)
576 set_dec((int)now);
577 return;
578 }
579 old_regs = set_irq_regs(regs);
580 irq_enter();
581
582 calculate_steal_time();
583
584 #ifdef CONFIG_PPC_ISERIES
585 if (firmware_has_feature(FW_FEATURE_ISERIES))
586 get_lppaca()->int_dword.fields.decr_int = 0;
587 #endif
588
589 if (evt->event_handler)
590 evt->event_handler(evt);
591
592 #ifdef CONFIG_PPC_ISERIES
593 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
594 process_hvlpevents();
595 #endif
596
597 #ifdef CONFIG_PPC64
598 /* collect purr register values often, for accurate calculations */
599 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
600 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
601 cu->current_tb = mfspr(SPRN_PURR);
602 }
603 #endif
604
605 irq_exit();
606 set_irq_regs(old_regs);
607 }
608
609 void wakeup_decrementer(void)
610 {
611 unsigned long ticks;
612
613 /*
614 * The timebase gets saved on sleep and restored on wakeup,
615 * so all we need to do is to reset the decrementer.
616 */
617 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
618 if (ticks < tb_ticks_per_jiffy)
619 ticks = tb_ticks_per_jiffy - ticks;
620 else
621 ticks = 1;
622 set_dec(ticks);
623 }
624
625 #ifdef CONFIG_SMP
626 void __init smp_space_timers(unsigned int max_cpus)
627 {
628 int i;
629 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
630
631 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
632 previous_tb -= tb_ticks_per_jiffy;
633
634 for_each_possible_cpu(i) {
635 if (i == boot_cpuid)
636 continue;
637 per_cpu(last_jiffy, i) = previous_tb;
638 }
639 }
640 #endif
641
642 /*
643 * Scheduler clock - returns current time in nanosec units.
644 *
645 * Note: mulhdu(a, b) (multiply high double unsigned) returns
646 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
647 * are 64-bit unsigned numbers.
648 */
649 unsigned long long sched_clock(void)
650 {
651 if (__USE_RTC())
652 return get_rtc();
653 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
654 }
655
656 static int __init get_freq(char *name, int cells, unsigned long *val)
657 {
658 struct device_node *cpu;
659 const unsigned int *fp;
660 int found = 0;
661
662 /* The cpu node should have timebase and clock frequency properties */
663 cpu = of_find_node_by_type(NULL, "cpu");
664
665 if (cpu) {
666 fp = of_get_property(cpu, name, NULL);
667 if (fp) {
668 found = 1;
669 *val = of_read_ulong(fp, cells);
670 }
671
672 of_node_put(cpu);
673 }
674
675 return found;
676 }
677
678 void __init generic_calibrate_decr(void)
679 {
680 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
681
682 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
683 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
684
685 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
686 "(not found)\n");
687 }
688
689 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
690
691 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
692 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
693
694 printk(KERN_ERR "WARNING: Estimating processor frequency "
695 "(not found)\n");
696 }
697
698 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
699 /* Set the time base to zero */
700 mtspr(SPRN_TBWL, 0);
701 mtspr(SPRN_TBWU, 0);
702
703 /* Clear any pending timer interrupts */
704 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
705
706 /* Enable decrementer interrupt */
707 mtspr(SPRN_TCR, TCR_DIE);
708 #endif
709 }
710
711 int update_persistent_clock(struct timespec now)
712 {
713 struct rtc_time tm;
714
715 if (!ppc_md.set_rtc_time)
716 return 0;
717
718 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
719 tm.tm_year -= 1900;
720 tm.tm_mon -= 1;
721
722 return ppc_md.set_rtc_time(&tm);
723 }
724
725 unsigned long read_persistent_clock(void)
726 {
727 struct rtc_time tm;
728 static int first = 1;
729
730 /* XXX this is a litle fragile but will work okay in the short term */
731 if (first) {
732 first = 0;
733 if (ppc_md.time_init)
734 timezone_offset = ppc_md.time_init();
735
736 /* get_boot_time() isn't guaranteed to be safe to call late */
737 if (ppc_md.get_boot_time)
738 return ppc_md.get_boot_time() -timezone_offset;
739 }
740 if (!ppc_md.get_rtc_time)
741 return 0;
742 ppc_md.get_rtc_time(&tm);
743 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
744 tm.tm_hour, tm.tm_min, tm.tm_sec);
745 }
746
747 /* clocksource code */
748 static cycle_t rtc_read(void)
749 {
750 return (cycle_t)get_rtc();
751 }
752
753 static cycle_t timebase_read(void)
754 {
755 return (cycle_t)get_tb();
756 }
757
758 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
759 {
760 u64 t2x, stamp_xsec;
761
762 if (clock != &clocksource_timebase)
763 return;
764
765 /* Make userspace gettimeofday spin until we're done. */
766 ++vdso_data->tb_update_count;
767 smp_mb();
768
769 /* XXX this assumes clock->shift == 22 */
770 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
771 t2x = (u64) clock->mult * 4611686018ULL;
772 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
773 do_div(stamp_xsec, 1000000000);
774 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
775 update_gtod(clock->cycle_last, stamp_xsec, t2x);
776 }
777
778 void update_vsyscall_tz(void)
779 {
780 /* Make userspace gettimeofday spin until we're done. */
781 ++vdso_data->tb_update_count;
782 smp_mb();
783 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
784 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
785 smp_mb();
786 ++vdso_data->tb_update_count;
787 }
788
789 void __init clocksource_init(void)
790 {
791 struct clocksource *clock;
792
793 if (__USE_RTC())
794 clock = &clocksource_rtc;
795 else
796 clock = &clocksource_timebase;
797
798 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
799
800 if (clocksource_register(clock)) {
801 printk(KERN_ERR "clocksource: %s is already registered\n",
802 clock->name);
803 return;
804 }
805
806 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
807 clock->name, clock->mult, clock->shift);
808 }
809
810 static int decrementer_set_next_event(unsigned long evt,
811 struct clock_event_device *dev)
812 {
813 __get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
814 set_dec(evt);
815 return 0;
816 }
817
818 static void decrementer_set_mode(enum clock_event_mode mode,
819 struct clock_event_device *dev)
820 {
821 if (mode != CLOCK_EVT_MODE_ONESHOT)
822 decrementer_set_next_event(DECREMENTER_MAX, dev);
823 }
824
825 static void register_decrementer_clockevent(int cpu)
826 {
827 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
828
829 *dec = decrementer_clockevent;
830 dec->cpumask = cpumask_of_cpu(cpu);
831
832 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
833 dec->name, dec->mult, dec->shift, cpu);
834
835 clockevents_register_device(dec);
836 }
837
838 static void __init init_decrementer_clockevent(void)
839 {
840 int cpu = smp_processor_id();
841
842 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
843 decrementer_clockevent.shift);
844 decrementer_clockevent.max_delta_ns =
845 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
846 decrementer_clockevent.min_delta_ns =
847 clockevent_delta2ns(2, &decrementer_clockevent);
848
849 register_decrementer_clockevent(cpu);
850 }
851
852 void secondary_cpu_time_init(void)
853 {
854 /* FIME: Should make unrelatred change to move snapshot_timebase
855 * call here ! */
856 register_decrementer_clockevent(smp_processor_id());
857 }
858
859 /* This function is only called on the boot processor */
860 void __init time_init(void)
861 {
862 unsigned long flags;
863 struct div_result res;
864 u64 scale, x;
865 unsigned shift;
866
867 if (__USE_RTC()) {
868 /* 601 processor: dec counts down by 128 every 128ns */
869 ppc_tb_freq = 1000000000;
870 tb_last_jiffy = get_rtcl();
871 } else {
872 /* Normal PowerPC with timebase register */
873 ppc_md.calibrate_decr();
874 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
875 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
876 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
877 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
878 tb_last_jiffy = get_tb();
879 }
880
881 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
882 tb_ticks_per_sec = ppc_tb_freq;
883 tb_ticks_per_usec = ppc_tb_freq / 1000000;
884 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
885 calc_cputime_factors();
886
887 /*
888 * Calculate the length of each tick in ns. It will not be
889 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
890 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
891 * rounded up.
892 */
893 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
894 do_div(x, ppc_tb_freq);
895 tick_nsec = x;
896 last_tick_len = x << TICKLEN_SCALE;
897
898 /*
899 * Compute ticklen_to_xs, which is a factor which gets multiplied
900 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
901 * It is computed as:
902 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
903 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
904 * which turns out to be N = 51 - SHIFT_HZ.
905 * This gives the result as a 0.64 fixed-point fraction.
906 * That value is reduced by an offset amounting to 1 xsec per
907 * 2^31 timebase ticks to avoid problems with time going backwards
908 * by 1 xsec when we do timer_recalc_offset due to losing the
909 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
910 * since there are 2^20 xsec in a second.
911 */
912 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
913 tb_ticks_per_jiffy << SHIFT_HZ, &res);
914 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
915 ticklen_to_xs = res.result_low;
916
917 /* Compute tb_to_xs from tick_nsec */
918 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
919
920 /*
921 * Compute scale factor for sched_clock.
922 * The calibrate_decr() function has set tb_ticks_per_sec,
923 * which is the timebase frequency.
924 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
925 * the 128-bit result as a 64.64 fixed-point number.
926 * We then shift that number right until it is less than 1.0,
927 * giving us the scale factor and shift count to use in
928 * sched_clock().
929 */
930 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
931 scale = res.result_low;
932 for (shift = 0; res.result_high != 0; ++shift) {
933 scale = (scale >> 1) | (res.result_high << 63);
934 res.result_high >>= 1;
935 }
936 tb_to_ns_scale = scale;
937 tb_to_ns_shift = shift;
938 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
939 boot_tb = get_tb_or_rtc();
940
941 write_seqlock_irqsave(&xtime_lock, flags);
942
943 /* If platform provided a timezone (pmac), we correct the time */
944 if (timezone_offset) {
945 sys_tz.tz_minuteswest = -timezone_offset / 60;
946 sys_tz.tz_dsttime = 0;
947 }
948
949 do_gtod.varp = &do_gtod.vars[0];
950 do_gtod.var_idx = 0;
951 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
952 __get_cpu_var(last_jiffy) = tb_last_jiffy;
953 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
954 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
955 do_gtod.varp->tb_to_xs = tb_to_xs;
956 do_gtod.tb_to_us = tb_to_us;
957
958 vdso_data->tb_orig_stamp = tb_last_jiffy;
959 vdso_data->tb_update_count = 0;
960 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
961 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
962 vdso_data->tb_to_xs = tb_to_xs;
963
964 time_freq = 0;
965
966 write_sequnlock_irqrestore(&xtime_lock, flags);
967
968 /* Register the clocksource, if we're not running on iSeries */
969 if (!firmware_has_feature(FW_FEATURE_ISERIES))
970 clocksource_init();
971
972 init_decrementer_clockevent();
973 }
974
975
976 #define FEBRUARY 2
977 #define STARTOFTIME 1970
978 #define SECDAY 86400L
979 #define SECYR (SECDAY * 365)
980 #define leapyear(year) ((year) % 4 == 0 && \
981 ((year) % 100 != 0 || (year) % 400 == 0))
982 #define days_in_year(a) (leapyear(a) ? 366 : 365)
983 #define days_in_month(a) (month_days[(a) - 1])
984
985 static int month_days[12] = {
986 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
987 };
988
989 /*
990 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
991 */
992 void GregorianDay(struct rtc_time * tm)
993 {
994 int leapsToDate;
995 int lastYear;
996 int day;
997 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
998
999 lastYear = tm->tm_year - 1;
1000
1001 /*
1002 * Number of leap corrections to apply up to end of last year
1003 */
1004 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1005
1006 /*
1007 * This year is a leap year if it is divisible by 4 except when it is
1008 * divisible by 100 unless it is divisible by 400
1009 *
1010 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1011 */
1012 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1013
1014 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1015 tm->tm_mday;
1016
1017 tm->tm_wday = day % 7;
1018 }
1019
1020 void to_tm(int tim, struct rtc_time * tm)
1021 {
1022 register int i;
1023 register long hms, day;
1024
1025 day = tim / SECDAY;
1026 hms = tim % SECDAY;
1027
1028 /* Hours, minutes, seconds are easy */
1029 tm->tm_hour = hms / 3600;
1030 tm->tm_min = (hms % 3600) / 60;
1031 tm->tm_sec = (hms % 3600) % 60;
1032
1033 /* Number of years in days */
1034 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1035 day -= days_in_year(i);
1036 tm->tm_year = i;
1037
1038 /* Number of months in days left */
1039 if (leapyear(tm->tm_year))
1040 days_in_month(FEBRUARY) = 29;
1041 for (i = 1; day >= days_in_month(i); i++)
1042 day -= days_in_month(i);
1043 days_in_month(FEBRUARY) = 28;
1044 tm->tm_mon = i;
1045
1046 /* Days are what is left over (+1) from all that. */
1047 tm->tm_mday = day + 1;
1048
1049 /*
1050 * Determine the day of week
1051 */
1052 GregorianDay(tm);
1053 }
1054
1055 /* Auxiliary function to compute scaling factors */
1056 /* Actually the choice of a timebase running at 1/4 the of the bus
1057 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1058 * It makes this computation very precise (27-28 bits typically) which
1059 * is optimistic considering the stability of most processor clock
1060 * oscillators and the precision with which the timebase frequency
1061 * is measured but does not harm.
1062 */
1063 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1064 {
1065 unsigned mlt=0, tmp, err;
1066 /* No concern for performance, it's done once: use a stupid
1067 * but safe and compact method to find the multiplier.
1068 */
1069
1070 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1071 if (mulhwu(inscale, mlt|tmp) < outscale)
1072 mlt |= tmp;
1073 }
1074
1075 /* We might still be off by 1 for the best approximation.
1076 * A side effect of this is that if outscale is too large
1077 * the returned value will be zero.
1078 * Many corner cases have been checked and seem to work,
1079 * some might have been forgotten in the test however.
1080 */
1081
1082 err = inscale * (mlt+1);
1083 if (err <= inscale/2)
1084 mlt++;
1085 return mlt;
1086 }
1087
1088 /*
1089 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1090 * result.
1091 */
1092 void div128_by_32(u64 dividend_high, u64 dividend_low,
1093 unsigned divisor, struct div_result *dr)
1094 {
1095 unsigned long a, b, c, d;
1096 unsigned long w, x, y, z;
1097 u64 ra, rb, rc;
1098
1099 a = dividend_high >> 32;
1100 b = dividend_high & 0xffffffff;
1101 c = dividend_low >> 32;
1102 d = dividend_low & 0xffffffff;
1103
1104 w = a / divisor;
1105 ra = ((u64)(a - (w * divisor)) << 32) + b;
1106
1107 rb = ((u64) do_div(ra, divisor) << 32) + c;
1108 x = ra;
1109
1110 rc = ((u64) do_div(rb, divisor) << 32) + d;
1111 y = rb;
1112
1113 do_div(rc, divisor);
1114 z = rc;
1115
1116 dr->result_high = ((u64)w << 32) + x;
1117 dr->result_low = ((u64)y << 32) + z;
1118
1119 }
This page took 0.06009 seconds and 5 git commands to generate.