Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time.
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/init.h>
46 #include <linux/profile.h>
47 #include <linux/cpu.h>
48 #include <linux/security.h>
49 #include <linux/percpu.h>
50 #include <linux/rtc.h>
51 #include <linux/jiffies.h>
52 #include <linux/posix-timers.h>
53 #include <linux/irq.h>
54 #include <linux/delay.h>
55 #include <linux/irq_work.h>
56 #include <asm/trace.h>
57
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72
73 /* powerpc clocksource/clockevent code */
74
75 #include <linux/clockchips.h>
76 #include <linux/clocksource.h>
77
78 static cycle_t rtc_read(struct clocksource *);
79 static struct clocksource clocksource_rtc = {
80 .name = "rtc",
81 .rating = 400,
82 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
83 .mask = CLOCKSOURCE_MASK(64),
84 .read = rtc_read,
85 };
86
87 static cycle_t timebase_read(struct clocksource *);
88 static struct clocksource clocksource_timebase = {
89 .name = "timebase",
90 .rating = 400,
91 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
92 .mask = CLOCKSOURCE_MASK(64),
93 .read = timebase_read,
94 };
95
96 #define DECREMENTER_MAX 0x7fffffff
97
98 static int decrementer_set_next_event(unsigned long evt,
99 struct clock_event_device *dev);
100 static void decrementer_set_mode(enum clock_event_mode mode,
101 struct clock_event_device *dev);
102
103 struct clock_event_device decrementer_clockevent = {
104 .name = "decrementer",
105 .rating = 200,
106 .irq = 0,
107 .set_next_event = decrementer_set_next_event,
108 .set_mode = decrementer_set_mode,
109 .features = CLOCK_EVT_FEAT_ONESHOT,
110 };
111 EXPORT_SYMBOL(decrementer_clockevent);
112
113 DEFINE_PER_CPU(u64, decrementers_next_tb);
114 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
115
116 #define XSEC_PER_SEC (1024*1024)
117
118 #ifdef CONFIG_PPC64
119 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
120 #else
121 /* compute ((xsec << 12) * max) >> 32 */
122 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
123 #endif
124
125 unsigned long tb_ticks_per_jiffy;
126 unsigned long tb_ticks_per_usec = 100; /* sane default */
127 EXPORT_SYMBOL(tb_ticks_per_usec);
128 unsigned long tb_ticks_per_sec;
129 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
130
131 DEFINE_SPINLOCK(rtc_lock);
132 EXPORT_SYMBOL_GPL(rtc_lock);
133
134 static u64 tb_to_ns_scale __read_mostly;
135 static unsigned tb_to_ns_shift __read_mostly;
136 static u64 boot_tb __read_mostly;
137
138 extern struct timezone sys_tz;
139 static long timezone_offset;
140
141 unsigned long ppc_proc_freq;
142 EXPORT_SYMBOL_GPL(ppc_proc_freq);
143 unsigned long ppc_tb_freq;
144 EXPORT_SYMBOL_GPL(ppc_tb_freq);
145
146 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
147 /*
148 * Factors for converting from cputime_t (timebase ticks) to
149 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
150 * These are all stored as 0.64 fixed-point binary fractions.
151 */
152 u64 __cputime_jiffies_factor;
153 EXPORT_SYMBOL(__cputime_jiffies_factor);
154 u64 __cputime_usec_factor;
155 EXPORT_SYMBOL(__cputime_usec_factor);
156 u64 __cputime_sec_factor;
157 EXPORT_SYMBOL(__cputime_sec_factor);
158 u64 __cputime_clockt_factor;
159 EXPORT_SYMBOL(__cputime_clockt_factor);
160 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
161 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
162
163 cputime_t cputime_one_jiffy;
164
165 void (*dtl_consumer)(struct dtl_entry *, u64);
166
167 static void calc_cputime_factors(void)
168 {
169 struct div_result res;
170
171 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
172 __cputime_jiffies_factor = res.result_low;
173 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
174 __cputime_usec_factor = res.result_low;
175 div128_by_32(1, 0, tb_ticks_per_sec, &res);
176 __cputime_sec_factor = res.result_low;
177 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
178 __cputime_clockt_factor = res.result_low;
179 }
180
181 /*
182 * Read the SPURR on systems that have it, otherwise the PURR,
183 * or if that doesn't exist return the timebase value passed in.
184 */
185 static u64 read_spurr(u64 tb)
186 {
187 if (cpu_has_feature(CPU_FTR_SPURR))
188 return mfspr(SPRN_SPURR);
189 if (cpu_has_feature(CPU_FTR_PURR))
190 return mfspr(SPRN_PURR);
191 return tb;
192 }
193
194 #ifdef CONFIG_PPC_SPLPAR
195
196 /*
197 * Scan the dispatch trace log and count up the stolen time.
198 * Should be called with interrupts disabled.
199 */
200 static u64 scan_dispatch_log(u64 stop_tb)
201 {
202 u64 i = local_paca->dtl_ridx;
203 struct dtl_entry *dtl = local_paca->dtl_curr;
204 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
205 struct lppaca *vpa = local_paca->lppaca_ptr;
206 u64 tb_delta;
207 u64 stolen = 0;
208 u64 dtb;
209
210 if (!dtl)
211 return 0;
212
213 if (i == vpa->dtl_idx)
214 return 0;
215 while (i < vpa->dtl_idx) {
216 if (dtl_consumer)
217 dtl_consumer(dtl, i);
218 dtb = dtl->timebase;
219 tb_delta = dtl->enqueue_to_dispatch_time +
220 dtl->ready_to_enqueue_time;
221 barrier();
222 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
223 /* buffer has overflowed */
224 i = vpa->dtl_idx - N_DISPATCH_LOG;
225 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
226 continue;
227 }
228 if (dtb > stop_tb)
229 break;
230 stolen += tb_delta;
231 ++i;
232 ++dtl;
233 if (dtl == dtl_end)
234 dtl = local_paca->dispatch_log;
235 }
236 local_paca->dtl_ridx = i;
237 local_paca->dtl_curr = dtl;
238 return stolen;
239 }
240
241 /*
242 * Accumulate stolen time by scanning the dispatch trace log.
243 * Called on entry from user mode.
244 */
245 void accumulate_stolen_time(void)
246 {
247 u64 sst, ust;
248
249 u8 save_soft_enabled = local_paca->soft_enabled;
250
251 /* We are called early in the exception entry, before
252 * soft/hard_enabled are sync'ed to the expected state
253 * for the exception. We are hard disabled but the PACA
254 * needs to reflect that so various debug stuff doesn't
255 * complain
256 */
257 local_paca->soft_enabled = 0;
258
259 sst = scan_dispatch_log(local_paca->starttime_user);
260 ust = scan_dispatch_log(local_paca->starttime);
261 local_paca->system_time -= sst;
262 local_paca->user_time -= ust;
263 local_paca->stolen_time += ust + sst;
264
265 local_paca->soft_enabled = save_soft_enabled;
266 }
267
268 static inline u64 calculate_stolen_time(u64 stop_tb)
269 {
270 u64 stolen = 0;
271
272 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
273 stolen = scan_dispatch_log(stop_tb);
274 get_paca()->system_time -= stolen;
275 }
276
277 stolen += get_paca()->stolen_time;
278 get_paca()->stolen_time = 0;
279 return stolen;
280 }
281
282 #else /* CONFIG_PPC_SPLPAR */
283 static inline u64 calculate_stolen_time(u64 stop_tb)
284 {
285 return 0;
286 }
287
288 #endif /* CONFIG_PPC_SPLPAR */
289
290 /*
291 * Account time for a transition between system, hard irq
292 * or soft irq state.
293 */
294 void account_system_vtime(struct task_struct *tsk)
295 {
296 u64 now, nowscaled, delta, deltascaled;
297 unsigned long flags;
298 u64 stolen, udelta, sys_scaled, user_scaled;
299
300 local_irq_save(flags);
301 now = mftb();
302 nowscaled = read_spurr(now);
303 get_paca()->system_time += now - get_paca()->starttime;
304 get_paca()->starttime = now;
305 deltascaled = nowscaled - get_paca()->startspurr;
306 get_paca()->startspurr = nowscaled;
307
308 stolen = calculate_stolen_time(now);
309
310 delta = get_paca()->system_time;
311 get_paca()->system_time = 0;
312 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
313 get_paca()->utime_sspurr = get_paca()->user_time;
314
315 /*
316 * Because we don't read the SPURR on every kernel entry/exit,
317 * deltascaled includes both user and system SPURR ticks.
318 * Apportion these ticks to system SPURR ticks and user
319 * SPURR ticks in the same ratio as the system time (delta)
320 * and user time (udelta) values obtained from the timebase
321 * over the same interval. The system ticks get accounted here;
322 * the user ticks get saved up in paca->user_time_scaled to be
323 * used by account_process_tick.
324 */
325 sys_scaled = delta;
326 user_scaled = udelta;
327 if (deltascaled != delta + udelta) {
328 if (udelta) {
329 sys_scaled = deltascaled * delta / (delta + udelta);
330 user_scaled = deltascaled - sys_scaled;
331 } else {
332 sys_scaled = deltascaled;
333 }
334 }
335 get_paca()->user_time_scaled += user_scaled;
336
337 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
338 account_system_time(tsk, 0, delta, sys_scaled);
339 if (stolen)
340 account_steal_time(stolen);
341 } else {
342 account_idle_time(delta + stolen);
343 }
344 local_irq_restore(flags);
345 }
346 EXPORT_SYMBOL_GPL(account_system_vtime);
347
348 /*
349 * Transfer the user and system times accumulated in the paca
350 * by the exception entry and exit code to the generic process
351 * user and system time records.
352 * Must be called with interrupts disabled.
353 * Assumes that account_system_vtime() has been called recently
354 * (i.e. since the last entry from usermode) so that
355 * get_paca()->user_time_scaled is up to date.
356 */
357 void account_process_tick(struct task_struct *tsk, int user_tick)
358 {
359 cputime_t utime, utimescaled;
360
361 utime = get_paca()->user_time;
362 utimescaled = get_paca()->user_time_scaled;
363 get_paca()->user_time = 0;
364 get_paca()->user_time_scaled = 0;
365 get_paca()->utime_sspurr = 0;
366 account_user_time(tsk, utime, utimescaled);
367 }
368
369 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
370 #define calc_cputime_factors()
371 #endif
372
373 void __delay(unsigned long loops)
374 {
375 unsigned long start;
376 int diff;
377
378 if (__USE_RTC()) {
379 start = get_rtcl();
380 do {
381 /* the RTCL register wraps at 1000000000 */
382 diff = get_rtcl() - start;
383 if (diff < 0)
384 diff += 1000000000;
385 } while (diff < loops);
386 } else {
387 start = get_tbl();
388 while (get_tbl() - start < loops)
389 HMT_low();
390 HMT_medium();
391 }
392 }
393 EXPORT_SYMBOL(__delay);
394
395 void udelay(unsigned long usecs)
396 {
397 __delay(tb_ticks_per_usec * usecs);
398 }
399 EXPORT_SYMBOL(udelay);
400
401 #ifdef CONFIG_SMP
402 unsigned long profile_pc(struct pt_regs *regs)
403 {
404 unsigned long pc = instruction_pointer(regs);
405
406 if (in_lock_functions(pc))
407 return regs->link;
408
409 return pc;
410 }
411 EXPORT_SYMBOL(profile_pc);
412 #endif
413
414 #ifdef CONFIG_IRQ_WORK
415
416 /*
417 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
418 */
419 #ifdef CONFIG_PPC64
420 static inline unsigned long test_irq_work_pending(void)
421 {
422 unsigned long x;
423
424 asm volatile("lbz %0,%1(13)"
425 : "=r" (x)
426 : "i" (offsetof(struct paca_struct, irq_work_pending)));
427 return x;
428 }
429
430 static inline void set_irq_work_pending_flag(void)
431 {
432 asm volatile("stb %0,%1(13)" : :
433 "r" (1),
434 "i" (offsetof(struct paca_struct, irq_work_pending)));
435 }
436
437 static inline void clear_irq_work_pending(void)
438 {
439 asm volatile("stb %0,%1(13)" : :
440 "r" (0),
441 "i" (offsetof(struct paca_struct, irq_work_pending)));
442 }
443
444 #else /* 32-bit */
445
446 DEFINE_PER_CPU(u8, irq_work_pending);
447
448 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
449 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
450 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
451
452 #endif /* 32 vs 64 bit */
453
454 void arch_irq_work_raise(void)
455 {
456 preempt_disable();
457 set_irq_work_pending_flag();
458 set_dec(1);
459 preempt_enable();
460 }
461
462 #else /* CONFIG_IRQ_WORK */
463
464 #define test_irq_work_pending() 0
465 #define clear_irq_work_pending()
466
467 #endif /* CONFIG_IRQ_WORK */
468
469 /*
470 * timer_interrupt - gets called when the decrementer overflows,
471 * with interrupts disabled.
472 */
473 void timer_interrupt(struct pt_regs * regs)
474 {
475 struct pt_regs *old_regs;
476 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
477 struct clock_event_device *evt = &__get_cpu_var(decrementers);
478 u64 now;
479
480 /* Ensure a positive value is written to the decrementer, or else
481 * some CPUs will continue to take decrementer exceptions.
482 */
483 set_dec(DECREMENTER_MAX);
484
485 /* Some implementations of hotplug will get timer interrupts while
486 * offline, just ignore these
487 */
488 if (!cpu_online(smp_processor_id()))
489 return;
490
491 /* Conditionally hard-enable interrupts now that the DEC has been
492 * bumped to its maximum value
493 */
494 may_hard_irq_enable();
495
496 trace_timer_interrupt_entry(regs);
497
498 __get_cpu_var(irq_stat).timer_irqs++;
499
500 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
501 if (atomic_read(&ppc_n_lost_interrupts) != 0)
502 do_IRQ(regs);
503 #endif
504
505 old_regs = set_irq_regs(regs);
506 irq_enter();
507
508 if (test_irq_work_pending()) {
509 clear_irq_work_pending();
510 irq_work_run();
511 }
512
513 now = get_tb_or_rtc();
514 if (now >= *next_tb) {
515 *next_tb = ~(u64)0;
516 if (evt->event_handler)
517 evt->event_handler(evt);
518 } else {
519 now = *next_tb - now;
520 if (now <= DECREMENTER_MAX)
521 set_dec((int)now);
522 }
523
524 #ifdef CONFIG_PPC64
525 /* collect purr register values often, for accurate calculations */
526 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
527 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
528 cu->current_tb = mfspr(SPRN_PURR);
529 }
530 #endif
531
532 irq_exit();
533 set_irq_regs(old_regs);
534
535 trace_timer_interrupt_exit(regs);
536 }
537
538 #ifdef CONFIG_SUSPEND
539 static void generic_suspend_disable_irqs(void)
540 {
541 /* Disable the decrementer, so that it doesn't interfere
542 * with suspending.
543 */
544
545 set_dec(DECREMENTER_MAX);
546 local_irq_disable();
547 set_dec(DECREMENTER_MAX);
548 }
549
550 static void generic_suspend_enable_irqs(void)
551 {
552 local_irq_enable();
553 }
554
555 /* Overrides the weak version in kernel/power/main.c */
556 void arch_suspend_disable_irqs(void)
557 {
558 if (ppc_md.suspend_disable_irqs)
559 ppc_md.suspend_disable_irqs();
560 generic_suspend_disable_irqs();
561 }
562
563 /* Overrides the weak version in kernel/power/main.c */
564 void arch_suspend_enable_irqs(void)
565 {
566 generic_suspend_enable_irqs();
567 if (ppc_md.suspend_enable_irqs)
568 ppc_md.suspend_enable_irqs();
569 }
570 #endif
571
572 /*
573 * Scheduler clock - returns current time in nanosec units.
574 *
575 * Note: mulhdu(a, b) (multiply high double unsigned) returns
576 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
577 * are 64-bit unsigned numbers.
578 */
579 unsigned long long sched_clock(void)
580 {
581 if (__USE_RTC())
582 return get_rtc();
583 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
584 }
585
586 static int __init get_freq(char *name, int cells, unsigned long *val)
587 {
588 struct device_node *cpu;
589 const unsigned int *fp;
590 int found = 0;
591
592 /* The cpu node should have timebase and clock frequency properties */
593 cpu = of_find_node_by_type(NULL, "cpu");
594
595 if (cpu) {
596 fp = of_get_property(cpu, name, NULL);
597 if (fp) {
598 found = 1;
599 *val = of_read_ulong(fp, cells);
600 }
601
602 of_node_put(cpu);
603 }
604
605 return found;
606 }
607
608 /* should become __cpuinit when secondary_cpu_time_init also is */
609 void start_cpu_decrementer(void)
610 {
611 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
612 /* Clear any pending timer interrupts */
613 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
614
615 /* Enable decrementer interrupt */
616 mtspr(SPRN_TCR, TCR_DIE);
617 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
618 }
619
620 void __init generic_calibrate_decr(void)
621 {
622 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
623
624 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
625 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
626
627 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
628 "(not found)\n");
629 }
630
631 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
632
633 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
634 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
635
636 printk(KERN_ERR "WARNING: Estimating processor frequency "
637 "(not found)\n");
638 }
639 }
640
641 int update_persistent_clock(struct timespec now)
642 {
643 struct rtc_time tm;
644
645 if (!ppc_md.set_rtc_time)
646 return 0;
647
648 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
649 tm.tm_year -= 1900;
650 tm.tm_mon -= 1;
651
652 return ppc_md.set_rtc_time(&tm);
653 }
654
655 static void __read_persistent_clock(struct timespec *ts)
656 {
657 struct rtc_time tm;
658 static int first = 1;
659
660 ts->tv_nsec = 0;
661 /* XXX this is a litle fragile but will work okay in the short term */
662 if (first) {
663 first = 0;
664 if (ppc_md.time_init)
665 timezone_offset = ppc_md.time_init();
666
667 /* get_boot_time() isn't guaranteed to be safe to call late */
668 if (ppc_md.get_boot_time) {
669 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
670 return;
671 }
672 }
673 if (!ppc_md.get_rtc_time) {
674 ts->tv_sec = 0;
675 return;
676 }
677 ppc_md.get_rtc_time(&tm);
678
679 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
680 tm.tm_hour, tm.tm_min, tm.tm_sec);
681 }
682
683 void read_persistent_clock(struct timespec *ts)
684 {
685 __read_persistent_clock(ts);
686
687 /* Sanitize it in case real time clock is set below EPOCH */
688 if (ts->tv_sec < 0) {
689 ts->tv_sec = 0;
690 ts->tv_nsec = 0;
691 }
692
693 }
694
695 /* clocksource code */
696 static cycle_t rtc_read(struct clocksource *cs)
697 {
698 return (cycle_t)get_rtc();
699 }
700
701 static cycle_t timebase_read(struct clocksource *cs)
702 {
703 return (cycle_t)get_tb();
704 }
705
706 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
707 struct clocksource *clock, u32 mult)
708 {
709 u64 new_tb_to_xs, new_stamp_xsec;
710 u32 frac_sec;
711
712 if (clock != &clocksource_timebase)
713 return;
714
715 /* Make userspace gettimeofday spin until we're done. */
716 ++vdso_data->tb_update_count;
717 smp_mb();
718
719 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
720 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
721 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
722 do_div(new_stamp_xsec, 1000000000);
723 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
724
725 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
726 /* this is tv_nsec / 1e9 as a 0.32 fraction */
727 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
728
729 /*
730 * tb_update_count is used to allow the userspace gettimeofday code
731 * to assure itself that it sees a consistent view of the tb_to_xs and
732 * stamp_xsec variables. It reads the tb_update_count, then reads
733 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
734 * the two values of tb_update_count match and are even then the
735 * tb_to_xs and stamp_xsec values are consistent. If not, then it
736 * loops back and reads them again until this criteria is met.
737 * We expect the caller to have done the first increment of
738 * vdso_data->tb_update_count already.
739 */
740 vdso_data->tb_orig_stamp = clock->cycle_last;
741 vdso_data->stamp_xsec = new_stamp_xsec;
742 vdso_data->tb_to_xs = new_tb_to_xs;
743 vdso_data->wtom_clock_sec = wtm->tv_sec;
744 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
745 vdso_data->stamp_xtime = *wall_time;
746 vdso_data->stamp_sec_fraction = frac_sec;
747 smp_wmb();
748 ++(vdso_data->tb_update_count);
749 }
750
751 void update_vsyscall_tz(void)
752 {
753 /* Make userspace gettimeofday spin until we're done. */
754 ++vdso_data->tb_update_count;
755 smp_mb();
756 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
757 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
758 smp_mb();
759 ++vdso_data->tb_update_count;
760 }
761
762 static void __init clocksource_init(void)
763 {
764 struct clocksource *clock;
765
766 if (__USE_RTC())
767 clock = &clocksource_rtc;
768 else
769 clock = &clocksource_timebase;
770
771 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
772 printk(KERN_ERR "clocksource: %s is already registered\n",
773 clock->name);
774 return;
775 }
776
777 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
778 clock->name, clock->mult, clock->shift);
779 }
780
781 static int decrementer_set_next_event(unsigned long evt,
782 struct clock_event_device *dev)
783 {
784 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
785 set_dec(evt);
786 return 0;
787 }
788
789 static void decrementer_set_mode(enum clock_event_mode mode,
790 struct clock_event_device *dev)
791 {
792 if (mode != CLOCK_EVT_MODE_ONESHOT)
793 decrementer_set_next_event(DECREMENTER_MAX, dev);
794 }
795
796 static void register_decrementer_clockevent(int cpu)
797 {
798 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
799
800 *dec = decrementer_clockevent;
801 dec->cpumask = cpumask_of(cpu);
802
803 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
804 dec->name, dec->mult, dec->shift, cpu);
805
806 clockevents_register_device(dec);
807 }
808
809 static void __init init_decrementer_clockevent(void)
810 {
811 int cpu = smp_processor_id();
812
813 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
814
815 decrementer_clockevent.max_delta_ns =
816 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
817 decrementer_clockevent.min_delta_ns =
818 clockevent_delta2ns(2, &decrementer_clockevent);
819
820 register_decrementer_clockevent(cpu);
821 }
822
823 void secondary_cpu_time_init(void)
824 {
825 /* Start the decrementer on CPUs that have manual control
826 * such as BookE
827 */
828 start_cpu_decrementer();
829
830 /* FIME: Should make unrelatred change to move snapshot_timebase
831 * call here ! */
832 register_decrementer_clockevent(smp_processor_id());
833 }
834
835 /* This function is only called on the boot processor */
836 void __init time_init(void)
837 {
838 struct div_result res;
839 u64 scale;
840 unsigned shift;
841
842 if (__USE_RTC()) {
843 /* 601 processor: dec counts down by 128 every 128ns */
844 ppc_tb_freq = 1000000000;
845 } else {
846 /* Normal PowerPC with timebase register */
847 ppc_md.calibrate_decr();
848 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
849 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
850 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
851 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
852 }
853
854 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
855 tb_ticks_per_sec = ppc_tb_freq;
856 tb_ticks_per_usec = ppc_tb_freq / 1000000;
857 calc_cputime_factors();
858 setup_cputime_one_jiffy();
859
860 /*
861 * Compute scale factor for sched_clock.
862 * The calibrate_decr() function has set tb_ticks_per_sec,
863 * which is the timebase frequency.
864 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
865 * the 128-bit result as a 64.64 fixed-point number.
866 * We then shift that number right until it is less than 1.0,
867 * giving us the scale factor and shift count to use in
868 * sched_clock().
869 */
870 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
871 scale = res.result_low;
872 for (shift = 0; res.result_high != 0; ++shift) {
873 scale = (scale >> 1) | (res.result_high << 63);
874 res.result_high >>= 1;
875 }
876 tb_to_ns_scale = scale;
877 tb_to_ns_shift = shift;
878 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
879 boot_tb = get_tb_or_rtc();
880
881 /* If platform provided a timezone (pmac), we correct the time */
882 if (timezone_offset) {
883 sys_tz.tz_minuteswest = -timezone_offset / 60;
884 sys_tz.tz_dsttime = 0;
885 }
886
887 vdso_data->tb_update_count = 0;
888 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
889
890 /* Start the decrementer on CPUs that have manual control
891 * such as BookE
892 */
893 start_cpu_decrementer();
894
895 /* Register the clocksource */
896 clocksource_init();
897
898 init_decrementer_clockevent();
899 }
900
901
902 #define FEBRUARY 2
903 #define STARTOFTIME 1970
904 #define SECDAY 86400L
905 #define SECYR (SECDAY * 365)
906 #define leapyear(year) ((year) % 4 == 0 && \
907 ((year) % 100 != 0 || (year) % 400 == 0))
908 #define days_in_year(a) (leapyear(a) ? 366 : 365)
909 #define days_in_month(a) (month_days[(a) - 1])
910
911 static int month_days[12] = {
912 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
913 };
914
915 /*
916 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
917 */
918 void GregorianDay(struct rtc_time * tm)
919 {
920 int leapsToDate;
921 int lastYear;
922 int day;
923 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
924
925 lastYear = tm->tm_year - 1;
926
927 /*
928 * Number of leap corrections to apply up to end of last year
929 */
930 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
931
932 /*
933 * This year is a leap year if it is divisible by 4 except when it is
934 * divisible by 100 unless it is divisible by 400
935 *
936 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
937 */
938 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
939
940 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
941 tm->tm_mday;
942
943 tm->tm_wday = day % 7;
944 }
945
946 void to_tm(int tim, struct rtc_time * tm)
947 {
948 register int i;
949 register long hms, day;
950
951 day = tim / SECDAY;
952 hms = tim % SECDAY;
953
954 /* Hours, minutes, seconds are easy */
955 tm->tm_hour = hms / 3600;
956 tm->tm_min = (hms % 3600) / 60;
957 tm->tm_sec = (hms % 3600) % 60;
958
959 /* Number of years in days */
960 for (i = STARTOFTIME; day >= days_in_year(i); i++)
961 day -= days_in_year(i);
962 tm->tm_year = i;
963
964 /* Number of months in days left */
965 if (leapyear(tm->tm_year))
966 days_in_month(FEBRUARY) = 29;
967 for (i = 1; day >= days_in_month(i); i++)
968 day -= days_in_month(i);
969 days_in_month(FEBRUARY) = 28;
970 tm->tm_mon = i;
971
972 /* Days are what is left over (+1) from all that. */
973 tm->tm_mday = day + 1;
974
975 /*
976 * Determine the day of week
977 */
978 GregorianDay(tm);
979 }
980
981 /*
982 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
983 * result.
984 */
985 void div128_by_32(u64 dividend_high, u64 dividend_low,
986 unsigned divisor, struct div_result *dr)
987 {
988 unsigned long a, b, c, d;
989 unsigned long w, x, y, z;
990 u64 ra, rb, rc;
991
992 a = dividend_high >> 32;
993 b = dividend_high & 0xffffffff;
994 c = dividend_low >> 32;
995 d = dividend_low & 0xffffffff;
996
997 w = a / divisor;
998 ra = ((u64)(a - (w * divisor)) << 32) + b;
999
1000 rb = ((u64) do_div(ra, divisor) << 32) + c;
1001 x = ra;
1002
1003 rc = ((u64) do_div(rb, divisor) << 32) + d;
1004 y = rb;
1005
1006 do_div(rc, divisor);
1007 z = rc;
1008
1009 dr->result_high = ((u64)w << 32) + x;
1010 dr->result_low = ((u64)y << 32) + z;
1011
1012 }
1013
1014 /* We don't need to calibrate delay, we use the CPU timebase for that */
1015 void calibrate_delay(void)
1016 {
1017 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1018 * as the number of __delay(1) in a jiffy, so make it so
1019 */
1020 loops_per_jiffy = tb_ticks_per_jiffy;
1021 }
1022
1023 static int __init rtc_init(void)
1024 {
1025 struct platform_device *pdev;
1026
1027 if (!ppc_md.get_rtc_time)
1028 return -ENODEV;
1029
1030 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1031 if (IS_ERR(pdev))
1032 return PTR_ERR(pdev);
1033
1034 return 0;
1035 }
1036
1037 module_init(rtc_init);
This page took 0.161144 seconds and 5 git commands to generate.