eae4511ceeac272947f3e164befc73a3145481dd
[deliverable/linux.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_counter.h>
57
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 #ifdef CONFIG_PPC_ISERIES
73 #include <asm/iseries/it_lp_queue.h>
74 #include <asm/iseries/hv_call_xm.h>
75 #endif
76
77 /* powerpc clocksource/clockevent code */
78
79 #include <linux/clockchips.h>
80 #include <linux/clocksource.h>
81
82 static cycle_t rtc_read(struct clocksource *);
83 static struct clocksource clocksource_rtc = {
84 .name = "rtc",
85 .rating = 400,
86 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
87 .mask = CLOCKSOURCE_MASK(64),
88 .shift = 22,
89 .mult = 0, /* To be filled in */
90 .read = rtc_read,
91 };
92
93 static cycle_t timebase_read(struct clocksource *);
94 static struct clocksource clocksource_timebase = {
95 .name = "timebase",
96 .rating = 400,
97 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
98 .mask = CLOCKSOURCE_MASK(64),
99 .shift = 22,
100 .mult = 0, /* To be filled in */
101 .read = timebase_read,
102 };
103
104 #define DECREMENTER_MAX 0x7fffffff
105
106 static int decrementer_set_next_event(unsigned long evt,
107 struct clock_event_device *dev);
108 static void decrementer_set_mode(enum clock_event_mode mode,
109 struct clock_event_device *dev);
110
111 static struct clock_event_device decrementer_clockevent = {
112 .name = "decrementer",
113 .rating = 200,
114 .shift = 0, /* To be filled in */
115 .mult = 0, /* To be filled in */
116 .irq = 0,
117 .set_next_event = decrementer_set_next_event,
118 .set_mode = decrementer_set_mode,
119 .features = CLOCK_EVT_FEAT_ONESHOT,
120 };
121
122 struct decrementer_clock {
123 struct clock_event_device event;
124 u64 next_tb;
125 };
126
127 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
128
129 #ifdef CONFIG_PPC_ISERIES
130 static unsigned long __initdata iSeries_recal_titan;
131 static signed long __initdata iSeries_recal_tb;
132
133 /* Forward declaration is only needed for iSereis compiles */
134 static void __init clocksource_init(void);
135 #endif
136
137 #define XSEC_PER_SEC (1024*1024)
138
139 #ifdef CONFIG_PPC64
140 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
141 #else
142 /* compute ((xsec << 12) * max) >> 32 */
143 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
144 #endif
145
146 unsigned long tb_ticks_per_jiffy;
147 unsigned long tb_ticks_per_usec = 100; /* sane default */
148 EXPORT_SYMBOL(tb_ticks_per_usec);
149 unsigned long tb_ticks_per_sec;
150 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
151 u64 tb_to_xs;
152 unsigned tb_to_us;
153
154 #define TICKLEN_SCALE NTP_SCALE_SHIFT
155 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
156 static u64 ticklen_to_xs; /* 0.64 fraction */
157
158 /* If last_tick_len corresponds to about 1/HZ seconds, then
159 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
160 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
161
162 DEFINE_SPINLOCK(rtc_lock);
163 EXPORT_SYMBOL_GPL(rtc_lock);
164
165 static u64 tb_to_ns_scale __read_mostly;
166 static unsigned tb_to_ns_shift __read_mostly;
167 static unsigned long boot_tb __read_mostly;
168
169 extern struct timezone sys_tz;
170 static long timezone_offset;
171
172 unsigned long ppc_proc_freq;
173 EXPORT_SYMBOL(ppc_proc_freq);
174 unsigned long ppc_tb_freq;
175
176 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
177 static DEFINE_PER_CPU(u64, last_jiffy);
178
179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
180 /*
181 * Factors for converting from cputime_t (timebase ticks) to
182 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
183 * These are all stored as 0.64 fixed-point binary fractions.
184 */
185 u64 __cputime_jiffies_factor;
186 EXPORT_SYMBOL(__cputime_jiffies_factor);
187 u64 __cputime_msec_factor;
188 EXPORT_SYMBOL(__cputime_msec_factor);
189 u64 __cputime_sec_factor;
190 EXPORT_SYMBOL(__cputime_sec_factor);
191 u64 __cputime_clockt_factor;
192 EXPORT_SYMBOL(__cputime_clockt_factor);
193 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
195
196 static void calc_cputime_factors(void)
197 {
198 struct div_result res;
199
200 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
201 __cputime_jiffies_factor = res.result_low;
202 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
203 __cputime_msec_factor = res.result_low;
204 div128_by_32(1, 0, tb_ticks_per_sec, &res);
205 __cputime_sec_factor = res.result_low;
206 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
207 __cputime_clockt_factor = res.result_low;
208 }
209
210 /*
211 * Read the PURR on systems that have it, otherwise the timebase.
212 */
213 static u64 read_purr(void)
214 {
215 if (cpu_has_feature(CPU_FTR_PURR))
216 return mfspr(SPRN_PURR);
217 return mftb();
218 }
219
220 /*
221 * Read the SPURR on systems that have it, otherwise the purr
222 */
223 static u64 read_spurr(u64 purr)
224 {
225 /*
226 * cpus without PURR won't have a SPURR
227 * We already know the former when we use this, so tell gcc
228 */
229 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
230 return mfspr(SPRN_SPURR);
231 return purr;
232 }
233
234 /*
235 * Account time for a transition between system, hard irq
236 * or soft irq state.
237 */
238 void account_system_vtime(struct task_struct *tsk)
239 {
240 u64 now, nowscaled, delta, deltascaled, sys_time;
241 unsigned long flags;
242
243 local_irq_save(flags);
244 now = read_purr();
245 nowscaled = read_spurr(now);
246 delta = now - get_paca()->startpurr;
247 deltascaled = nowscaled - get_paca()->startspurr;
248 get_paca()->startpurr = now;
249 get_paca()->startspurr = nowscaled;
250 if (!in_interrupt()) {
251 /* deltascaled includes both user and system time.
252 * Hence scale it based on the purr ratio to estimate
253 * the system time */
254 sys_time = get_paca()->system_time;
255 if (get_paca()->user_time)
256 deltascaled = deltascaled * sys_time /
257 (sys_time + get_paca()->user_time);
258 delta += sys_time;
259 get_paca()->system_time = 0;
260 }
261 if (in_irq() || idle_task(smp_processor_id()) != tsk)
262 account_system_time(tsk, 0, delta, deltascaled);
263 else
264 account_idle_time(delta);
265 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
266 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
267 local_irq_restore(flags);
268 }
269
270 /*
271 * Transfer the user and system times accumulated in the paca
272 * by the exception entry and exit code to the generic process
273 * user and system time records.
274 * Must be called with interrupts disabled.
275 */
276 void account_process_tick(struct task_struct *tsk, int user_tick)
277 {
278 cputime_t utime, utimescaled;
279
280 utime = get_paca()->user_time;
281 get_paca()->user_time = 0;
282 utimescaled = cputime_to_scaled(utime);
283 account_user_time(tsk, utime, utimescaled);
284 }
285
286 /*
287 * Stuff for accounting stolen time.
288 */
289 struct cpu_purr_data {
290 int initialized; /* thread is running */
291 u64 tb; /* last TB value read */
292 u64 purr; /* last PURR value read */
293 u64 spurr; /* last SPURR value read */
294 };
295
296 /*
297 * Each entry in the cpu_purr_data array is manipulated only by its
298 * "owner" cpu -- usually in the timer interrupt but also occasionally
299 * in process context for cpu online. As long as cpus do not touch
300 * each others' cpu_purr_data, disabling local interrupts is
301 * sufficient to serialize accesses.
302 */
303 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
304
305 static void snapshot_tb_and_purr(void *data)
306 {
307 unsigned long flags;
308 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
309
310 local_irq_save(flags);
311 p->tb = get_tb_or_rtc();
312 p->purr = mfspr(SPRN_PURR);
313 wmb();
314 p->initialized = 1;
315 local_irq_restore(flags);
316 }
317
318 /*
319 * Called during boot when all cpus have come up.
320 */
321 void snapshot_timebases(void)
322 {
323 if (!cpu_has_feature(CPU_FTR_PURR))
324 return;
325 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
326 }
327
328 /*
329 * Must be called with interrupts disabled.
330 */
331 void calculate_steal_time(void)
332 {
333 u64 tb, purr;
334 s64 stolen;
335 struct cpu_purr_data *pme;
336
337 pme = &__get_cpu_var(cpu_purr_data);
338 if (!pme->initialized)
339 return; /* !CPU_FTR_PURR or early in early boot */
340 tb = mftb();
341 purr = mfspr(SPRN_PURR);
342 stolen = (tb - pme->tb) - (purr - pme->purr);
343 if (stolen > 0) {
344 if (idle_task(smp_processor_id()) != current)
345 account_steal_time(stolen);
346 else
347 account_idle_time(stolen);
348 }
349 pme->tb = tb;
350 pme->purr = purr;
351 }
352
353 #ifdef CONFIG_PPC_SPLPAR
354 /*
355 * Must be called before the cpu is added to the online map when
356 * a cpu is being brought up at runtime.
357 */
358 static void snapshot_purr(void)
359 {
360 struct cpu_purr_data *pme;
361 unsigned long flags;
362
363 if (!cpu_has_feature(CPU_FTR_PURR))
364 return;
365 local_irq_save(flags);
366 pme = &__get_cpu_var(cpu_purr_data);
367 pme->tb = mftb();
368 pme->purr = mfspr(SPRN_PURR);
369 pme->initialized = 1;
370 local_irq_restore(flags);
371 }
372
373 #endif /* CONFIG_PPC_SPLPAR */
374
375 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
376 #define calc_cputime_factors()
377 #define calculate_steal_time() do { } while (0)
378 #endif
379
380 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
381 #define snapshot_purr() do { } while (0)
382 #endif
383
384 /*
385 * Called when a cpu comes up after the system has finished booting,
386 * i.e. as a result of a hotplug cpu action.
387 */
388 void snapshot_timebase(void)
389 {
390 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
391 snapshot_purr();
392 }
393
394 void __delay(unsigned long loops)
395 {
396 unsigned long start;
397 int diff;
398
399 if (__USE_RTC()) {
400 start = get_rtcl();
401 do {
402 /* the RTCL register wraps at 1000000000 */
403 diff = get_rtcl() - start;
404 if (diff < 0)
405 diff += 1000000000;
406 } while (diff < loops);
407 } else {
408 start = get_tbl();
409 while (get_tbl() - start < loops)
410 HMT_low();
411 HMT_medium();
412 }
413 }
414 EXPORT_SYMBOL(__delay);
415
416 void udelay(unsigned long usecs)
417 {
418 __delay(tb_ticks_per_usec * usecs);
419 }
420 EXPORT_SYMBOL(udelay);
421
422 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
423 u64 new_tb_to_xs)
424 {
425 /*
426 * tb_update_count is used to allow the userspace gettimeofday code
427 * to assure itself that it sees a consistent view of the tb_to_xs and
428 * stamp_xsec variables. It reads the tb_update_count, then reads
429 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
430 * the two values of tb_update_count match and are even then the
431 * tb_to_xs and stamp_xsec values are consistent. If not, then it
432 * loops back and reads them again until this criteria is met.
433 * We expect the caller to have done the first increment of
434 * vdso_data->tb_update_count already.
435 */
436 vdso_data->tb_orig_stamp = new_tb_stamp;
437 vdso_data->stamp_xsec = new_stamp_xsec;
438 vdso_data->tb_to_xs = new_tb_to_xs;
439 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
440 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
441 vdso_data->stamp_xtime = xtime;
442 smp_wmb();
443 ++(vdso_data->tb_update_count);
444 }
445
446 #ifdef CONFIG_SMP
447 unsigned long profile_pc(struct pt_regs *regs)
448 {
449 unsigned long pc = instruction_pointer(regs);
450
451 if (in_lock_functions(pc))
452 return regs->link;
453
454 return pc;
455 }
456 EXPORT_SYMBOL(profile_pc);
457 #endif
458
459 #ifdef CONFIG_PPC_ISERIES
460
461 /*
462 * This function recalibrates the timebase based on the 49-bit time-of-day
463 * value in the Titan chip. The Titan is much more accurate than the value
464 * returned by the service processor for the timebase frequency.
465 */
466
467 static int __init iSeries_tb_recal(void)
468 {
469 struct div_result divres;
470 unsigned long titan, tb;
471
472 /* Make sure we only run on iSeries */
473 if (!firmware_has_feature(FW_FEATURE_ISERIES))
474 return -ENODEV;
475
476 tb = get_tb();
477 titan = HvCallXm_loadTod();
478 if ( iSeries_recal_titan ) {
479 unsigned long tb_ticks = tb - iSeries_recal_tb;
480 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
481 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
482 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
483 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
484 char sign = '+';
485 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
486 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
487
488 if ( tick_diff < 0 ) {
489 tick_diff = -tick_diff;
490 sign = '-';
491 }
492 if ( tick_diff ) {
493 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
494 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
495 new_tb_ticks_per_jiffy, sign, tick_diff );
496 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
497 tb_ticks_per_sec = new_tb_ticks_per_sec;
498 calc_cputime_factors();
499 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
500 tb_to_xs = divres.result_low;
501 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
502 vdso_data->tb_to_xs = tb_to_xs;
503 }
504 else {
505 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
506 " new tb_ticks_per_jiffy = %lu\n"
507 " old tb_ticks_per_jiffy = %lu\n",
508 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
509 }
510 }
511 }
512 iSeries_recal_titan = titan;
513 iSeries_recal_tb = tb;
514
515 /* Called here as now we know accurate values for the timebase */
516 clocksource_init();
517 return 0;
518 }
519 late_initcall(iSeries_tb_recal);
520
521 /* Called from platform early init */
522 void __init iSeries_time_init_early(void)
523 {
524 iSeries_recal_tb = get_tb();
525 iSeries_recal_titan = HvCallXm_loadTod();
526 }
527 #endif /* CONFIG_PPC_ISERIES */
528
529 #if defined(CONFIG_PERF_COUNTERS) && defined(CONFIG_PPC32)
530 DEFINE_PER_CPU(u8, perf_counter_pending);
531
532 void set_perf_counter_pending(void)
533 {
534 get_cpu_var(perf_counter_pending) = 1;
535 set_dec(1);
536 put_cpu_var(perf_counter_pending);
537 }
538
539 #define test_perf_counter_pending() __get_cpu_var(perf_counter_pending)
540 #define clear_perf_counter_pending() __get_cpu_var(perf_counter_pending) = 0
541
542 #else /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */
543
544 #define test_perf_counter_pending() 0
545 #define clear_perf_counter_pending()
546
547 #endif /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */
548
549 /*
550 * For iSeries shared processors, we have to let the hypervisor
551 * set the hardware decrementer. We set a virtual decrementer
552 * in the lppaca and call the hypervisor if the virtual
553 * decrementer is less than the current value in the hardware
554 * decrementer. (almost always the new decrementer value will
555 * be greater than the current hardware decementer so the hypervisor
556 * call will not be needed)
557 */
558
559 /*
560 * timer_interrupt - gets called when the decrementer overflows,
561 * with interrupts disabled.
562 */
563 void timer_interrupt(struct pt_regs * regs)
564 {
565 struct pt_regs *old_regs;
566 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
567 struct clock_event_device *evt = &decrementer->event;
568 u64 now;
569
570 /* Ensure a positive value is written to the decrementer, or else
571 * some CPUs will continuue to take decrementer exceptions */
572 set_dec(DECREMENTER_MAX);
573
574 #ifdef CONFIG_PPC32
575 if (test_perf_counter_pending()) {
576 clear_perf_counter_pending();
577 perf_counter_do_pending();
578 }
579 if (atomic_read(&ppc_n_lost_interrupts) != 0)
580 do_IRQ(regs);
581 #endif
582
583 now = get_tb_or_rtc();
584 if (now < decrementer->next_tb) {
585 /* not time for this event yet */
586 now = decrementer->next_tb - now;
587 if (now <= DECREMENTER_MAX)
588 set_dec((int)now);
589 return;
590 }
591 old_regs = set_irq_regs(regs);
592 irq_enter();
593
594 calculate_steal_time();
595
596 #ifdef CONFIG_PPC_ISERIES
597 if (firmware_has_feature(FW_FEATURE_ISERIES))
598 get_lppaca()->int_dword.fields.decr_int = 0;
599 #endif
600
601 if (evt->event_handler)
602 evt->event_handler(evt);
603
604 #ifdef CONFIG_PPC_ISERIES
605 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
606 process_hvlpevents();
607 #endif
608
609 #ifdef CONFIG_PPC64
610 /* collect purr register values often, for accurate calculations */
611 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
612 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
613 cu->current_tb = mfspr(SPRN_PURR);
614 }
615 #endif
616
617 irq_exit();
618 set_irq_regs(old_regs);
619 }
620
621 void wakeup_decrementer(void)
622 {
623 unsigned long ticks;
624
625 /*
626 * The timebase gets saved on sleep and restored on wakeup,
627 * so all we need to do is to reset the decrementer.
628 */
629 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
630 if (ticks < tb_ticks_per_jiffy)
631 ticks = tb_ticks_per_jiffy - ticks;
632 else
633 ticks = 1;
634 set_dec(ticks);
635 }
636
637 #ifdef CONFIG_SUSPEND
638 void generic_suspend_disable_irqs(void)
639 {
640 preempt_disable();
641
642 /* Disable the decrementer, so that it doesn't interfere
643 * with suspending.
644 */
645
646 set_dec(0x7fffffff);
647 local_irq_disable();
648 set_dec(0x7fffffff);
649 }
650
651 void generic_suspend_enable_irqs(void)
652 {
653 wakeup_decrementer();
654
655 local_irq_enable();
656 preempt_enable();
657 }
658
659 /* Overrides the weak version in kernel/power/main.c */
660 void arch_suspend_disable_irqs(void)
661 {
662 if (ppc_md.suspend_disable_irqs)
663 ppc_md.suspend_disable_irqs();
664 generic_suspend_disable_irqs();
665 }
666
667 /* Overrides the weak version in kernel/power/main.c */
668 void arch_suspend_enable_irqs(void)
669 {
670 generic_suspend_enable_irqs();
671 if (ppc_md.suspend_enable_irqs)
672 ppc_md.suspend_enable_irqs();
673 }
674 #endif
675
676 #ifdef CONFIG_SMP
677 void __init smp_space_timers(unsigned int max_cpus)
678 {
679 int i;
680 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
681
682 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
683 previous_tb -= tb_ticks_per_jiffy;
684
685 for_each_possible_cpu(i) {
686 if (i == boot_cpuid)
687 continue;
688 per_cpu(last_jiffy, i) = previous_tb;
689 }
690 }
691 #endif
692
693 /*
694 * Scheduler clock - returns current time in nanosec units.
695 *
696 * Note: mulhdu(a, b) (multiply high double unsigned) returns
697 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
698 * are 64-bit unsigned numbers.
699 */
700 unsigned long long sched_clock(void)
701 {
702 if (__USE_RTC())
703 return get_rtc();
704 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
705 }
706
707 static int __init get_freq(char *name, int cells, unsigned long *val)
708 {
709 struct device_node *cpu;
710 const unsigned int *fp;
711 int found = 0;
712
713 /* The cpu node should have timebase and clock frequency properties */
714 cpu = of_find_node_by_type(NULL, "cpu");
715
716 if (cpu) {
717 fp = of_get_property(cpu, name, NULL);
718 if (fp) {
719 found = 1;
720 *val = of_read_ulong(fp, cells);
721 }
722
723 of_node_put(cpu);
724 }
725
726 return found;
727 }
728
729 void __init generic_calibrate_decr(void)
730 {
731 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
732
733 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
734 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
735
736 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
737 "(not found)\n");
738 }
739
740 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
741
742 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
743 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
744
745 printk(KERN_ERR "WARNING: Estimating processor frequency "
746 "(not found)\n");
747 }
748
749 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
750 /* Clear any pending timer interrupts */
751 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
752
753 /* Enable decrementer interrupt */
754 mtspr(SPRN_TCR, TCR_DIE);
755 #endif
756 }
757
758 int update_persistent_clock(struct timespec now)
759 {
760 struct rtc_time tm;
761
762 if (!ppc_md.set_rtc_time)
763 return 0;
764
765 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
766 tm.tm_year -= 1900;
767 tm.tm_mon -= 1;
768
769 return ppc_md.set_rtc_time(&tm);
770 }
771
772 unsigned long read_persistent_clock(void)
773 {
774 struct rtc_time tm;
775 static int first = 1;
776
777 /* XXX this is a litle fragile but will work okay in the short term */
778 if (first) {
779 first = 0;
780 if (ppc_md.time_init)
781 timezone_offset = ppc_md.time_init();
782
783 /* get_boot_time() isn't guaranteed to be safe to call late */
784 if (ppc_md.get_boot_time)
785 return ppc_md.get_boot_time() -timezone_offset;
786 }
787 if (!ppc_md.get_rtc_time)
788 return 0;
789 ppc_md.get_rtc_time(&tm);
790 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
791 tm.tm_hour, tm.tm_min, tm.tm_sec);
792 }
793
794 /* clocksource code */
795 static cycle_t rtc_read(struct clocksource *cs)
796 {
797 return (cycle_t)get_rtc();
798 }
799
800 static cycle_t timebase_read(struct clocksource *cs)
801 {
802 return (cycle_t)get_tb();
803 }
804
805 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
806 {
807 u64 t2x, stamp_xsec;
808
809 if (clock != &clocksource_timebase)
810 return;
811
812 /* Make userspace gettimeofday spin until we're done. */
813 ++vdso_data->tb_update_count;
814 smp_mb();
815
816 /* XXX this assumes clock->shift == 22 */
817 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
818 t2x = (u64) clock->mult * 4611686018ULL;
819 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
820 do_div(stamp_xsec, 1000000000);
821 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
822 update_gtod(clock->cycle_last, stamp_xsec, t2x);
823 }
824
825 void update_vsyscall_tz(void)
826 {
827 /* Make userspace gettimeofday spin until we're done. */
828 ++vdso_data->tb_update_count;
829 smp_mb();
830 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
831 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
832 smp_mb();
833 ++vdso_data->tb_update_count;
834 }
835
836 static void __init clocksource_init(void)
837 {
838 struct clocksource *clock;
839
840 if (__USE_RTC())
841 clock = &clocksource_rtc;
842 else
843 clock = &clocksource_timebase;
844
845 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
846
847 if (clocksource_register(clock)) {
848 printk(KERN_ERR "clocksource: %s is already registered\n",
849 clock->name);
850 return;
851 }
852
853 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
854 clock->name, clock->mult, clock->shift);
855 }
856
857 static int decrementer_set_next_event(unsigned long evt,
858 struct clock_event_device *dev)
859 {
860 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
861 set_dec(evt);
862 return 0;
863 }
864
865 static void decrementer_set_mode(enum clock_event_mode mode,
866 struct clock_event_device *dev)
867 {
868 if (mode != CLOCK_EVT_MODE_ONESHOT)
869 decrementer_set_next_event(DECREMENTER_MAX, dev);
870 }
871
872 static void __init setup_clockevent_multiplier(unsigned long hz)
873 {
874 u64 mult, shift = 32;
875
876 while (1) {
877 mult = div_sc(hz, NSEC_PER_SEC, shift);
878 if (mult && (mult >> 32UL) == 0UL)
879 break;
880
881 shift--;
882 }
883
884 decrementer_clockevent.shift = shift;
885 decrementer_clockevent.mult = mult;
886 }
887
888 static void register_decrementer_clockevent(int cpu)
889 {
890 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
891
892 *dec = decrementer_clockevent;
893 dec->cpumask = cpumask_of(cpu);
894
895 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
896 dec->name, dec->mult, dec->shift, cpu);
897
898 clockevents_register_device(dec);
899 }
900
901 static void __init init_decrementer_clockevent(void)
902 {
903 int cpu = smp_processor_id();
904
905 setup_clockevent_multiplier(ppc_tb_freq);
906 decrementer_clockevent.max_delta_ns =
907 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
908 decrementer_clockevent.min_delta_ns =
909 clockevent_delta2ns(2, &decrementer_clockevent);
910
911 register_decrementer_clockevent(cpu);
912 }
913
914 void secondary_cpu_time_init(void)
915 {
916 /* FIME: Should make unrelatred change to move snapshot_timebase
917 * call here ! */
918 register_decrementer_clockevent(smp_processor_id());
919 }
920
921 /* This function is only called on the boot processor */
922 void __init time_init(void)
923 {
924 unsigned long flags;
925 struct div_result res;
926 u64 scale, x;
927 unsigned shift;
928
929 if (__USE_RTC()) {
930 /* 601 processor: dec counts down by 128 every 128ns */
931 ppc_tb_freq = 1000000000;
932 tb_last_jiffy = get_rtcl();
933 } else {
934 /* Normal PowerPC with timebase register */
935 ppc_md.calibrate_decr();
936 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
937 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
938 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
939 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
940 tb_last_jiffy = get_tb();
941 }
942
943 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
944 tb_ticks_per_sec = ppc_tb_freq;
945 tb_ticks_per_usec = ppc_tb_freq / 1000000;
946 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
947 calc_cputime_factors();
948
949 /*
950 * Calculate the length of each tick in ns. It will not be
951 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
952 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
953 * rounded up.
954 */
955 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
956 do_div(x, ppc_tb_freq);
957 tick_nsec = x;
958 last_tick_len = x << TICKLEN_SCALE;
959
960 /*
961 * Compute ticklen_to_xs, which is a factor which gets multiplied
962 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
963 * It is computed as:
964 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
965 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
966 * which turns out to be N = 51 - SHIFT_HZ.
967 * This gives the result as a 0.64 fixed-point fraction.
968 * That value is reduced by an offset amounting to 1 xsec per
969 * 2^31 timebase ticks to avoid problems with time going backwards
970 * by 1 xsec when we do timer_recalc_offset due to losing the
971 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
972 * since there are 2^20 xsec in a second.
973 */
974 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
975 tb_ticks_per_jiffy << SHIFT_HZ, &res);
976 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
977 ticklen_to_xs = res.result_low;
978
979 /* Compute tb_to_xs from tick_nsec */
980 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
981
982 /*
983 * Compute scale factor for sched_clock.
984 * The calibrate_decr() function has set tb_ticks_per_sec,
985 * which is the timebase frequency.
986 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
987 * the 128-bit result as a 64.64 fixed-point number.
988 * We then shift that number right until it is less than 1.0,
989 * giving us the scale factor and shift count to use in
990 * sched_clock().
991 */
992 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
993 scale = res.result_low;
994 for (shift = 0; res.result_high != 0; ++shift) {
995 scale = (scale >> 1) | (res.result_high << 63);
996 res.result_high >>= 1;
997 }
998 tb_to_ns_scale = scale;
999 tb_to_ns_shift = shift;
1000 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1001 boot_tb = get_tb_or_rtc();
1002
1003 write_seqlock_irqsave(&xtime_lock, flags);
1004
1005 /* If platform provided a timezone (pmac), we correct the time */
1006 if (timezone_offset) {
1007 sys_tz.tz_minuteswest = -timezone_offset / 60;
1008 sys_tz.tz_dsttime = 0;
1009 }
1010
1011 vdso_data->tb_orig_stamp = tb_last_jiffy;
1012 vdso_data->tb_update_count = 0;
1013 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1014 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1015 vdso_data->tb_to_xs = tb_to_xs;
1016
1017 write_sequnlock_irqrestore(&xtime_lock, flags);
1018
1019 /* Register the clocksource, if we're not running on iSeries */
1020 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1021 clocksource_init();
1022
1023 init_decrementer_clockevent();
1024 }
1025
1026
1027 #define FEBRUARY 2
1028 #define STARTOFTIME 1970
1029 #define SECDAY 86400L
1030 #define SECYR (SECDAY * 365)
1031 #define leapyear(year) ((year) % 4 == 0 && \
1032 ((year) % 100 != 0 || (year) % 400 == 0))
1033 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1034 #define days_in_month(a) (month_days[(a) - 1])
1035
1036 static int month_days[12] = {
1037 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1038 };
1039
1040 /*
1041 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1042 */
1043 void GregorianDay(struct rtc_time * tm)
1044 {
1045 int leapsToDate;
1046 int lastYear;
1047 int day;
1048 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1049
1050 lastYear = tm->tm_year - 1;
1051
1052 /*
1053 * Number of leap corrections to apply up to end of last year
1054 */
1055 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1056
1057 /*
1058 * This year is a leap year if it is divisible by 4 except when it is
1059 * divisible by 100 unless it is divisible by 400
1060 *
1061 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1062 */
1063 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1064
1065 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1066 tm->tm_mday;
1067
1068 tm->tm_wday = day % 7;
1069 }
1070
1071 void to_tm(int tim, struct rtc_time * tm)
1072 {
1073 register int i;
1074 register long hms, day;
1075
1076 day = tim / SECDAY;
1077 hms = tim % SECDAY;
1078
1079 /* Hours, minutes, seconds are easy */
1080 tm->tm_hour = hms / 3600;
1081 tm->tm_min = (hms % 3600) / 60;
1082 tm->tm_sec = (hms % 3600) % 60;
1083
1084 /* Number of years in days */
1085 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1086 day -= days_in_year(i);
1087 tm->tm_year = i;
1088
1089 /* Number of months in days left */
1090 if (leapyear(tm->tm_year))
1091 days_in_month(FEBRUARY) = 29;
1092 for (i = 1; day >= days_in_month(i); i++)
1093 day -= days_in_month(i);
1094 days_in_month(FEBRUARY) = 28;
1095 tm->tm_mon = i;
1096
1097 /* Days are what is left over (+1) from all that. */
1098 tm->tm_mday = day + 1;
1099
1100 /*
1101 * Determine the day of week
1102 */
1103 GregorianDay(tm);
1104 }
1105
1106 /* Auxiliary function to compute scaling factors */
1107 /* Actually the choice of a timebase running at 1/4 the of the bus
1108 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1109 * It makes this computation very precise (27-28 bits typically) which
1110 * is optimistic considering the stability of most processor clock
1111 * oscillators and the precision with which the timebase frequency
1112 * is measured but does not harm.
1113 */
1114 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1115 {
1116 unsigned mlt=0, tmp, err;
1117 /* No concern for performance, it's done once: use a stupid
1118 * but safe and compact method to find the multiplier.
1119 */
1120
1121 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1122 if (mulhwu(inscale, mlt|tmp) < outscale)
1123 mlt |= tmp;
1124 }
1125
1126 /* We might still be off by 1 for the best approximation.
1127 * A side effect of this is that if outscale is too large
1128 * the returned value will be zero.
1129 * Many corner cases have been checked and seem to work,
1130 * some might have been forgotten in the test however.
1131 */
1132
1133 err = inscale * (mlt+1);
1134 if (err <= inscale/2)
1135 mlt++;
1136 return mlt;
1137 }
1138
1139 /*
1140 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1141 * result.
1142 */
1143 void div128_by_32(u64 dividend_high, u64 dividend_low,
1144 unsigned divisor, struct div_result *dr)
1145 {
1146 unsigned long a, b, c, d;
1147 unsigned long w, x, y, z;
1148 u64 ra, rb, rc;
1149
1150 a = dividend_high >> 32;
1151 b = dividend_high & 0xffffffff;
1152 c = dividend_low >> 32;
1153 d = dividend_low & 0xffffffff;
1154
1155 w = a / divisor;
1156 ra = ((u64)(a - (w * divisor)) << 32) + b;
1157
1158 rb = ((u64) do_div(ra, divisor) << 32) + c;
1159 x = ra;
1160
1161 rc = ((u64) do_div(rb, divisor) << 32) + d;
1162 y = rb;
1163
1164 do_div(rc, divisor);
1165 z = rc;
1166
1167 dr->result_high = ((u64)w << 32) + x;
1168 dr->result_low = ((u64)y << 32) + z;
1169
1170 }
1171
1172 /* We don't need to calibrate delay, we use the CPU timebase for that */
1173 void calibrate_delay(void)
1174 {
1175 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1176 * as the number of __delay(1) in a jiffy, so make it so
1177 */
1178 loops_per_jiffy = tb_ticks_per_jiffy;
1179 }
1180
1181 static int __init rtc_init(void)
1182 {
1183 struct platform_device *pdev;
1184
1185 if (!ppc_md.get_rtc_time)
1186 return -ENODEV;
1187
1188 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1189 if (IS_ERR(pdev))
1190 return PTR_ERR(pdev);
1191
1192 return 0;
1193 }
1194
1195 module_init(rtc_init);
This page took 0.052396 seconds and 4 git commands to generate.