Merge commit 'origin/master' into next
[deliverable/linux.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_counter.h>
57
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 #ifdef CONFIG_PPC_ISERIES
73 #include <asm/iseries/it_lp_queue.h>
74 #include <asm/iseries/hv_call_xm.h>
75 #endif
76
77 /* powerpc clocksource/clockevent code */
78
79 #include <linux/clockchips.h>
80 #include <linux/clocksource.h>
81
82 static cycle_t rtc_read(struct clocksource *);
83 static struct clocksource clocksource_rtc = {
84 .name = "rtc",
85 .rating = 400,
86 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
87 .mask = CLOCKSOURCE_MASK(64),
88 .shift = 22,
89 .mult = 0, /* To be filled in */
90 .read = rtc_read,
91 };
92
93 static cycle_t timebase_read(struct clocksource *);
94 static struct clocksource clocksource_timebase = {
95 .name = "timebase",
96 .rating = 400,
97 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
98 .mask = CLOCKSOURCE_MASK(64),
99 .shift = 22,
100 .mult = 0, /* To be filled in */
101 .read = timebase_read,
102 };
103
104 #define DECREMENTER_MAX 0x7fffffff
105
106 static int decrementer_set_next_event(unsigned long evt,
107 struct clock_event_device *dev);
108 static void decrementer_set_mode(enum clock_event_mode mode,
109 struct clock_event_device *dev);
110
111 static struct clock_event_device decrementer_clockevent = {
112 .name = "decrementer",
113 .rating = 200,
114 .shift = 0, /* To be filled in */
115 .mult = 0, /* To be filled in */
116 .irq = 0,
117 .set_next_event = decrementer_set_next_event,
118 .set_mode = decrementer_set_mode,
119 .features = CLOCK_EVT_FEAT_ONESHOT,
120 };
121
122 struct decrementer_clock {
123 struct clock_event_device event;
124 u64 next_tb;
125 };
126
127 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
128
129 #ifdef CONFIG_PPC_ISERIES
130 static unsigned long __initdata iSeries_recal_titan;
131 static signed long __initdata iSeries_recal_tb;
132
133 /* Forward declaration is only needed for iSereis compiles */
134 static void __init clocksource_init(void);
135 #endif
136
137 #define XSEC_PER_SEC (1024*1024)
138
139 #ifdef CONFIG_PPC64
140 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
141 #else
142 /* compute ((xsec << 12) * max) >> 32 */
143 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
144 #endif
145
146 unsigned long tb_ticks_per_jiffy;
147 unsigned long tb_ticks_per_usec = 100; /* sane default */
148 EXPORT_SYMBOL(tb_ticks_per_usec);
149 unsigned long tb_ticks_per_sec;
150 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
151 u64 tb_to_xs;
152 unsigned tb_to_us;
153
154 #define TICKLEN_SCALE NTP_SCALE_SHIFT
155 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
156 static u64 ticklen_to_xs; /* 0.64 fraction */
157
158 /* If last_tick_len corresponds to about 1/HZ seconds, then
159 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
160 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
161
162 DEFINE_SPINLOCK(rtc_lock);
163 EXPORT_SYMBOL_GPL(rtc_lock);
164
165 static u64 tb_to_ns_scale __read_mostly;
166 static unsigned tb_to_ns_shift __read_mostly;
167 static unsigned long boot_tb __read_mostly;
168
169 extern struct timezone sys_tz;
170 static long timezone_offset;
171
172 unsigned long ppc_proc_freq;
173 EXPORT_SYMBOL(ppc_proc_freq);
174 unsigned long ppc_tb_freq;
175
176 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
177 static DEFINE_PER_CPU(u64, last_jiffy);
178
179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
180 /*
181 * Factors for converting from cputime_t (timebase ticks) to
182 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
183 * These are all stored as 0.64 fixed-point binary fractions.
184 */
185 u64 __cputime_jiffies_factor;
186 EXPORT_SYMBOL(__cputime_jiffies_factor);
187 u64 __cputime_msec_factor;
188 EXPORT_SYMBOL(__cputime_msec_factor);
189 u64 __cputime_sec_factor;
190 EXPORT_SYMBOL(__cputime_sec_factor);
191 u64 __cputime_clockt_factor;
192 EXPORT_SYMBOL(__cputime_clockt_factor);
193 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
195
196 static void calc_cputime_factors(void)
197 {
198 struct div_result res;
199
200 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
201 __cputime_jiffies_factor = res.result_low;
202 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
203 __cputime_msec_factor = res.result_low;
204 div128_by_32(1, 0, tb_ticks_per_sec, &res);
205 __cputime_sec_factor = res.result_low;
206 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
207 __cputime_clockt_factor = res.result_low;
208 }
209
210 /*
211 * Read the PURR on systems that have it, otherwise the timebase.
212 */
213 static u64 read_purr(void)
214 {
215 if (cpu_has_feature(CPU_FTR_PURR))
216 return mfspr(SPRN_PURR);
217 return mftb();
218 }
219
220 /*
221 * Read the SPURR on systems that have it, otherwise the purr
222 */
223 static u64 read_spurr(u64 purr)
224 {
225 /*
226 * cpus without PURR won't have a SPURR
227 * We already know the former when we use this, so tell gcc
228 */
229 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
230 return mfspr(SPRN_SPURR);
231 return purr;
232 }
233
234 /*
235 * Account time for a transition between system, hard irq
236 * or soft irq state.
237 */
238 void account_system_vtime(struct task_struct *tsk)
239 {
240 u64 now, nowscaled, delta, deltascaled, sys_time;
241 unsigned long flags;
242
243 local_irq_save(flags);
244 now = read_purr();
245 nowscaled = read_spurr(now);
246 delta = now - get_paca()->startpurr;
247 deltascaled = nowscaled - get_paca()->startspurr;
248 get_paca()->startpurr = now;
249 get_paca()->startspurr = nowscaled;
250 if (!in_interrupt()) {
251 /* deltascaled includes both user and system time.
252 * Hence scale it based on the purr ratio to estimate
253 * the system time */
254 sys_time = get_paca()->system_time;
255 if (get_paca()->user_time)
256 deltascaled = deltascaled * sys_time /
257 (sys_time + get_paca()->user_time);
258 delta += sys_time;
259 get_paca()->system_time = 0;
260 }
261 if (in_irq() || idle_task(smp_processor_id()) != tsk)
262 account_system_time(tsk, 0, delta, deltascaled);
263 else
264 account_idle_time(delta);
265 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
266 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
267 local_irq_restore(flags);
268 }
269
270 /*
271 * Transfer the user and system times accumulated in the paca
272 * by the exception entry and exit code to the generic process
273 * user and system time records.
274 * Must be called with interrupts disabled.
275 */
276 void account_process_tick(struct task_struct *tsk, int user_tick)
277 {
278 cputime_t utime, utimescaled;
279
280 utime = get_paca()->user_time;
281 get_paca()->user_time = 0;
282 utimescaled = cputime_to_scaled(utime);
283 account_user_time(tsk, utime, utimescaled);
284 }
285
286 /*
287 * Stuff for accounting stolen time.
288 */
289 struct cpu_purr_data {
290 int initialized; /* thread is running */
291 u64 tb; /* last TB value read */
292 u64 purr; /* last PURR value read */
293 u64 spurr; /* last SPURR value read */
294 };
295
296 /*
297 * Each entry in the cpu_purr_data array is manipulated only by its
298 * "owner" cpu -- usually in the timer interrupt but also occasionally
299 * in process context for cpu online. As long as cpus do not touch
300 * each others' cpu_purr_data, disabling local interrupts is
301 * sufficient to serialize accesses.
302 */
303 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
304
305 static void snapshot_tb_and_purr(void *data)
306 {
307 unsigned long flags;
308 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
309
310 local_irq_save(flags);
311 p->tb = get_tb_or_rtc();
312 p->purr = mfspr(SPRN_PURR);
313 wmb();
314 p->initialized = 1;
315 local_irq_restore(flags);
316 }
317
318 /*
319 * Called during boot when all cpus have come up.
320 */
321 void snapshot_timebases(void)
322 {
323 if (!cpu_has_feature(CPU_FTR_PURR))
324 return;
325 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
326 }
327
328 /*
329 * Must be called with interrupts disabled.
330 */
331 void calculate_steal_time(void)
332 {
333 u64 tb, purr;
334 s64 stolen;
335 struct cpu_purr_data *pme;
336
337 pme = &__get_cpu_var(cpu_purr_data);
338 if (!pme->initialized)
339 return; /* !CPU_FTR_PURR or early in early boot */
340 tb = mftb();
341 purr = mfspr(SPRN_PURR);
342 stolen = (tb - pme->tb) - (purr - pme->purr);
343 if (stolen > 0) {
344 if (idle_task(smp_processor_id()) != current)
345 account_steal_time(stolen);
346 else
347 account_idle_time(stolen);
348 }
349 pme->tb = tb;
350 pme->purr = purr;
351 }
352
353 #ifdef CONFIG_PPC_SPLPAR
354 /*
355 * Must be called before the cpu is added to the online map when
356 * a cpu is being brought up at runtime.
357 */
358 static void snapshot_purr(void)
359 {
360 struct cpu_purr_data *pme;
361 unsigned long flags;
362
363 if (!cpu_has_feature(CPU_FTR_PURR))
364 return;
365 local_irq_save(flags);
366 pme = &__get_cpu_var(cpu_purr_data);
367 pme->tb = mftb();
368 pme->purr = mfspr(SPRN_PURR);
369 pme->initialized = 1;
370 local_irq_restore(flags);
371 }
372
373 #endif /* CONFIG_PPC_SPLPAR */
374
375 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
376 #define calc_cputime_factors()
377 #define calculate_steal_time() do { } while (0)
378 #endif
379
380 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
381 #define snapshot_purr() do { } while (0)
382 #endif
383
384 /*
385 * Called when a cpu comes up after the system has finished booting,
386 * i.e. as a result of a hotplug cpu action.
387 */
388 void snapshot_timebase(void)
389 {
390 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
391 snapshot_purr();
392 }
393
394 void __delay(unsigned long loops)
395 {
396 unsigned long start;
397 int diff;
398
399 if (__USE_RTC()) {
400 start = get_rtcl();
401 do {
402 /* the RTCL register wraps at 1000000000 */
403 diff = get_rtcl() - start;
404 if (diff < 0)
405 diff += 1000000000;
406 } while (diff < loops);
407 } else {
408 start = get_tbl();
409 while (get_tbl() - start < loops)
410 HMT_low();
411 HMT_medium();
412 }
413 }
414 EXPORT_SYMBOL(__delay);
415
416 void udelay(unsigned long usecs)
417 {
418 __delay(tb_ticks_per_usec * usecs);
419 }
420 EXPORT_SYMBOL(udelay);
421
422 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
423 u64 new_tb_to_xs)
424 {
425 /*
426 * tb_update_count is used to allow the userspace gettimeofday code
427 * to assure itself that it sees a consistent view of the tb_to_xs and
428 * stamp_xsec variables. It reads the tb_update_count, then reads
429 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
430 * the two values of tb_update_count match and are even then the
431 * tb_to_xs and stamp_xsec values are consistent. If not, then it
432 * loops back and reads them again until this criteria is met.
433 * We expect the caller to have done the first increment of
434 * vdso_data->tb_update_count already.
435 */
436 vdso_data->tb_orig_stamp = new_tb_stamp;
437 vdso_data->stamp_xsec = new_stamp_xsec;
438 vdso_data->tb_to_xs = new_tb_to_xs;
439 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
440 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
441 vdso_data->stamp_xtime = xtime;
442 smp_wmb();
443 ++(vdso_data->tb_update_count);
444 }
445
446 #ifdef CONFIG_SMP
447 unsigned long profile_pc(struct pt_regs *regs)
448 {
449 unsigned long pc = instruction_pointer(regs);
450
451 if (in_lock_functions(pc))
452 return regs->link;
453
454 return pc;
455 }
456 EXPORT_SYMBOL(profile_pc);
457 #endif
458
459 #ifdef CONFIG_PPC_ISERIES
460
461 /*
462 * This function recalibrates the timebase based on the 49-bit time-of-day
463 * value in the Titan chip. The Titan is much more accurate than the value
464 * returned by the service processor for the timebase frequency.
465 */
466
467 static int __init iSeries_tb_recal(void)
468 {
469 struct div_result divres;
470 unsigned long titan, tb;
471
472 /* Make sure we only run on iSeries */
473 if (!firmware_has_feature(FW_FEATURE_ISERIES))
474 return -ENODEV;
475
476 tb = get_tb();
477 titan = HvCallXm_loadTod();
478 if ( iSeries_recal_titan ) {
479 unsigned long tb_ticks = tb - iSeries_recal_tb;
480 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
481 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
482 unsigned long new_tb_ticks_per_jiffy =
483 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
484 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
485 char sign = '+';
486 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
487 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
488
489 if ( tick_diff < 0 ) {
490 tick_diff = -tick_diff;
491 sign = '-';
492 }
493 if ( tick_diff ) {
494 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
495 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
496 new_tb_ticks_per_jiffy, sign, tick_diff );
497 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
498 tb_ticks_per_sec = new_tb_ticks_per_sec;
499 calc_cputime_factors();
500 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
501 tb_to_xs = divres.result_low;
502 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
503 vdso_data->tb_to_xs = tb_to_xs;
504 }
505 else {
506 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
507 " new tb_ticks_per_jiffy = %lu\n"
508 " old tb_ticks_per_jiffy = %lu\n",
509 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
510 }
511 }
512 }
513 iSeries_recal_titan = titan;
514 iSeries_recal_tb = tb;
515
516 /* Called here as now we know accurate values for the timebase */
517 clocksource_init();
518 return 0;
519 }
520 late_initcall(iSeries_tb_recal);
521
522 /* Called from platform early init */
523 void __init iSeries_time_init_early(void)
524 {
525 iSeries_recal_tb = get_tb();
526 iSeries_recal_titan = HvCallXm_loadTod();
527 }
528 #endif /* CONFIG_PPC_ISERIES */
529
530 #if defined(CONFIG_PERF_COUNTERS) && defined(CONFIG_PPC32)
531 DEFINE_PER_CPU(u8, perf_counter_pending);
532
533 void set_perf_counter_pending(void)
534 {
535 get_cpu_var(perf_counter_pending) = 1;
536 set_dec(1);
537 put_cpu_var(perf_counter_pending);
538 }
539
540 #define test_perf_counter_pending() __get_cpu_var(perf_counter_pending)
541 #define clear_perf_counter_pending() __get_cpu_var(perf_counter_pending) = 0
542
543 #else /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */
544
545 #define test_perf_counter_pending() 0
546 #define clear_perf_counter_pending()
547
548 #endif /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */
549
550 /*
551 * For iSeries shared processors, we have to let the hypervisor
552 * set the hardware decrementer. We set a virtual decrementer
553 * in the lppaca and call the hypervisor if the virtual
554 * decrementer is less than the current value in the hardware
555 * decrementer. (almost always the new decrementer value will
556 * be greater than the current hardware decementer so the hypervisor
557 * call will not be needed)
558 */
559
560 /*
561 * timer_interrupt - gets called when the decrementer overflows,
562 * with interrupts disabled.
563 */
564 void timer_interrupt(struct pt_regs * regs)
565 {
566 struct pt_regs *old_regs;
567 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
568 struct clock_event_device *evt = &decrementer->event;
569 u64 now;
570
571 /* Ensure a positive value is written to the decrementer, or else
572 * some CPUs will continuue to take decrementer exceptions */
573 set_dec(DECREMENTER_MAX);
574
575 #ifdef CONFIG_PPC32
576 if (test_perf_counter_pending()) {
577 clear_perf_counter_pending();
578 perf_counter_do_pending();
579 }
580 if (atomic_read(&ppc_n_lost_interrupts) != 0)
581 do_IRQ(regs);
582 #endif
583
584 now = get_tb_or_rtc();
585 if (now < decrementer->next_tb) {
586 /* not time for this event yet */
587 now = decrementer->next_tb - now;
588 if (now <= DECREMENTER_MAX)
589 set_dec((int)now);
590 return;
591 }
592 old_regs = set_irq_regs(regs);
593 irq_enter();
594
595 calculate_steal_time();
596
597 #ifdef CONFIG_PPC_ISERIES
598 if (firmware_has_feature(FW_FEATURE_ISERIES))
599 get_lppaca()->int_dword.fields.decr_int = 0;
600 #endif
601
602 if (evt->event_handler)
603 evt->event_handler(evt);
604
605 #ifdef CONFIG_PPC_ISERIES
606 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
607 process_hvlpevents();
608 #endif
609
610 #ifdef CONFIG_PPC64
611 /* collect purr register values often, for accurate calculations */
612 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
613 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
614 cu->current_tb = mfspr(SPRN_PURR);
615 }
616 #endif
617
618 irq_exit();
619 set_irq_regs(old_regs);
620 }
621
622 void wakeup_decrementer(void)
623 {
624 unsigned long ticks;
625
626 /*
627 * The timebase gets saved on sleep and restored on wakeup,
628 * so all we need to do is to reset the decrementer.
629 */
630 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
631 if (ticks < tb_ticks_per_jiffy)
632 ticks = tb_ticks_per_jiffy - ticks;
633 else
634 ticks = 1;
635 set_dec(ticks);
636 }
637
638 #ifdef CONFIG_SUSPEND
639 void generic_suspend_disable_irqs(void)
640 {
641 preempt_disable();
642
643 /* Disable the decrementer, so that it doesn't interfere
644 * with suspending.
645 */
646
647 set_dec(0x7fffffff);
648 local_irq_disable();
649 set_dec(0x7fffffff);
650 }
651
652 void generic_suspend_enable_irqs(void)
653 {
654 wakeup_decrementer();
655
656 local_irq_enable();
657 preempt_enable();
658 }
659
660 /* Overrides the weak version in kernel/power/main.c */
661 void arch_suspend_disable_irqs(void)
662 {
663 if (ppc_md.suspend_disable_irqs)
664 ppc_md.suspend_disable_irqs();
665 generic_suspend_disable_irqs();
666 }
667
668 /* Overrides the weak version in kernel/power/main.c */
669 void arch_suspend_enable_irqs(void)
670 {
671 generic_suspend_enable_irqs();
672 if (ppc_md.suspend_enable_irqs)
673 ppc_md.suspend_enable_irqs();
674 }
675 #endif
676
677 #ifdef CONFIG_SMP
678 void __init smp_space_timers(unsigned int max_cpus)
679 {
680 int i;
681 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
682
683 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
684 previous_tb -= tb_ticks_per_jiffy;
685
686 for_each_possible_cpu(i) {
687 if (i == boot_cpuid)
688 continue;
689 per_cpu(last_jiffy, i) = previous_tb;
690 }
691 }
692 #endif
693
694 /*
695 * Scheduler clock - returns current time in nanosec units.
696 *
697 * Note: mulhdu(a, b) (multiply high double unsigned) returns
698 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
699 * are 64-bit unsigned numbers.
700 */
701 unsigned long long sched_clock(void)
702 {
703 if (__USE_RTC())
704 return get_rtc();
705 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
706 }
707
708 static int __init get_freq(char *name, int cells, unsigned long *val)
709 {
710 struct device_node *cpu;
711 const unsigned int *fp;
712 int found = 0;
713
714 /* The cpu node should have timebase and clock frequency properties */
715 cpu = of_find_node_by_type(NULL, "cpu");
716
717 if (cpu) {
718 fp = of_get_property(cpu, name, NULL);
719 if (fp) {
720 found = 1;
721 *val = of_read_ulong(fp, cells);
722 }
723
724 of_node_put(cpu);
725 }
726
727 return found;
728 }
729
730 void __init generic_calibrate_decr(void)
731 {
732 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
733
734 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
735 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
736
737 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
738 "(not found)\n");
739 }
740
741 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
742
743 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
744 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
745
746 printk(KERN_ERR "WARNING: Estimating processor frequency "
747 "(not found)\n");
748 }
749
750 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
751 /* Clear any pending timer interrupts */
752 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
753
754 /* Enable decrementer interrupt */
755 mtspr(SPRN_TCR, TCR_DIE);
756 #endif
757 }
758
759 int update_persistent_clock(struct timespec now)
760 {
761 struct rtc_time tm;
762
763 if (!ppc_md.set_rtc_time)
764 return 0;
765
766 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
767 tm.tm_year -= 1900;
768 tm.tm_mon -= 1;
769
770 return ppc_md.set_rtc_time(&tm);
771 }
772
773 unsigned long read_persistent_clock(void)
774 {
775 struct rtc_time tm;
776 static int first = 1;
777
778 /* XXX this is a litle fragile but will work okay in the short term */
779 if (first) {
780 first = 0;
781 if (ppc_md.time_init)
782 timezone_offset = ppc_md.time_init();
783
784 /* get_boot_time() isn't guaranteed to be safe to call late */
785 if (ppc_md.get_boot_time)
786 return ppc_md.get_boot_time() -timezone_offset;
787 }
788 if (!ppc_md.get_rtc_time)
789 return 0;
790 ppc_md.get_rtc_time(&tm);
791 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
792 tm.tm_hour, tm.tm_min, tm.tm_sec);
793 }
794
795 /* clocksource code */
796 static cycle_t rtc_read(struct clocksource *cs)
797 {
798 return (cycle_t)get_rtc();
799 }
800
801 static cycle_t timebase_read(struct clocksource *cs)
802 {
803 return (cycle_t)get_tb();
804 }
805
806 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
807 {
808 u64 t2x, stamp_xsec;
809
810 if (clock != &clocksource_timebase)
811 return;
812
813 /* Make userspace gettimeofday spin until we're done. */
814 ++vdso_data->tb_update_count;
815 smp_mb();
816
817 /* XXX this assumes clock->shift == 22 */
818 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
819 t2x = (u64) clock->mult * 4611686018ULL;
820 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
821 do_div(stamp_xsec, 1000000000);
822 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
823 update_gtod(clock->cycle_last, stamp_xsec, t2x);
824 }
825
826 void update_vsyscall_tz(void)
827 {
828 /* Make userspace gettimeofday spin until we're done. */
829 ++vdso_data->tb_update_count;
830 smp_mb();
831 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
832 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
833 smp_mb();
834 ++vdso_data->tb_update_count;
835 }
836
837 static void __init clocksource_init(void)
838 {
839 struct clocksource *clock;
840
841 if (__USE_RTC())
842 clock = &clocksource_rtc;
843 else
844 clock = &clocksource_timebase;
845
846 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
847
848 if (clocksource_register(clock)) {
849 printk(KERN_ERR "clocksource: %s is already registered\n",
850 clock->name);
851 return;
852 }
853
854 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
855 clock->name, clock->mult, clock->shift);
856 }
857
858 static int decrementer_set_next_event(unsigned long evt,
859 struct clock_event_device *dev)
860 {
861 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
862 set_dec(evt);
863 return 0;
864 }
865
866 static void decrementer_set_mode(enum clock_event_mode mode,
867 struct clock_event_device *dev)
868 {
869 if (mode != CLOCK_EVT_MODE_ONESHOT)
870 decrementer_set_next_event(DECREMENTER_MAX, dev);
871 }
872
873 static void __init setup_clockevent_multiplier(unsigned long hz)
874 {
875 u64 mult, shift = 32;
876
877 while (1) {
878 mult = div_sc(hz, NSEC_PER_SEC, shift);
879 if (mult && (mult >> 32UL) == 0UL)
880 break;
881
882 shift--;
883 }
884
885 decrementer_clockevent.shift = shift;
886 decrementer_clockevent.mult = mult;
887 }
888
889 static void register_decrementer_clockevent(int cpu)
890 {
891 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
892
893 *dec = decrementer_clockevent;
894 dec->cpumask = cpumask_of(cpu);
895
896 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
897 dec->name, dec->mult, dec->shift, cpu);
898
899 clockevents_register_device(dec);
900 }
901
902 static void __init init_decrementer_clockevent(void)
903 {
904 int cpu = smp_processor_id();
905
906 setup_clockevent_multiplier(ppc_tb_freq);
907 decrementer_clockevent.max_delta_ns =
908 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
909 decrementer_clockevent.min_delta_ns =
910 clockevent_delta2ns(2, &decrementer_clockevent);
911
912 register_decrementer_clockevent(cpu);
913 }
914
915 void secondary_cpu_time_init(void)
916 {
917 /* FIME: Should make unrelatred change to move snapshot_timebase
918 * call here ! */
919 register_decrementer_clockevent(smp_processor_id());
920 }
921
922 /* This function is only called on the boot processor */
923 void __init time_init(void)
924 {
925 unsigned long flags;
926 struct div_result res;
927 u64 scale, x;
928 unsigned shift;
929
930 if (__USE_RTC()) {
931 /* 601 processor: dec counts down by 128 every 128ns */
932 ppc_tb_freq = 1000000000;
933 tb_last_jiffy = get_rtcl();
934 } else {
935 /* Normal PowerPC with timebase register */
936 ppc_md.calibrate_decr();
937 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
938 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
939 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
940 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
941 tb_last_jiffy = get_tb();
942 }
943
944 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
945 tb_ticks_per_sec = ppc_tb_freq;
946 tb_ticks_per_usec = ppc_tb_freq / 1000000;
947 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
948 calc_cputime_factors();
949
950 /*
951 * Calculate the length of each tick in ns. It will not be
952 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
953 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
954 * rounded up.
955 */
956 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
957 do_div(x, ppc_tb_freq);
958 tick_nsec = x;
959 last_tick_len = x << TICKLEN_SCALE;
960
961 /*
962 * Compute ticklen_to_xs, which is a factor which gets multiplied
963 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
964 * It is computed as:
965 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
966 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
967 * which turns out to be N = 51 - SHIFT_HZ.
968 * This gives the result as a 0.64 fixed-point fraction.
969 * That value is reduced by an offset amounting to 1 xsec per
970 * 2^31 timebase ticks to avoid problems with time going backwards
971 * by 1 xsec when we do timer_recalc_offset due to losing the
972 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
973 * since there are 2^20 xsec in a second.
974 */
975 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
976 tb_ticks_per_jiffy << SHIFT_HZ, &res);
977 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
978 ticklen_to_xs = res.result_low;
979
980 /* Compute tb_to_xs from tick_nsec */
981 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
982
983 /*
984 * Compute scale factor for sched_clock.
985 * The calibrate_decr() function has set tb_ticks_per_sec,
986 * which is the timebase frequency.
987 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
988 * the 128-bit result as a 64.64 fixed-point number.
989 * We then shift that number right until it is less than 1.0,
990 * giving us the scale factor and shift count to use in
991 * sched_clock().
992 */
993 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
994 scale = res.result_low;
995 for (shift = 0; res.result_high != 0; ++shift) {
996 scale = (scale >> 1) | (res.result_high << 63);
997 res.result_high >>= 1;
998 }
999 tb_to_ns_scale = scale;
1000 tb_to_ns_shift = shift;
1001 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1002 boot_tb = get_tb_or_rtc();
1003
1004 write_seqlock_irqsave(&xtime_lock, flags);
1005
1006 /* If platform provided a timezone (pmac), we correct the time */
1007 if (timezone_offset) {
1008 sys_tz.tz_minuteswest = -timezone_offset / 60;
1009 sys_tz.tz_dsttime = 0;
1010 }
1011
1012 vdso_data->tb_orig_stamp = tb_last_jiffy;
1013 vdso_data->tb_update_count = 0;
1014 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1015 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1016 vdso_data->tb_to_xs = tb_to_xs;
1017
1018 write_sequnlock_irqrestore(&xtime_lock, flags);
1019
1020 /* Register the clocksource, if we're not running on iSeries */
1021 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1022 clocksource_init();
1023
1024 init_decrementer_clockevent();
1025 }
1026
1027
1028 #define FEBRUARY 2
1029 #define STARTOFTIME 1970
1030 #define SECDAY 86400L
1031 #define SECYR (SECDAY * 365)
1032 #define leapyear(year) ((year) % 4 == 0 && \
1033 ((year) % 100 != 0 || (year) % 400 == 0))
1034 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1035 #define days_in_month(a) (month_days[(a) - 1])
1036
1037 static int month_days[12] = {
1038 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1039 };
1040
1041 /*
1042 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1043 */
1044 void GregorianDay(struct rtc_time * tm)
1045 {
1046 int leapsToDate;
1047 int lastYear;
1048 int day;
1049 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1050
1051 lastYear = tm->tm_year - 1;
1052
1053 /*
1054 * Number of leap corrections to apply up to end of last year
1055 */
1056 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1057
1058 /*
1059 * This year is a leap year if it is divisible by 4 except when it is
1060 * divisible by 100 unless it is divisible by 400
1061 *
1062 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1063 */
1064 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1065
1066 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1067 tm->tm_mday;
1068
1069 tm->tm_wday = day % 7;
1070 }
1071
1072 void to_tm(int tim, struct rtc_time * tm)
1073 {
1074 register int i;
1075 register long hms, day;
1076
1077 day = tim / SECDAY;
1078 hms = tim % SECDAY;
1079
1080 /* Hours, minutes, seconds are easy */
1081 tm->tm_hour = hms / 3600;
1082 tm->tm_min = (hms % 3600) / 60;
1083 tm->tm_sec = (hms % 3600) % 60;
1084
1085 /* Number of years in days */
1086 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1087 day -= days_in_year(i);
1088 tm->tm_year = i;
1089
1090 /* Number of months in days left */
1091 if (leapyear(tm->tm_year))
1092 days_in_month(FEBRUARY) = 29;
1093 for (i = 1; day >= days_in_month(i); i++)
1094 day -= days_in_month(i);
1095 days_in_month(FEBRUARY) = 28;
1096 tm->tm_mon = i;
1097
1098 /* Days are what is left over (+1) from all that. */
1099 tm->tm_mday = day + 1;
1100
1101 /*
1102 * Determine the day of week
1103 */
1104 GregorianDay(tm);
1105 }
1106
1107 /* Auxiliary function to compute scaling factors */
1108 /* Actually the choice of a timebase running at 1/4 the of the bus
1109 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1110 * It makes this computation very precise (27-28 bits typically) which
1111 * is optimistic considering the stability of most processor clock
1112 * oscillators and the precision with which the timebase frequency
1113 * is measured but does not harm.
1114 */
1115 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1116 {
1117 unsigned mlt=0, tmp, err;
1118 /* No concern for performance, it's done once: use a stupid
1119 * but safe and compact method to find the multiplier.
1120 */
1121
1122 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1123 if (mulhwu(inscale, mlt|tmp) < outscale)
1124 mlt |= tmp;
1125 }
1126
1127 /* We might still be off by 1 for the best approximation.
1128 * A side effect of this is that if outscale is too large
1129 * the returned value will be zero.
1130 * Many corner cases have been checked and seem to work,
1131 * some might have been forgotten in the test however.
1132 */
1133
1134 err = inscale * (mlt+1);
1135 if (err <= inscale/2)
1136 mlt++;
1137 return mlt;
1138 }
1139
1140 /*
1141 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1142 * result.
1143 */
1144 void div128_by_32(u64 dividend_high, u64 dividend_low,
1145 unsigned divisor, struct div_result *dr)
1146 {
1147 unsigned long a, b, c, d;
1148 unsigned long w, x, y, z;
1149 u64 ra, rb, rc;
1150
1151 a = dividend_high >> 32;
1152 b = dividend_high & 0xffffffff;
1153 c = dividend_low >> 32;
1154 d = dividend_low & 0xffffffff;
1155
1156 w = a / divisor;
1157 ra = ((u64)(a - (w * divisor)) << 32) + b;
1158
1159 rb = ((u64) do_div(ra, divisor) << 32) + c;
1160 x = ra;
1161
1162 rc = ((u64) do_div(rb, divisor) << 32) + d;
1163 y = rb;
1164
1165 do_div(rc, divisor);
1166 z = rc;
1167
1168 dr->result_high = ((u64)w << 32) + x;
1169 dr->result_low = ((u64)y << 32) + z;
1170
1171 }
1172
1173 /* We don't need to calibrate delay, we use the CPU timebase for that */
1174 void calibrate_delay(void)
1175 {
1176 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1177 * as the number of __delay(1) in a jiffy, so make it so
1178 */
1179 loops_per_jiffy = tb_ticks_per_jiffy;
1180 }
1181
1182 static int __init rtc_init(void)
1183 {
1184 struct platform_device *pdev;
1185
1186 if (!ppc_md.get_rtc_time)
1187 return -ENODEV;
1188
1189 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1190 if (IS_ERR(pdev))
1191 return PTR_ERR(pdev);
1192
1193 return 0;
1194 }
1195
1196 module_init(rtc_init);
This page took 0.060075 seconds and 6 git commands to generate.