[PATCH] remove superflous ctime/mtime updates in affs
[deliverable/linux.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53
54 #include <asm/io.h>
55 #include <asm/processor.h>
56 #include <asm/nvram.h>
57 #include <asm/cache.h>
58 #include <asm/machdep.h>
59 #include <asm/uaccess.h>
60 #include <asm/time.h>
61 #include <asm/prom.h>
62 #include <asm/irq.h>
63 #include <asm/div64.h>
64 #ifdef CONFIG_PPC64
65 #include <asm/systemcfg.h>
66 #include <asm/firmware.h>
67 #endif
68 #ifdef CONFIG_PPC_ISERIES
69 #include <asm/iseries/it_lp_queue.h>
70 #include <asm/iseries/hv_call_xm.h>
71 #endif
72 #include <asm/smp.h>
73
74 /* keep track of when we need to update the rtc */
75 time_t last_rtc_update;
76 extern int piranha_simulator;
77 #ifdef CONFIG_PPC_ISERIES
78 unsigned long iSeries_recal_titan = 0;
79 unsigned long iSeries_recal_tb = 0;
80 static unsigned long first_settimeofday = 1;
81 #endif
82
83 /* The decrementer counts down by 128 every 128ns on a 601. */
84 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
85
86 #define XSEC_PER_SEC (1024*1024)
87
88 #ifdef CONFIG_PPC64
89 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
90 #else
91 /* compute ((xsec << 12) * max) >> 32 */
92 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
93 #endif
94
95 unsigned long tb_ticks_per_jiffy;
96 unsigned long tb_ticks_per_usec = 100; /* sane default */
97 EXPORT_SYMBOL(tb_ticks_per_usec);
98 unsigned long tb_ticks_per_sec;
99 u64 tb_to_xs;
100 unsigned tb_to_us;
101 unsigned long processor_freq;
102 DEFINE_SPINLOCK(rtc_lock);
103 EXPORT_SYMBOL_GPL(rtc_lock);
104
105 u64 tb_to_ns_scale;
106 unsigned tb_to_ns_shift;
107
108 struct gettimeofday_struct do_gtod;
109
110 extern unsigned long wall_jiffies;
111
112 extern struct timezone sys_tz;
113 static long timezone_offset;
114
115 void ppc_adjtimex(void);
116
117 static unsigned adjusting_time = 0;
118
119 unsigned long ppc_proc_freq;
120 unsigned long ppc_tb_freq;
121
122 #ifdef CONFIG_PPC32 /* XXX for now */
123 #define boot_cpuid 0
124 #endif
125
126 u64 tb_last_jiffy __cacheline_aligned_in_smp;
127 unsigned long tb_last_stamp;
128
129 /*
130 * Note that on ppc32 this only stores the bottom 32 bits of
131 * the timebase value, but that's enough to tell when a jiffy
132 * has passed.
133 */
134 DEFINE_PER_CPU(unsigned long, last_jiffy);
135
136 static __inline__ void timer_check_rtc(void)
137 {
138 /*
139 * update the rtc when needed, this should be performed on the
140 * right fraction of a second. Half or full second ?
141 * Full second works on mk48t59 clocks, others need testing.
142 * Note that this update is basically only used through
143 * the adjtimex system calls. Setting the HW clock in
144 * any other way is a /dev/rtc and userland business.
145 * This is still wrong by -0.5/+1.5 jiffies because of the
146 * timer interrupt resolution and possible delay, but here we
147 * hit a quantization limit which can only be solved by higher
148 * resolution timers and decoupling time management from timer
149 * interrupts. This is also wrong on the clocks
150 * which require being written at the half second boundary.
151 * We should have an rtc call that only sets the minutes and
152 * seconds like on Intel to avoid problems with non UTC clocks.
153 */
154 if (ppc_md.set_rtc_time && ntp_synced() &&
155 xtime.tv_sec - last_rtc_update >= 659 &&
156 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
157 jiffies - wall_jiffies == 1) {
158 struct rtc_time tm;
159 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
160 tm.tm_year -= 1900;
161 tm.tm_mon -= 1;
162 if (ppc_md.set_rtc_time(&tm) == 0)
163 last_rtc_update = xtime.tv_sec + 1;
164 else
165 /* Try again one minute later */
166 last_rtc_update += 60;
167 }
168 }
169
170 /*
171 * This version of gettimeofday has microsecond resolution.
172 */
173 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
174 {
175 unsigned long sec, usec;
176 u64 tb_ticks, xsec;
177 struct gettimeofday_vars *temp_varp;
178 u64 temp_tb_to_xs, temp_stamp_xsec;
179
180 /*
181 * These calculations are faster (gets rid of divides)
182 * if done in units of 1/2^20 rather than microseconds.
183 * The conversion to microseconds at the end is done
184 * without a divide (and in fact, without a multiply)
185 */
186 temp_varp = do_gtod.varp;
187 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
188 temp_tb_to_xs = temp_varp->tb_to_xs;
189 temp_stamp_xsec = temp_varp->stamp_xsec;
190 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
191 sec = xsec / XSEC_PER_SEC;
192 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
193 usec = SCALE_XSEC(usec, 1000000);
194
195 tv->tv_sec = sec;
196 tv->tv_usec = usec;
197 }
198
199 void do_gettimeofday(struct timeval *tv)
200 {
201 if (__USE_RTC()) {
202 /* do this the old way */
203 unsigned long flags, seq;
204 unsigned int sec, nsec, usec, lost;
205
206 do {
207 seq = read_seqbegin_irqsave(&xtime_lock, flags);
208 sec = xtime.tv_sec;
209 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
210 lost = jiffies - wall_jiffies;
211 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
212 usec = nsec / 1000 + lost * (1000000 / HZ);
213 while (usec >= 1000000) {
214 usec -= 1000000;
215 ++sec;
216 }
217 tv->tv_sec = sec;
218 tv->tv_usec = usec;
219 return;
220 }
221 __do_gettimeofday(tv, get_tb());
222 }
223
224 EXPORT_SYMBOL(do_gettimeofday);
225
226 /* Synchronize xtime with do_gettimeofday */
227
228 static inline void timer_sync_xtime(unsigned long cur_tb)
229 {
230 #ifdef CONFIG_PPC64
231 /* why do we do this? */
232 struct timeval my_tv;
233
234 __do_gettimeofday(&my_tv, cur_tb);
235
236 if (xtime.tv_sec <= my_tv.tv_sec) {
237 xtime.tv_sec = my_tv.tv_sec;
238 xtime.tv_nsec = my_tv.tv_usec * 1000;
239 }
240 #endif
241 }
242
243 /*
244 * There are two copies of tb_to_xs and stamp_xsec so that no
245 * lock is needed to access and use these values in
246 * do_gettimeofday. We alternate the copies and as long as a
247 * reasonable time elapses between changes, there will never
248 * be inconsistent values. ntpd has a minimum of one minute
249 * between updates.
250 */
251 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
252 u64 new_tb_to_xs)
253 {
254 unsigned temp_idx;
255 struct gettimeofday_vars *temp_varp;
256
257 temp_idx = (do_gtod.var_idx == 0);
258 temp_varp = &do_gtod.vars[temp_idx];
259
260 temp_varp->tb_to_xs = new_tb_to_xs;
261 temp_varp->tb_orig_stamp = new_tb_stamp;
262 temp_varp->stamp_xsec = new_stamp_xsec;
263 smp_mb();
264 do_gtod.varp = temp_varp;
265 do_gtod.var_idx = temp_idx;
266
267 #ifdef CONFIG_PPC64
268 /*
269 * tb_update_count is used to allow the userspace gettimeofday code
270 * to assure itself that it sees a consistent view of the tb_to_xs and
271 * stamp_xsec variables. It reads the tb_update_count, then reads
272 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
273 * the two values of tb_update_count match and are even then the
274 * tb_to_xs and stamp_xsec values are consistent. If not, then it
275 * loops back and reads them again until this criteria is met.
276 */
277 ++(systemcfg->tb_update_count);
278 smp_wmb();
279 systemcfg->tb_orig_stamp = new_tb_stamp;
280 systemcfg->stamp_xsec = new_stamp_xsec;
281 systemcfg->tb_to_xs = new_tb_to_xs;
282 smp_wmb();
283 ++(systemcfg->tb_update_count);
284 #endif
285 }
286
287 /*
288 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
289 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
290 * difference tb - tb_orig_stamp small enough to always fit inside a
291 * 32 bits number. This is a requirement of our fast 32 bits userland
292 * implementation in the vdso. If we "miss" a call to this function
293 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
294 * with a too big difference, then the vdso will fallback to calling
295 * the syscall
296 */
297 static __inline__ void timer_recalc_offset(u64 cur_tb)
298 {
299 unsigned long offset;
300 u64 new_stamp_xsec;
301
302 if (__USE_RTC())
303 return;
304 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
305 if ((offset & 0x80000000u) == 0)
306 return;
307 new_stamp_xsec = do_gtod.varp->stamp_xsec
308 + mulhdu(offset, do_gtod.varp->tb_to_xs);
309 update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
310 }
311
312 #ifdef CONFIG_SMP
313 unsigned long profile_pc(struct pt_regs *regs)
314 {
315 unsigned long pc = instruction_pointer(regs);
316
317 if (in_lock_functions(pc))
318 return regs->link;
319
320 return pc;
321 }
322 EXPORT_SYMBOL(profile_pc);
323 #endif
324
325 #ifdef CONFIG_PPC_ISERIES
326
327 /*
328 * This function recalibrates the timebase based on the 49-bit time-of-day
329 * value in the Titan chip. The Titan is much more accurate than the value
330 * returned by the service processor for the timebase frequency.
331 */
332
333 static void iSeries_tb_recal(void)
334 {
335 struct div_result divres;
336 unsigned long titan, tb;
337 tb = get_tb();
338 titan = HvCallXm_loadTod();
339 if ( iSeries_recal_titan ) {
340 unsigned long tb_ticks = tb - iSeries_recal_tb;
341 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
342 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
343 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
344 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
345 char sign = '+';
346 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
347 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
348
349 if ( tick_diff < 0 ) {
350 tick_diff = -tick_diff;
351 sign = '-';
352 }
353 if ( tick_diff ) {
354 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
355 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
356 new_tb_ticks_per_jiffy, sign, tick_diff );
357 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
358 tb_ticks_per_sec = new_tb_ticks_per_sec;
359 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
360 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
361 tb_to_xs = divres.result_low;
362 do_gtod.varp->tb_to_xs = tb_to_xs;
363 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
364 systemcfg->tb_to_xs = tb_to_xs;
365 }
366 else {
367 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
368 " new tb_ticks_per_jiffy = %lu\n"
369 " old tb_ticks_per_jiffy = %lu\n",
370 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
371 }
372 }
373 }
374 iSeries_recal_titan = titan;
375 iSeries_recal_tb = tb;
376 }
377 #endif
378
379 /*
380 * For iSeries shared processors, we have to let the hypervisor
381 * set the hardware decrementer. We set a virtual decrementer
382 * in the lppaca and call the hypervisor if the virtual
383 * decrementer is less than the current value in the hardware
384 * decrementer. (almost always the new decrementer value will
385 * be greater than the current hardware decementer so the hypervisor
386 * call will not be needed)
387 */
388
389 /*
390 * timer_interrupt - gets called when the decrementer overflows,
391 * with interrupts disabled.
392 */
393 void timer_interrupt(struct pt_regs * regs)
394 {
395 int next_dec;
396 int cpu = smp_processor_id();
397 unsigned long ticks;
398
399 #ifdef CONFIG_PPC32
400 if (atomic_read(&ppc_n_lost_interrupts) != 0)
401 do_IRQ(regs);
402 #endif
403
404 irq_enter();
405
406 profile_tick(CPU_PROFILING, regs);
407
408 #ifdef CONFIG_PPC_ISERIES
409 get_paca()->lppaca.int_dword.fields.decr_int = 0;
410 #endif
411
412 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
413 >= tb_ticks_per_jiffy) {
414 /* Update last_jiffy */
415 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
416 /* Handle RTCL overflow on 601 */
417 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
418 per_cpu(last_jiffy, cpu) -= 1000000000;
419
420 /*
421 * We cannot disable the decrementer, so in the period
422 * between this cpu's being marked offline in cpu_online_map
423 * and calling stop-self, it is taking timer interrupts.
424 * Avoid calling into the scheduler rebalancing code if this
425 * is the case.
426 */
427 if (!cpu_is_offline(cpu))
428 update_process_times(user_mode(regs));
429
430 /*
431 * No need to check whether cpu is offline here; boot_cpuid
432 * should have been fixed up by now.
433 */
434 if (cpu != boot_cpuid)
435 continue;
436
437 write_seqlock(&xtime_lock);
438 tb_last_jiffy += tb_ticks_per_jiffy;
439 tb_last_stamp = per_cpu(last_jiffy, cpu);
440 timer_recalc_offset(tb_last_jiffy);
441 do_timer(regs);
442 timer_sync_xtime(tb_last_jiffy);
443 timer_check_rtc();
444 write_sequnlock(&xtime_lock);
445 if (adjusting_time && (time_adjust == 0))
446 ppc_adjtimex();
447 }
448
449 next_dec = tb_ticks_per_jiffy - ticks;
450 set_dec(next_dec);
451
452 #ifdef CONFIG_PPC_ISERIES
453 if (hvlpevent_is_pending())
454 process_hvlpevents(regs);
455 #endif
456
457 #ifdef CONFIG_PPC64
458 /* collect purr register values often, for accurate calculations */
459 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
460 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
461 cu->current_tb = mfspr(SPRN_PURR);
462 }
463 #endif
464
465 irq_exit();
466 }
467
468 void wakeup_decrementer(void)
469 {
470 int i;
471
472 set_dec(tb_ticks_per_jiffy);
473 /*
474 * We don't expect this to be called on a machine with a 601,
475 * so using get_tbl is fine.
476 */
477 tb_last_stamp = tb_last_jiffy = get_tb();
478 for_each_cpu(i)
479 per_cpu(last_jiffy, i) = tb_last_stamp;
480 }
481
482 #ifdef CONFIG_SMP
483 void __init smp_space_timers(unsigned int max_cpus)
484 {
485 int i;
486 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
487 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
488
489 for_each_cpu(i) {
490 if (i != boot_cpuid) {
491 previous_tb += offset;
492 per_cpu(last_jiffy, i) = previous_tb;
493 }
494 }
495 }
496 #endif
497
498 /*
499 * Scheduler clock - returns current time in nanosec units.
500 *
501 * Note: mulhdu(a, b) (multiply high double unsigned) returns
502 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
503 * are 64-bit unsigned numbers.
504 */
505 unsigned long long sched_clock(void)
506 {
507 if (__USE_RTC())
508 return get_rtc();
509 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
510 }
511
512 int do_settimeofday(struct timespec *tv)
513 {
514 time_t wtm_sec, new_sec = tv->tv_sec;
515 long wtm_nsec, new_nsec = tv->tv_nsec;
516 unsigned long flags;
517 long int tb_delta;
518 u64 new_xsec, tb_delta_xs;
519
520 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
521 return -EINVAL;
522
523 write_seqlock_irqsave(&xtime_lock, flags);
524
525 /*
526 * Updating the RTC is not the job of this code. If the time is
527 * stepped under NTP, the RTC will be updated after STA_UNSYNC
528 * is cleared. Tools like clock/hwclock either copy the RTC
529 * to the system time, in which case there is no point in writing
530 * to the RTC again, or write to the RTC but then they don't call
531 * settimeofday to perform this operation.
532 */
533 #ifdef CONFIG_PPC_ISERIES
534 if (first_settimeofday) {
535 iSeries_tb_recal();
536 first_settimeofday = 0;
537 }
538 #endif
539 tb_delta = tb_ticks_since(tb_last_stamp);
540 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
541 tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
542
543 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
544 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
545
546 set_normalized_timespec(&xtime, new_sec, new_nsec);
547 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
548
549 /* In case of a large backwards jump in time with NTP, we want the
550 * clock to be updated as soon as the PLL is again in lock.
551 */
552 last_rtc_update = new_sec - 658;
553
554 ntp_clear();
555
556 new_xsec = 0;
557 if (new_nsec != 0) {
558 new_xsec = (u64)new_nsec * XSEC_PER_SEC;
559 do_div(new_xsec, NSEC_PER_SEC);
560 }
561 new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
562 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
563
564 #ifdef CONFIG_PPC64
565 systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
566 systemcfg->tz_dsttime = sys_tz.tz_dsttime;
567 #endif
568
569 write_sequnlock_irqrestore(&xtime_lock, flags);
570 clock_was_set();
571 return 0;
572 }
573
574 EXPORT_SYMBOL(do_settimeofday);
575
576 void __init generic_calibrate_decr(void)
577 {
578 struct device_node *cpu;
579 unsigned int *fp;
580 int node_found;
581
582 /*
583 * The cpu node should have a timebase-frequency property
584 * to tell us the rate at which the decrementer counts.
585 */
586 cpu = of_find_node_by_type(NULL, "cpu");
587
588 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
589 node_found = 0;
590 if (cpu != 0) {
591 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
592 NULL);
593 if (fp != 0) {
594 node_found = 1;
595 ppc_tb_freq = *fp;
596 }
597 }
598 if (!node_found)
599 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
600 "(not found)\n");
601
602 ppc_proc_freq = DEFAULT_PROC_FREQ;
603 node_found = 0;
604 if (cpu != 0) {
605 fp = (unsigned int *)get_property(cpu, "clock-frequency",
606 NULL);
607 if (fp != 0) {
608 node_found = 1;
609 ppc_proc_freq = *fp;
610 }
611 }
612 #ifdef CONFIG_BOOKE
613 /* Set the time base to zero */
614 mtspr(SPRN_TBWL, 0);
615 mtspr(SPRN_TBWU, 0);
616
617 /* Clear any pending timer interrupts */
618 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
619
620 /* Enable decrementer interrupt */
621 mtspr(SPRN_TCR, TCR_DIE);
622 #endif
623 if (!node_found)
624 printk(KERN_ERR "WARNING: Estimating processor frequency "
625 "(not found)\n");
626
627 of_node_put(cpu);
628 }
629
630 unsigned long get_boot_time(void)
631 {
632 struct rtc_time tm;
633
634 if (ppc_md.get_boot_time)
635 return ppc_md.get_boot_time();
636 if (!ppc_md.get_rtc_time)
637 return 0;
638 ppc_md.get_rtc_time(&tm);
639 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
640 tm.tm_hour, tm.tm_min, tm.tm_sec);
641 }
642
643 /* This function is only called on the boot processor */
644 void __init time_init(void)
645 {
646 unsigned long flags;
647 unsigned long tm = 0;
648 struct div_result res;
649 u64 scale;
650 unsigned shift;
651
652 if (ppc_md.time_init != NULL)
653 timezone_offset = ppc_md.time_init();
654
655 if (__USE_RTC()) {
656 /* 601 processor: dec counts down by 128 every 128ns */
657 ppc_tb_freq = 1000000000;
658 tb_last_stamp = get_rtcl();
659 tb_last_jiffy = tb_last_stamp;
660 } else {
661 /* Normal PowerPC with timebase register */
662 ppc_md.calibrate_decr();
663 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
664 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
665 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
666 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
667 tb_last_stamp = tb_last_jiffy = get_tb();
668 }
669
670 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
671 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
672 tb_ticks_per_usec = ppc_tb_freq / 1000000;
673 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
674 div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
675 tb_to_xs = res.result_low;
676
677 #ifdef CONFIG_PPC64
678 get_paca()->default_decr = tb_ticks_per_jiffy;
679 #endif
680
681 /*
682 * Compute scale factor for sched_clock.
683 * The calibrate_decr() function has set tb_ticks_per_sec,
684 * which is the timebase frequency.
685 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
686 * the 128-bit result as a 64.64 fixed-point number.
687 * We then shift that number right until it is less than 1.0,
688 * giving us the scale factor and shift count to use in
689 * sched_clock().
690 */
691 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
692 scale = res.result_low;
693 for (shift = 0; res.result_high != 0; ++shift) {
694 scale = (scale >> 1) | (res.result_high << 63);
695 res.result_high >>= 1;
696 }
697 tb_to_ns_scale = scale;
698 tb_to_ns_shift = shift;
699
700 #ifdef CONFIG_PPC_ISERIES
701 if (!piranha_simulator)
702 #endif
703 tm = get_boot_time();
704
705 write_seqlock_irqsave(&xtime_lock, flags);
706 xtime.tv_sec = tm;
707 xtime.tv_nsec = 0;
708 do_gtod.varp = &do_gtod.vars[0];
709 do_gtod.var_idx = 0;
710 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
711 __get_cpu_var(last_jiffy) = tb_last_stamp;
712 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
713 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
714 do_gtod.varp->tb_to_xs = tb_to_xs;
715 do_gtod.tb_to_us = tb_to_us;
716 #ifdef CONFIG_PPC64
717 systemcfg->tb_orig_stamp = tb_last_jiffy;
718 systemcfg->tb_update_count = 0;
719 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
720 systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
721 systemcfg->tb_to_xs = tb_to_xs;
722 #endif
723
724 time_freq = 0;
725
726 /* If platform provided a timezone (pmac), we correct the time */
727 if (timezone_offset) {
728 sys_tz.tz_minuteswest = -timezone_offset / 60;
729 sys_tz.tz_dsttime = 0;
730 xtime.tv_sec -= timezone_offset;
731 }
732
733 last_rtc_update = xtime.tv_sec;
734 set_normalized_timespec(&wall_to_monotonic,
735 -xtime.tv_sec, -xtime.tv_nsec);
736 write_sequnlock_irqrestore(&xtime_lock, flags);
737
738 /* Not exact, but the timer interrupt takes care of this */
739 set_dec(tb_ticks_per_jiffy);
740 }
741
742 /*
743 * After adjtimex is called, adjust the conversion of tb ticks
744 * to microseconds to keep do_gettimeofday synchronized
745 * with ntpd.
746 *
747 * Use the time_adjust, time_freq and time_offset computed by adjtimex to
748 * adjust the frequency.
749 */
750
751 /* #define DEBUG_PPC_ADJTIMEX 1 */
752
753 void ppc_adjtimex(void)
754 {
755 #ifdef CONFIG_PPC64
756 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
757 new_tb_to_xs, new_xsec, new_stamp_xsec;
758 unsigned long tb_ticks_per_sec_delta;
759 long delta_freq, ltemp;
760 struct div_result divres;
761 unsigned long flags;
762 long singleshot_ppm = 0;
763
764 /*
765 * Compute parts per million frequency adjustment to
766 * accomplish the time adjustment implied by time_offset to be
767 * applied over the elapsed time indicated by time_constant.
768 * Use SHIFT_USEC to get it into the same units as
769 * time_freq.
770 */
771 if ( time_offset < 0 ) {
772 ltemp = -time_offset;
773 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
774 ltemp >>= SHIFT_KG + time_constant;
775 ltemp = -ltemp;
776 } else {
777 ltemp = time_offset;
778 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
779 ltemp >>= SHIFT_KG + time_constant;
780 }
781
782 /* If there is a single shot time adjustment in progress */
783 if ( time_adjust ) {
784 #ifdef DEBUG_PPC_ADJTIMEX
785 printk("ppc_adjtimex: ");
786 if ( adjusting_time == 0 )
787 printk("starting ");
788 printk("single shot time_adjust = %ld\n", time_adjust);
789 #endif
790
791 adjusting_time = 1;
792
793 /*
794 * Compute parts per million frequency adjustment
795 * to match time_adjust
796 */
797 singleshot_ppm = tickadj * HZ;
798 /*
799 * The adjustment should be tickadj*HZ to match the code in
800 * linux/kernel/timer.c, but experiments show that this is too
801 * large. 3/4 of tickadj*HZ seems about right
802 */
803 singleshot_ppm -= singleshot_ppm / 4;
804 /* Use SHIFT_USEC to get it into the same units as time_freq */
805 singleshot_ppm <<= SHIFT_USEC;
806 if ( time_adjust < 0 )
807 singleshot_ppm = -singleshot_ppm;
808 }
809 else {
810 #ifdef DEBUG_PPC_ADJTIMEX
811 if ( adjusting_time )
812 printk("ppc_adjtimex: ending single shot time_adjust\n");
813 #endif
814 adjusting_time = 0;
815 }
816
817 /* Add up all of the frequency adjustments */
818 delta_freq = time_freq + ltemp + singleshot_ppm;
819
820 /*
821 * Compute a new value for tb_ticks_per_sec based on
822 * the frequency adjustment
823 */
824 den = 1000000 * (1 << (SHIFT_USEC - 8));
825 if ( delta_freq < 0 ) {
826 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
827 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
828 }
829 else {
830 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
831 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
832 }
833
834 #ifdef DEBUG_PPC_ADJTIMEX
835 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
836 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
837 #endif
838
839 /*
840 * Compute a new value of tb_to_xs (used to convert tb to
841 * microseconds) and a new value of stamp_xsec which is the
842 * time (in 1/2^20 second units) corresponding to
843 * tb_orig_stamp. This new value of stamp_xsec compensates
844 * for the change in frequency (implied by the new tb_to_xs)
845 * which guarantees that the current time remains the same.
846 */
847 write_seqlock_irqsave( &xtime_lock, flags );
848 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
849 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
850 new_tb_to_xs = divres.result_low;
851 new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
852
853 old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
854 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
855
856 update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
857
858 write_sequnlock_irqrestore( &xtime_lock, flags );
859 #endif /* CONFIG_PPC64 */
860 }
861
862
863 #define FEBRUARY 2
864 #define STARTOFTIME 1970
865 #define SECDAY 86400L
866 #define SECYR (SECDAY * 365)
867 #define leapyear(year) ((year) % 4 == 0 && \
868 ((year) % 100 != 0 || (year) % 400 == 0))
869 #define days_in_year(a) (leapyear(a) ? 366 : 365)
870 #define days_in_month(a) (month_days[(a) - 1])
871
872 static int month_days[12] = {
873 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
874 };
875
876 /*
877 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
878 */
879 void GregorianDay(struct rtc_time * tm)
880 {
881 int leapsToDate;
882 int lastYear;
883 int day;
884 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
885
886 lastYear = tm->tm_year - 1;
887
888 /*
889 * Number of leap corrections to apply up to end of last year
890 */
891 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
892
893 /*
894 * This year is a leap year if it is divisible by 4 except when it is
895 * divisible by 100 unless it is divisible by 400
896 *
897 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
898 */
899 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
900
901 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
902 tm->tm_mday;
903
904 tm->tm_wday = day % 7;
905 }
906
907 void to_tm(int tim, struct rtc_time * tm)
908 {
909 register int i;
910 register long hms, day;
911
912 day = tim / SECDAY;
913 hms = tim % SECDAY;
914
915 /* Hours, minutes, seconds are easy */
916 tm->tm_hour = hms / 3600;
917 tm->tm_min = (hms % 3600) / 60;
918 tm->tm_sec = (hms % 3600) % 60;
919
920 /* Number of years in days */
921 for (i = STARTOFTIME; day >= days_in_year(i); i++)
922 day -= days_in_year(i);
923 tm->tm_year = i;
924
925 /* Number of months in days left */
926 if (leapyear(tm->tm_year))
927 days_in_month(FEBRUARY) = 29;
928 for (i = 1; day >= days_in_month(i); i++)
929 day -= days_in_month(i);
930 days_in_month(FEBRUARY) = 28;
931 tm->tm_mon = i;
932
933 /* Days are what is left over (+1) from all that. */
934 tm->tm_mday = day + 1;
935
936 /*
937 * Determine the day of week
938 */
939 GregorianDay(tm);
940 }
941
942 /* Auxiliary function to compute scaling factors */
943 /* Actually the choice of a timebase running at 1/4 the of the bus
944 * frequency giving resolution of a few tens of nanoseconds is quite nice.
945 * It makes this computation very precise (27-28 bits typically) which
946 * is optimistic considering the stability of most processor clock
947 * oscillators and the precision with which the timebase frequency
948 * is measured but does not harm.
949 */
950 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
951 {
952 unsigned mlt=0, tmp, err;
953 /* No concern for performance, it's done once: use a stupid
954 * but safe and compact method to find the multiplier.
955 */
956
957 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
958 if (mulhwu(inscale, mlt|tmp) < outscale)
959 mlt |= tmp;
960 }
961
962 /* We might still be off by 1 for the best approximation.
963 * A side effect of this is that if outscale is too large
964 * the returned value will be zero.
965 * Many corner cases have been checked and seem to work,
966 * some might have been forgotten in the test however.
967 */
968
969 err = inscale * (mlt+1);
970 if (err <= inscale/2)
971 mlt++;
972 return mlt;
973 }
974
975 /*
976 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
977 * result.
978 */
979 void div128_by_32(u64 dividend_high, u64 dividend_low,
980 unsigned divisor, struct div_result *dr)
981 {
982 unsigned long a, b, c, d;
983 unsigned long w, x, y, z;
984 u64 ra, rb, rc;
985
986 a = dividend_high >> 32;
987 b = dividend_high & 0xffffffff;
988 c = dividend_low >> 32;
989 d = dividend_low & 0xffffffff;
990
991 w = a / divisor;
992 ra = ((u64)(a - (w * divisor)) << 32) + b;
993
994 rb = ((u64) do_div(ra, divisor) << 32) + c;
995 x = ra;
996
997 rc = ((u64) do_div(rb, divisor) << 32) + d;
998 y = rb;
999
1000 do_div(rc, divisor);
1001 z = rc;
1002
1003 dr->result_high = ((u64)w << 32) + x;
1004 dr->result_low = ((u64)y << 32) + z;
1005
1006 }
This page took 0.066825 seconds and 5 git commands to generate.