powerpc/book3s: Introduce a early machine check hook in cpu_spec.
[deliverable/linux.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89
90 /*
91 * Trap & Exception support
92 */
93
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 mutex_lock(&pmac_backlight_mutex);
98 if (pmac_backlight) {
99 struct backlight_properties *props;
100
101 props = &pmac_backlight->props;
102 props->brightness = props->max_brightness;
103 props->power = FB_BLANK_UNBLANK;
104 backlight_update_status(pmac_backlight);
105 }
106 mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 int cpu;
120 unsigned long flags;
121
122 if (debugger(regs))
123 return 1;
124
125 oops_enter();
126
127 /* racy, but better than risking deadlock. */
128 raw_local_irq_save(flags);
129 cpu = smp_processor_id();
130 if (!arch_spin_trylock(&die_lock)) {
131 if (cpu == die_owner)
132 /* nested oops. should stop eventually */;
133 else
134 arch_spin_lock(&die_lock);
135 }
136 die_nest_count++;
137 die_owner = cpu;
138 console_verbose();
139 bust_spinlocks(1);
140 if (machine_is(powermac))
141 pmac_backlight_unblank();
142 return flags;
143 }
144
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 int signr)
147 {
148 bust_spinlocks(0);
149 die_owner = -1;
150 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 die_nest_count--;
152 oops_exit();
153 printk("\n");
154 if (!die_nest_count)
155 /* Nest count reaches zero, release the lock. */
156 arch_spin_unlock(&die_lock);
157 raw_local_irq_restore(flags);
158
159 crash_fadump(regs, "die oops");
160
161 /*
162 * A system reset (0x100) is a request to dump, so we always send
163 * it through the crashdump code.
164 */
165 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 crash_kexec(regs);
167
168 /*
169 * We aren't the primary crash CPU. We need to send it
170 * to a holding pattern to avoid it ending up in the panic
171 * code.
172 */
173 crash_kexec_secondary(regs);
174 }
175
176 if (!signr)
177 return;
178
179 /*
180 * While our oops output is serialised by a spinlock, output
181 * from panic() called below can race and corrupt it. If we
182 * know we are going to panic, delay for 1 second so we have a
183 * chance to get clean backtraces from all CPUs that are oopsing.
184 */
185 if (in_interrupt() || panic_on_oops || !current->pid ||
186 is_global_init(current)) {
187 mdelay(MSEC_PER_SEC);
188 }
189
190 if (in_interrupt())
191 panic("Fatal exception in interrupt");
192 if (panic_on_oops)
193 panic("Fatal exception");
194 do_exit(signr);
195 }
196
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 printk("NUMA ");
211 #endif
212 printk("%s\n", ppc_md.name ? ppc_md.name : "");
213
214 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 return 1;
216
217 print_modules();
218 show_regs(regs);
219
220 return 0;
221 }
222
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 unsigned long flags = oops_begin(regs);
226
227 if (__die(str, regs, err))
228 err = 0;
229 oops_end(flags, regs, err);
230 }
231
232 void user_single_step_siginfo(struct task_struct *tsk,
233 struct pt_regs *regs, siginfo_t *info)
234 {
235 memset(info, 0, sizeof(*info));
236 info->si_signo = SIGTRAP;
237 info->si_code = TRAP_TRACE;
238 info->si_addr = (void __user *)regs->nip;
239 }
240
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 siginfo_t info;
244 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 "at %08lx nip %08lx lr %08lx code %x\n";
246 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 "at %016lx nip %016lx lr %016lx code %x\n";
248
249 if (!user_mode(regs)) {
250 die("Exception in kernel mode", regs, signr);
251 return;
252 }
253
254 if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 current->comm, current->pid, signr,
257 addr, regs->nip, regs->link, code);
258 }
259
260 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 local_irq_enable();
262
263 current->thread.trap_nr = code;
264 memset(&info, 0, sizeof(info));
265 info.si_signo = signr;
266 info.si_code = code;
267 info.si_addr = (void __user *) addr;
268 force_sig_info(signr, &info, current);
269 }
270
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 /* See if any machine dependent calls */
275 if (ppc_md.system_reset_exception) {
276 if (ppc_md.system_reset_exception(regs))
277 return;
278 }
279
280 die("System Reset", regs, SIGABRT);
281
282 /* Must die if the interrupt is not recoverable */
283 if (!(regs->msr & MSR_RI))
284 panic("Unrecoverable System Reset");
285
286 /* What should we do here? We could issue a shutdown or hard reset. */
287 }
288
289 /*
290 * This function is called in real mode. Strictly no printk's please.
291 *
292 * regs->nip and regs->msr contains srr0 and ssr1.
293 */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 long handled = 0;
297
298 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
299 handled = cur_cpu_spec->machine_check_early(regs);
300 return handled;
301 }
302
303 #endif
304
305 /*
306 * I/O accesses can cause machine checks on powermacs.
307 * Check if the NIP corresponds to the address of a sync
308 * instruction for which there is an entry in the exception
309 * table.
310 * Note that the 601 only takes a machine check on TEA
311 * (transfer error ack) signal assertion, and does not
312 * set any of the top 16 bits of SRR1.
313 * -- paulus.
314 */
315 static inline int check_io_access(struct pt_regs *regs)
316 {
317 #ifdef CONFIG_PPC32
318 unsigned long msr = regs->msr;
319 const struct exception_table_entry *entry;
320 unsigned int *nip = (unsigned int *)regs->nip;
321
322 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
323 && (entry = search_exception_tables(regs->nip)) != NULL) {
324 /*
325 * Check that it's a sync instruction, or somewhere
326 * in the twi; isync; nop sequence that inb/inw/inl uses.
327 * As the address is in the exception table
328 * we should be able to read the instr there.
329 * For the debug message, we look at the preceding
330 * load or store.
331 */
332 if (*nip == 0x60000000) /* nop */
333 nip -= 2;
334 else if (*nip == 0x4c00012c) /* isync */
335 --nip;
336 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
337 /* sync or twi */
338 unsigned int rb;
339
340 --nip;
341 rb = (*nip >> 11) & 0x1f;
342 printk(KERN_DEBUG "%s bad port %lx at %p\n",
343 (*nip & 0x100)? "OUT to": "IN from",
344 regs->gpr[rb] - _IO_BASE, nip);
345 regs->msr |= MSR_RI;
346 regs->nip = entry->fixup;
347 return 1;
348 }
349 }
350 #endif /* CONFIG_PPC32 */
351 return 0;
352 }
353
354 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
355 /* On 4xx, the reason for the machine check or program exception
356 is in the ESR. */
357 #define get_reason(regs) ((regs)->dsisr)
358 #ifndef CONFIG_FSL_BOOKE
359 #define get_mc_reason(regs) ((regs)->dsisr)
360 #else
361 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
362 #endif
363 #define REASON_FP ESR_FP
364 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
365 #define REASON_PRIVILEGED ESR_PPR
366 #define REASON_TRAP ESR_PTR
367
368 /* single-step stuff */
369 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
370 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
371
372 #else
373 /* On non-4xx, the reason for the machine check or program
374 exception is in the MSR. */
375 #define get_reason(regs) ((regs)->msr)
376 #define get_mc_reason(regs) ((regs)->msr)
377 #define REASON_TM 0x200000
378 #define REASON_FP 0x100000
379 #define REASON_ILLEGAL 0x80000
380 #define REASON_PRIVILEGED 0x40000
381 #define REASON_TRAP 0x20000
382
383 #define single_stepping(regs) ((regs)->msr & MSR_SE)
384 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
385 #endif
386
387 #if defined(CONFIG_4xx)
388 int machine_check_4xx(struct pt_regs *regs)
389 {
390 unsigned long reason = get_mc_reason(regs);
391
392 if (reason & ESR_IMCP) {
393 printk("Instruction");
394 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
395 } else
396 printk("Data");
397 printk(" machine check in kernel mode.\n");
398
399 return 0;
400 }
401
402 int machine_check_440A(struct pt_regs *regs)
403 {
404 unsigned long reason = get_mc_reason(regs);
405
406 printk("Machine check in kernel mode.\n");
407 if (reason & ESR_IMCP){
408 printk("Instruction Synchronous Machine Check exception\n");
409 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
410 }
411 else {
412 u32 mcsr = mfspr(SPRN_MCSR);
413 if (mcsr & MCSR_IB)
414 printk("Instruction Read PLB Error\n");
415 if (mcsr & MCSR_DRB)
416 printk("Data Read PLB Error\n");
417 if (mcsr & MCSR_DWB)
418 printk("Data Write PLB Error\n");
419 if (mcsr & MCSR_TLBP)
420 printk("TLB Parity Error\n");
421 if (mcsr & MCSR_ICP){
422 flush_instruction_cache();
423 printk("I-Cache Parity Error\n");
424 }
425 if (mcsr & MCSR_DCSP)
426 printk("D-Cache Search Parity Error\n");
427 if (mcsr & MCSR_DCFP)
428 printk("D-Cache Flush Parity Error\n");
429 if (mcsr & MCSR_IMPE)
430 printk("Machine Check exception is imprecise\n");
431
432 /* Clear MCSR */
433 mtspr(SPRN_MCSR, mcsr);
434 }
435 return 0;
436 }
437
438 int machine_check_47x(struct pt_regs *regs)
439 {
440 unsigned long reason = get_mc_reason(regs);
441 u32 mcsr;
442
443 printk(KERN_ERR "Machine check in kernel mode.\n");
444 if (reason & ESR_IMCP) {
445 printk(KERN_ERR
446 "Instruction Synchronous Machine Check exception\n");
447 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
448 return 0;
449 }
450 mcsr = mfspr(SPRN_MCSR);
451 if (mcsr & MCSR_IB)
452 printk(KERN_ERR "Instruction Read PLB Error\n");
453 if (mcsr & MCSR_DRB)
454 printk(KERN_ERR "Data Read PLB Error\n");
455 if (mcsr & MCSR_DWB)
456 printk(KERN_ERR "Data Write PLB Error\n");
457 if (mcsr & MCSR_TLBP)
458 printk(KERN_ERR "TLB Parity Error\n");
459 if (mcsr & MCSR_ICP) {
460 flush_instruction_cache();
461 printk(KERN_ERR "I-Cache Parity Error\n");
462 }
463 if (mcsr & MCSR_DCSP)
464 printk(KERN_ERR "D-Cache Search Parity Error\n");
465 if (mcsr & PPC47x_MCSR_GPR)
466 printk(KERN_ERR "GPR Parity Error\n");
467 if (mcsr & PPC47x_MCSR_FPR)
468 printk(KERN_ERR "FPR Parity Error\n");
469 if (mcsr & PPC47x_MCSR_IPR)
470 printk(KERN_ERR "Machine Check exception is imprecise\n");
471
472 /* Clear MCSR */
473 mtspr(SPRN_MCSR, mcsr);
474
475 return 0;
476 }
477 #elif defined(CONFIG_E500)
478 int machine_check_e500mc(struct pt_regs *regs)
479 {
480 unsigned long mcsr = mfspr(SPRN_MCSR);
481 unsigned long reason = mcsr;
482 int recoverable = 1;
483
484 if (reason & MCSR_LD) {
485 recoverable = fsl_rio_mcheck_exception(regs);
486 if (recoverable == 1)
487 goto silent_out;
488 }
489
490 printk("Machine check in kernel mode.\n");
491 printk("Caused by (from MCSR=%lx): ", reason);
492
493 if (reason & MCSR_MCP)
494 printk("Machine Check Signal\n");
495
496 if (reason & MCSR_ICPERR) {
497 printk("Instruction Cache Parity Error\n");
498
499 /*
500 * This is recoverable by invalidating the i-cache.
501 */
502 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
503 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
504 ;
505
506 /*
507 * This will generally be accompanied by an instruction
508 * fetch error report -- only treat MCSR_IF as fatal
509 * if it wasn't due to an L1 parity error.
510 */
511 reason &= ~MCSR_IF;
512 }
513
514 if (reason & MCSR_DCPERR_MC) {
515 printk("Data Cache Parity Error\n");
516
517 /*
518 * In write shadow mode we auto-recover from the error, but it
519 * may still get logged and cause a machine check. We should
520 * only treat the non-write shadow case as non-recoverable.
521 */
522 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
523 recoverable = 0;
524 }
525
526 if (reason & MCSR_L2MMU_MHIT) {
527 printk("Hit on multiple TLB entries\n");
528 recoverable = 0;
529 }
530
531 if (reason & MCSR_NMI)
532 printk("Non-maskable interrupt\n");
533
534 if (reason & MCSR_IF) {
535 printk("Instruction Fetch Error Report\n");
536 recoverable = 0;
537 }
538
539 if (reason & MCSR_LD) {
540 printk("Load Error Report\n");
541 recoverable = 0;
542 }
543
544 if (reason & MCSR_ST) {
545 printk("Store Error Report\n");
546 recoverable = 0;
547 }
548
549 if (reason & MCSR_LDG) {
550 printk("Guarded Load Error Report\n");
551 recoverable = 0;
552 }
553
554 if (reason & MCSR_TLBSYNC)
555 printk("Simultaneous tlbsync operations\n");
556
557 if (reason & MCSR_BSL2_ERR) {
558 printk("Level 2 Cache Error\n");
559 recoverable = 0;
560 }
561
562 if (reason & MCSR_MAV) {
563 u64 addr;
564
565 addr = mfspr(SPRN_MCAR);
566 addr |= (u64)mfspr(SPRN_MCARU) << 32;
567
568 printk("Machine Check %s Address: %#llx\n",
569 reason & MCSR_MEA ? "Effective" : "Physical", addr);
570 }
571
572 silent_out:
573 mtspr(SPRN_MCSR, mcsr);
574 return mfspr(SPRN_MCSR) == 0 && recoverable;
575 }
576
577 int machine_check_e500(struct pt_regs *regs)
578 {
579 unsigned long reason = get_mc_reason(regs);
580
581 if (reason & MCSR_BUS_RBERR) {
582 if (fsl_rio_mcheck_exception(regs))
583 return 1;
584 if (fsl_pci_mcheck_exception(regs))
585 return 1;
586 }
587
588 printk("Machine check in kernel mode.\n");
589 printk("Caused by (from MCSR=%lx): ", reason);
590
591 if (reason & MCSR_MCP)
592 printk("Machine Check Signal\n");
593 if (reason & MCSR_ICPERR)
594 printk("Instruction Cache Parity Error\n");
595 if (reason & MCSR_DCP_PERR)
596 printk("Data Cache Push Parity Error\n");
597 if (reason & MCSR_DCPERR)
598 printk("Data Cache Parity Error\n");
599 if (reason & MCSR_BUS_IAERR)
600 printk("Bus - Instruction Address Error\n");
601 if (reason & MCSR_BUS_RAERR)
602 printk("Bus - Read Address Error\n");
603 if (reason & MCSR_BUS_WAERR)
604 printk("Bus - Write Address Error\n");
605 if (reason & MCSR_BUS_IBERR)
606 printk("Bus - Instruction Data Error\n");
607 if (reason & MCSR_BUS_RBERR)
608 printk("Bus - Read Data Bus Error\n");
609 if (reason & MCSR_BUS_WBERR)
610 printk("Bus - Read Data Bus Error\n");
611 if (reason & MCSR_BUS_IPERR)
612 printk("Bus - Instruction Parity Error\n");
613 if (reason & MCSR_BUS_RPERR)
614 printk("Bus - Read Parity Error\n");
615
616 return 0;
617 }
618
619 int machine_check_generic(struct pt_regs *regs)
620 {
621 return 0;
622 }
623 #elif defined(CONFIG_E200)
624 int machine_check_e200(struct pt_regs *regs)
625 {
626 unsigned long reason = get_mc_reason(regs);
627
628 printk("Machine check in kernel mode.\n");
629 printk("Caused by (from MCSR=%lx): ", reason);
630
631 if (reason & MCSR_MCP)
632 printk("Machine Check Signal\n");
633 if (reason & MCSR_CP_PERR)
634 printk("Cache Push Parity Error\n");
635 if (reason & MCSR_CPERR)
636 printk("Cache Parity Error\n");
637 if (reason & MCSR_EXCP_ERR)
638 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
639 if (reason & MCSR_BUS_IRERR)
640 printk("Bus - Read Bus Error on instruction fetch\n");
641 if (reason & MCSR_BUS_DRERR)
642 printk("Bus - Read Bus Error on data load\n");
643 if (reason & MCSR_BUS_WRERR)
644 printk("Bus - Write Bus Error on buffered store or cache line push\n");
645
646 return 0;
647 }
648 #else
649 int machine_check_generic(struct pt_regs *regs)
650 {
651 unsigned long reason = get_mc_reason(regs);
652
653 printk("Machine check in kernel mode.\n");
654 printk("Caused by (from SRR1=%lx): ", reason);
655 switch (reason & 0x601F0000) {
656 case 0x80000:
657 printk("Machine check signal\n");
658 break;
659 case 0: /* for 601 */
660 case 0x40000:
661 case 0x140000: /* 7450 MSS error and TEA */
662 printk("Transfer error ack signal\n");
663 break;
664 case 0x20000:
665 printk("Data parity error signal\n");
666 break;
667 case 0x10000:
668 printk("Address parity error signal\n");
669 break;
670 case 0x20000000:
671 printk("L1 Data Cache error\n");
672 break;
673 case 0x40000000:
674 printk("L1 Instruction Cache error\n");
675 break;
676 case 0x00100000:
677 printk("L2 data cache parity error\n");
678 break;
679 default:
680 printk("Unknown values in msr\n");
681 }
682 return 0;
683 }
684 #endif /* everything else */
685
686 void machine_check_exception(struct pt_regs *regs)
687 {
688 enum ctx_state prev_state = exception_enter();
689 int recover = 0;
690
691 __get_cpu_var(irq_stat).mce_exceptions++;
692
693 /* See if any machine dependent calls. In theory, we would want
694 * to call the CPU first, and call the ppc_md. one if the CPU
695 * one returns a positive number. However there is existing code
696 * that assumes the board gets a first chance, so let's keep it
697 * that way for now and fix things later. --BenH.
698 */
699 if (ppc_md.machine_check_exception)
700 recover = ppc_md.machine_check_exception(regs);
701 else if (cur_cpu_spec->machine_check)
702 recover = cur_cpu_spec->machine_check(regs);
703
704 if (recover > 0)
705 goto bail;
706
707 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
708 /* the qspan pci read routines can cause machine checks -- Cort
709 *
710 * yuck !!! that totally needs to go away ! There are better ways
711 * to deal with that than having a wart in the mcheck handler.
712 * -- BenH
713 */
714 bad_page_fault(regs, regs->dar, SIGBUS);
715 goto bail;
716 #endif
717
718 if (debugger_fault_handler(regs))
719 goto bail;
720
721 if (check_io_access(regs))
722 goto bail;
723
724 die("Machine check", regs, SIGBUS);
725
726 /* Must die if the interrupt is not recoverable */
727 if (!(regs->msr & MSR_RI))
728 panic("Unrecoverable Machine check");
729
730 bail:
731 exception_exit(prev_state);
732 }
733
734 void SMIException(struct pt_regs *regs)
735 {
736 die("System Management Interrupt", regs, SIGABRT);
737 }
738
739 void unknown_exception(struct pt_regs *regs)
740 {
741 enum ctx_state prev_state = exception_enter();
742
743 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
744 regs->nip, regs->msr, regs->trap);
745
746 _exception(SIGTRAP, regs, 0, 0);
747
748 exception_exit(prev_state);
749 }
750
751 void instruction_breakpoint_exception(struct pt_regs *regs)
752 {
753 enum ctx_state prev_state = exception_enter();
754
755 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
756 5, SIGTRAP) == NOTIFY_STOP)
757 goto bail;
758 if (debugger_iabr_match(regs))
759 goto bail;
760 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
761
762 bail:
763 exception_exit(prev_state);
764 }
765
766 void RunModeException(struct pt_regs *regs)
767 {
768 _exception(SIGTRAP, regs, 0, 0);
769 }
770
771 void __kprobes single_step_exception(struct pt_regs *regs)
772 {
773 enum ctx_state prev_state = exception_enter();
774
775 clear_single_step(regs);
776
777 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
778 5, SIGTRAP) == NOTIFY_STOP)
779 goto bail;
780 if (debugger_sstep(regs))
781 goto bail;
782
783 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
784
785 bail:
786 exception_exit(prev_state);
787 }
788
789 /*
790 * After we have successfully emulated an instruction, we have to
791 * check if the instruction was being single-stepped, and if so,
792 * pretend we got a single-step exception. This was pointed out
793 * by Kumar Gala. -- paulus
794 */
795 static void emulate_single_step(struct pt_regs *regs)
796 {
797 if (single_stepping(regs))
798 single_step_exception(regs);
799 }
800
801 static inline int __parse_fpscr(unsigned long fpscr)
802 {
803 int ret = 0;
804
805 /* Invalid operation */
806 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
807 ret = FPE_FLTINV;
808
809 /* Overflow */
810 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
811 ret = FPE_FLTOVF;
812
813 /* Underflow */
814 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
815 ret = FPE_FLTUND;
816
817 /* Divide by zero */
818 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
819 ret = FPE_FLTDIV;
820
821 /* Inexact result */
822 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
823 ret = FPE_FLTRES;
824
825 return ret;
826 }
827
828 static void parse_fpe(struct pt_regs *regs)
829 {
830 int code = 0;
831
832 flush_fp_to_thread(current);
833
834 code = __parse_fpscr(current->thread.fp_state.fpscr);
835
836 _exception(SIGFPE, regs, code, regs->nip);
837 }
838
839 /*
840 * Illegal instruction emulation support. Originally written to
841 * provide the PVR to user applications using the mfspr rd, PVR.
842 * Return non-zero if we can't emulate, or -EFAULT if the associated
843 * memory access caused an access fault. Return zero on success.
844 *
845 * There are a couple of ways to do this, either "decode" the instruction
846 * or directly match lots of bits. In this case, matching lots of
847 * bits is faster and easier.
848 *
849 */
850 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
851 {
852 u8 rT = (instword >> 21) & 0x1f;
853 u8 rA = (instword >> 16) & 0x1f;
854 u8 NB_RB = (instword >> 11) & 0x1f;
855 u32 num_bytes;
856 unsigned long EA;
857 int pos = 0;
858
859 /* Early out if we are an invalid form of lswx */
860 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
861 if ((rT == rA) || (rT == NB_RB))
862 return -EINVAL;
863
864 EA = (rA == 0) ? 0 : regs->gpr[rA];
865
866 switch (instword & PPC_INST_STRING_MASK) {
867 case PPC_INST_LSWX:
868 case PPC_INST_STSWX:
869 EA += NB_RB;
870 num_bytes = regs->xer & 0x7f;
871 break;
872 case PPC_INST_LSWI:
873 case PPC_INST_STSWI:
874 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
875 break;
876 default:
877 return -EINVAL;
878 }
879
880 while (num_bytes != 0)
881 {
882 u8 val;
883 u32 shift = 8 * (3 - (pos & 0x3));
884
885 /* if process is 32-bit, clear upper 32 bits of EA */
886 if ((regs->msr & MSR_64BIT) == 0)
887 EA &= 0xFFFFFFFF;
888
889 switch ((instword & PPC_INST_STRING_MASK)) {
890 case PPC_INST_LSWX:
891 case PPC_INST_LSWI:
892 if (get_user(val, (u8 __user *)EA))
893 return -EFAULT;
894 /* first time updating this reg,
895 * zero it out */
896 if (pos == 0)
897 regs->gpr[rT] = 0;
898 regs->gpr[rT] |= val << shift;
899 break;
900 case PPC_INST_STSWI:
901 case PPC_INST_STSWX:
902 val = regs->gpr[rT] >> shift;
903 if (put_user(val, (u8 __user *)EA))
904 return -EFAULT;
905 break;
906 }
907 /* move EA to next address */
908 EA += 1;
909 num_bytes--;
910
911 /* manage our position within the register */
912 if (++pos == 4) {
913 pos = 0;
914 if (++rT == 32)
915 rT = 0;
916 }
917 }
918
919 return 0;
920 }
921
922 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
923 {
924 u32 ra,rs;
925 unsigned long tmp;
926
927 ra = (instword >> 16) & 0x1f;
928 rs = (instword >> 21) & 0x1f;
929
930 tmp = regs->gpr[rs];
931 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
932 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
933 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
934 regs->gpr[ra] = tmp;
935
936 return 0;
937 }
938
939 static int emulate_isel(struct pt_regs *regs, u32 instword)
940 {
941 u8 rT = (instword >> 21) & 0x1f;
942 u8 rA = (instword >> 16) & 0x1f;
943 u8 rB = (instword >> 11) & 0x1f;
944 u8 BC = (instword >> 6) & 0x1f;
945 u8 bit;
946 unsigned long tmp;
947
948 tmp = (rA == 0) ? 0 : regs->gpr[rA];
949 bit = (regs->ccr >> (31 - BC)) & 0x1;
950
951 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
952
953 return 0;
954 }
955
956 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
957 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
958 {
959 /* If we're emulating a load/store in an active transaction, we cannot
960 * emulate it as the kernel operates in transaction suspended context.
961 * We need to abort the transaction. This creates a persistent TM
962 * abort so tell the user what caused it with a new code.
963 */
964 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
965 tm_enable();
966 tm_abort(cause);
967 return true;
968 }
969 return false;
970 }
971 #else
972 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
973 {
974 return false;
975 }
976 #endif
977
978 static int emulate_instruction(struct pt_regs *regs)
979 {
980 u32 instword;
981 u32 rd;
982
983 if (!user_mode(regs))
984 return -EINVAL;
985 CHECK_FULL_REGS(regs);
986
987 if (get_user(instword, (u32 __user *)(regs->nip)))
988 return -EFAULT;
989
990 /* Emulate the mfspr rD, PVR. */
991 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
992 PPC_WARN_EMULATED(mfpvr, regs);
993 rd = (instword >> 21) & 0x1f;
994 regs->gpr[rd] = mfspr(SPRN_PVR);
995 return 0;
996 }
997
998 /* Emulating the dcba insn is just a no-op. */
999 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1000 PPC_WARN_EMULATED(dcba, regs);
1001 return 0;
1002 }
1003
1004 /* Emulate the mcrxr insn. */
1005 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1006 int shift = (instword >> 21) & 0x1c;
1007 unsigned long msk = 0xf0000000UL >> shift;
1008
1009 PPC_WARN_EMULATED(mcrxr, regs);
1010 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1011 regs->xer &= ~0xf0000000UL;
1012 return 0;
1013 }
1014
1015 /* Emulate load/store string insn. */
1016 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1017 if (tm_abort_check(regs,
1018 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1019 return -EINVAL;
1020 PPC_WARN_EMULATED(string, regs);
1021 return emulate_string_inst(regs, instword);
1022 }
1023
1024 /* Emulate the popcntb (Population Count Bytes) instruction. */
1025 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1026 PPC_WARN_EMULATED(popcntb, regs);
1027 return emulate_popcntb_inst(regs, instword);
1028 }
1029
1030 /* Emulate isel (Integer Select) instruction */
1031 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1032 PPC_WARN_EMULATED(isel, regs);
1033 return emulate_isel(regs, instword);
1034 }
1035
1036 /* Emulate sync instruction variants */
1037 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1038 PPC_WARN_EMULATED(sync, regs);
1039 asm volatile("sync");
1040 return 0;
1041 }
1042
1043 #ifdef CONFIG_PPC64
1044 /* Emulate the mfspr rD, DSCR. */
1045 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1046 PPC_INST_MFSPR_DSCR_USER) ||
1047 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1048 PPC_INST_MFSPR_DSCR)) &&
1049 cpu_has_feature(CPU_FTR_DSCR)) {
1050 PPC_WARN_EMULATED(mfdscr, regs);
1051 rd = (instword >> 21) & 0x1f;
1052 regs->gpr[rd] = mfspr(SPRN_DSCR);
1053 return 0;
1054 }
1055 /* Emulate the mtspr DSCR, rD. */
1056 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1057 PPC_INST_MTSPR_DSCR_USER) ||
1058 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1059 PPC_INST_MTSPR_DSCR)) &&
1060 cpu_has_feature(CPU_FTR_DSCR)) {
1061 PPC_WARN_EMULATED(mtdscr, regs);
1062 rd = (instword >> 21) & 0x1f;
1063 current->thread.dscr = regs->gpr[rd];
1064 current->thread.dscr_inherit = 1;
1065 mtspr(SPRN_DSCR, current->thread.dscr);
1066 return 0;
1067 }
1068 #endif
1069
1070 return -EINVAL;
1071 }
1072
1073 int is_valid_bugaddr(unsigned long addr)
1074 {
1075 return is_kernel_addr(addr);
1076 }
1077
1078 #ifdef CONFIG_MATH_EMULATION
1079 static int emulate_math(struct pt_regs *regs)
1080 {
1081 int ret;
1082 extern int do_mathemu(struct pt_regs *regs);
1083
1084 ret = do_mathemu(regs);
1085 if (ret >= 0)
1086 PPC_WARN_EMULATED(math, regs);
1087
1088 switch (ret) {
1089 case 0:
1090 emulate_single_step(regs);
1091 return 0;
1092 case 1: {
1093 int code = 0;
1094 code = __parse_fpscr(current->thread.fp_state.fpscr);
1095 _exception(SIGFPE, regs, code, regs->nip);
1096 return 0;
1097 }
1098 case -EFAULT:
1099 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1100 return 0;
1101 }
1102
1103 return -1;
1104 }
1105 #else
1106 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1107 #endif
1108
1109 void __kprobes program_check_exception(struct pt_regs *regs)
1110 {
1111 enum ctx_state prev_state = exception_enter();
1112 unsigned int reason = get_reason(regs);
1113
1114 /* We can now get here via a FP Unavailable exception if the core
1115 * has no FPU, in that case the reason flags will be 0 */
1116
1117 if (reason & REASON_FP) {
1118 /* IEEE FP exception */
1119 parse_fpe(regs);
1120 goto bail;
1121 }
1122 if (reason & REASON_TRAP) {
1123 /* Debugger is first in line to stop recursive faults in
1124 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1125 if (debugger_bpt(regs))
1126 goto bail;
1127
1128 /* trap exception */
1129 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1130 == NOTIFY_STOP)
1131 goto bail;
1132
1133 if (!(regs->msr & MSR_PR) && /* not user-mode */
1134 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1135 regs->nip += 4;
1136 goto bail;
1137 }
1138 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1139 goto bail;
1140 }
1141 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1142 if (reason & REASON_TM) {
1143 /* This is a TM "Bad Thing Exception" program check.
1144 * This occurs when:
1145 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1146 * transition in TM states.
1147 * - A trechkpt is attempted when transactional.
1148 * - A treclaim is attempted when non transactional.
1149 * - A tend is illegally attempted.
1150 * - writing a TM SPR when transactional.
1151 */
1152 if (!user_mode(regs) &&
1153 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1154 regs->nip += 4;
1155 goto bail;
1156 }
1157 /* If usermode caused this, it's done something illegal and
1158 * gets a SIGILL slap on the wrist. We call it an illegal
1159 * operand to distinguish from the instruction just being bad
1160 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1161 * illegal /placement/ of a valid instruction.
1162 */
1163 if (user_mode(regs)) {
1164 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1165 goto bail;
1166 } else {
1167 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1168 "at %lx (msr 0x%x)\n", regs->nip, reason);
1169 die("Unrecoverable exception", regs, SIGABRT);
1170 }
1171 }
1172 #endif
1173
1174 /*
1175 * If we took the program check in the kernel skip down to sending a
1176 * SIGILL. The subsequent cases all relate to emulating instructions
1177 * which we should only do for userspace. We also do not want to enable
1178 * interrupts for kernel faults because that might lead to further
1179 * faults, and loose the context of the original exception.
1180 */
1181 if (!user_mode(regs))
1182 goto sigill;
1183
1184 /* We restore the interrupt state now */
1185 if (!arch_irq_disabled_regs(regs))
1186 local_irq_enable();
1187
1188 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1189 * but there seems to be a hardware bug on the 405GP (RevD)
1190 * that means ESR is sometimes set incorrectly - either to
1191 * ESR_DST (!?) or 0. In the process of chasing this with the
1192 * hardware people - not sure if it can happen on any illegal
1193 * instruction or only on FP instructions, whether there is a
1194 * pattern to occurrences etc. -dgibson 31/Mar/2003
1195 */
1196 if (!emulate_math(regs))
1197 goto bail;
1198
1199 /* Try to emulate it if we should. */
1200 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1201 switch (emulate_instruction(regs)) {
1202 case 0:
1203 regs->nip += 4;
1204 emulate_single_step(regs);
1205 goto bail;
1206 case -EFAULT:
1207 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1208 goto bail;
1209 }
1210 }
1211
1212 sigill:
1213 if (reason & REASON_PRIVILEGED)
1214 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1215 else
1216 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1217
1218 bail:
1219 exception_exit(prev_state);
1220 }
1221
1222 /*
1223 * This occurs when running in hypervisor mode on POWER6 or later
1224 * and an illegal instruction is encountered.
1225 */
1226 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1227 {
1228 regs->msr |= REASON_ILLEGAL;
1229 program_check_exception(regs);
1230 }
1231
1232 void alignment_exception(struct pt_regs *regs)
1233 {
1234 enum ctx_state prev_state = exception_enter();
1235 int sig, code, fixed = 0;
1236
1237 /* We restore the interrupt state now */
1238 if (!arch_irq_disabled_regs(regs))
1239 local_irq_enable();
1240
1241 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1242 goto bail;
1243
1244 /* we don't implement logging of alignment exceptions */
1245 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1246 fixed = fix_alignment(regs);
1247
1248 if (fixed == 1) {
1249 regs->nip += 4; /* skip over emulated instruction */
1250 emulate_single_step(regs);
1251 goto bail;
1252 }
1253
1254 /* Operand address was bad */
1255 if (fixed == -EFAULT) {
1256 sig = SIGSEGV;
1257 code = SEGV_ACCERR;
1258 } else {
1259 sig = SIGBUS;
1260 code = BUS_ADRALN;
1261 }
1262 if (user_mode(regs))
1263 _exception(sig, regs, code, regs->dar);
1264 else
1265 bad_page_fault(regs, regs->dar, sig);
1266
1267 bail:
1268 exception_exit(prev_state);
1269 }
1270
1271 void StackOverflow(struct pt_regs *regs)
1272 {
1273 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1274 current, regs->gpr[1]);
1275 debugger(regs);
1276 show_regs(regs);
1277 panic("kernel stack overflow");
1278 }
1279
1280 void nonrecoverable_exception(struct pt_regs *regs)
1281 {
1282 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1283 regs->nip, regs->msr);
1284 debugger(regs);
1285 die("nonrecoverable exception", regs, SIGKILL);
1286 }
1287
1288 void trace_syscall(struct pt_regs *regs)
1289 {
1290 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1291 current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1292 regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1293 }
1294
1295 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1296 {
1297 enum ctx_state prev_state = exception_enter();
1298
1299 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1300 "%lx at %lx\n", regs->trap, regs->nip);
1301 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1302
1303 exception_exit(prev_state);
1304 }
1305
1306 void altivec_unavailable_exception(struct pt_regs *regs)
1307 {
1308 enum ctx_state prev_state = exception_enter();
1309
1310 if (user_mode(regs)) {
1311 /* A user program has executed an altivec instruction,
1312 but this kernel doesn't support altivec. */
1313 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1314 goto bail;
1315 }
1316
1317 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1318 "%lx at %lx\n", regs->trap, regs->nip);
1319 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1320
1321 bail:
1322 exception_exit(prev_state);
1323 }
1324
1325 void vsx_unavailable_exception(struct pt_regs *regs)
1326 {
1327 if (user_mode(regs)) {
1328 /* A user program has executed an vsx instruction,
1329 but this kernel doesn't support vsx. */
1330 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1331 return;
1332 }
1333
1334 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1335 "%lx at %lx\n", regs->trap, regs->nip);
1336 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1337 }
1338
1339 #ifdef CONFIG_PPC64
1340 void facility_unavailable_exception(struct pt_regs *regs)
1341 {
1342 static char *facility_strings[] = {
1343 [FSCR_FP_LG] = "FPU",
1344 [FSCR_VECVSX_LG] = "VMX/VSX",
1345 [FSCR_DSCR_LG] = "DSCR",
1346 [FSCR_PM_LG] = "PMU SPRs",
1347 [FSCR_BHRB_LG] = "BHRB",
1348 [FSCR_TM_LG] = "TM",
1349 [FSCR_EBB_LG] = "EBB",
1350 [FSCR_TAR_LG] = "TAR",
1351 };
1352 char *facility = "unknown";
1353 u64 value;
1354 u8 status;
1355 bool hv;
1356
1357 hv = (regs->trap == 0xf80);
1358 if (hv)
1359 value = mfspr(SPRN_HFSCR);
1360 else
1361 value = mfspr(SPRN_FSCR);
1362
1363 status = value >> 56;
1364 if (status == FSCR_DSCR_LG) {
1365 /* User is acessing the DSCR. Set the inherit bit and allow
1366 * the user to set it directly in future by setting via the
1367 * FSCR DSCR bit. We always leave HFSCR DSCR set.
1368 */
1369 current->thread.dscr_inherit = 1;
1370 mtspr(SPRN_FSCR, value | FSCR_DSCR);
1371 return;
1372 }
1373
1374 if ((status < ARRAY_SIZE(facility_strings)) &&
1375 facility_strings[status])
1376 facility = facility_strings[status];
1377
1378 /* We restore the interrupt state now */
1379 if (!arch_irq_disabled_regs(regs))
1380 local_irq_enable();
1381
1382 pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1383 hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1384
1385 if (user_mode(regs)) {
1386 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1387 return;
1388 }
1389
1390 die("Unexpected facility unavailable exception", regs, SIGABRT);
1391 }
1392 #endif
1393
1394 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1395
1396 void fp_unavailable_tm(struct pt_regs *regs)
1397 {
1398 /* Note: This does not handle any kind of FP laziness. */
1399
1400 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1401 regs->nip, regs->msr);
1402 tm_enable();
1403
1404 /* We can only have got here if the task started using FP after
1405 * beginning the transaction. So, the transactional regs are just a
1406 * copy of the checkpointed ones. But, we still need to recheckpoint
1407 * as we're enabling FP for the process; it will return, abort the
1408 * transaction, and probably retry but now with FP enabled. So the
1409 * checkpointed FP registers need to be loaded.
1410 */
1411 tm_reclaim(&current->thread, current->thread.regs->msr,
1412 TM_CAUSE_FAC_UNAV);
1413 /* Reclaim didn't save out any FPRs to transact_fprs. */
1414
1415 /* Enable FP for the task: */
1416 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1417
1418 /* This loads and recheckpoints the FP registers from
1419 * thread.fpr[]. They will remain in registers after the
1420 * checkpoint so we don't need to reload them after.
1421 */
1422 tm_recheckpoint(&current->thread, regs->msr);
1423 }
1424
1425 #ifdef CONFIG_ALTIVEC
1426 void altivec_unavailable_tm(struct pt_regs *regs)
1427 {
1428 /* See the comments in fp_unavailable_tm(). This function operates
1429 * the same way.
1430 */
1431
1432 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1433 "MSR=%lx\n",
1434 regs->nip, regs->msr);
1435 tm_enable();
1436 tm_reclaim(&current->thread, current->thread.regs->msr,
1437 TM_CAUSE_FAC_UNAV);
1438 regs->msr |= MSR_VEC;
1439 tm_recheckpoint(&current->thread, regs->msr);
1440 current->thread.used_vr = 1;
1441 }
1442 #endif
1443
1444 #ifdef CONFIG_VSX
1445 void vsx_unavailable_tm(struct pt_regs *regs)
1446 {
1447 /* See the comments in fp_unavailable_tm(). This works similarly,
1448 * though we're loading both FP and VEC registers in here.
1449 *
1450 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1451 * regs. Either way, set MSR_VSX.
1452 */
1453
1454 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1455 "MSR=%lx\n",
1456 regs->nip, regs->msr);
1457
1458 tm_enable();
1459 /* This reclaims FP and/or VR regs if they're already enabled */
1460 tm_reclaim(&current->thread, current->thread.regs->msr,
1461 TM_CAUSE_FAC_UNAV);
1462
1463 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1464 MSR_VSX;
1465 /* This loads & recheckpoints FP and VRs. */
1466 tm_recheckpoint(&current->thread, regs->msr);
1467 current->thread.used_vsr = 1;
1468 }
1469 #endif
1470 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1471
1472 void performance_monitor_exception(struct pt_regs *regs)
1473 {
1474 __get_cpu_var(irq_stat).pmu_irqs++;
1475
1476 perf_irq(regs);
1477 }
1478
1479 #ifdef CONFIG_8xx
1480 void SoftwareEmulation(struct pt_regs *regs)
1481 {
1482 CHECK_FULL_REGS(regs);
1483
1484 if (!user_mode(regs)) {
1485 debugger(regs);
1486 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1487 regs, SIGFPE);
1488 }
1489
1490 if (!emulate_math(regs))
1491 return;
1492
1493 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1494 }
1495 #endif /* CONFIG_8xx */
1496
1497 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1498 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1499 {
1500 int changed = 0;
1501 /*
1502 * Determine the cause of the debug event, clear the
1503 * event flags and send a trap to the handler. Torez
1504 */
1505 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1506 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1507 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1508 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1509 #endif
1510 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1511 5);
1512 changed |= 0x01;
1513 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1514 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1515 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1516 6);
1517 changed |= 0x01;
1518 } else if (debug_status & DBSR_IAC1) {
1519 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1520 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1521 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1522 1);
1523 changed |= 0x01;
1524 } else if (debug_status & DBSR_IAC2) {
1525 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1526 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1527 2);
1528 changed |= 0x01;
1529 } else if (debug_status & DBSR_IAC3) {
1530 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1531 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1532 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1533 3);
1534 changed |= 0x01;
1535 } else if (debug_status & DBSR_IAC4) {
1536 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1537 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1538 4);
1539 changed |= 0x01;
1540 }
1541 /*
1542 * At the point this routine was called, the MSR(DE) was turned off.
1543 * Check all other debug flags and see if that bit needs to be turned
1544 * back on or not.
1545 */
1546 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1547 current->thread.debug.dbcr1))
1548 regs->msr |= MSR_DE;
1549 else
1550 /* Make sure the IDM flag is off */
1551 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1552
1553 if (changed & 0x01)
1554 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1555 }
1556
1557 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1558 {
1559 current->thread.debug.dbsr = debug_status;
1560
1561 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1562 * on server, it stops on the target of the branch. In order to simulate
1563 * the server behaviour, we thus restart right away with a single step
1564 * instead of stopping here when hitting a BT
1565 */
1566 if (debug_status & DBSR_BT) {
1567 regs->msr &= ~MSR_DE;
1568
1569 /* Disable BT */
1570 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1571 /* Clear the BT event */
1572 mtspr(SPRN_DBSR, DBSR_BT);
1573
1574 /* Do the single step trick only when coming from userspace */
1575 if (user_mode(regs)) {
1576 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1577 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1578 regs->msr |= MSR_DE;
1579 return;
1580 }
1581
1582 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1583 5, SIGTRAP) == NOTIFY_STOP) {
1584 return;
1585 }
1586 if (debugger_sstep(regs))
1587 return;
1588 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1589 regs->msr &= ~MSR_DE;
1590
1591 /* Disable instruction completion */
1592 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1593 /* Clear the instruction completion event */
1594 mtspr(SPRN_DBSR, DBSR_IC);
1595
1596 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1597 5, SIGTRAP) == NOTIFY_STOP) {
1598 return;
1599 }
1600
1601 if (debugger_sstep(regs))
1602 return;
1603
1604 if (user_mode(regs)) {
1605 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1606 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1607 current->thread.debug.dbcr1))
1608 regs->msr |= MSR_DE;
1609 else
1610 /* Make sure the IDM bit is off */
1611 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1612 }
1613
1614 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1615 } else
1616 handle_debug(regs, debug_status);
1617 }
1618 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1619
1620 #if !defined(CONFIG_TAU_INT)
1621 void TAUException(struct pt_regs *regs)
1622 {
1623 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1624 regs->nip, regs->msr, regs->trap, print_tainted());
1625 }
1626 #endif /* CONFIG_INT_TAU */
1627
1628 #ifdef CONFIG_ALTIVEC
1629 void altivec_assist_exception(struct pt_regs *regs)
1630 {
1631 int err;
1632
1633 if (!user_mode(regs)) {
1634 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1635 " at %lx\n", regs->nip);
1636 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1637 }
1638
1639 flush_altivec_to_thread(current);
1640
1641 PPC_WARN_EMULATED(altivec, regs);
1642 err = emulate_altivec(regs);
1643 if (err == 0) {
1644 regs->nip += 4; /* skip emulated instruction */
1645 emulate_single_step(regs);
1646 return;
1647 }
1648
1649 if (err == -EFAULT) {
1650 /* got an error reading the instruction */
1651 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1652 } else {
1653 /* didn't recognize the instruction */
1654 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1655 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1656 "in %s at %lx\n", current->comm, regs->nip);
1657 current->thread.vr_state.vscr.u[3] |= 0x10000;
1658 }
1659 }
1660 #endif /* CONFIG_ALTIVEC */
1661
1662 #ifdef CONFIG_VSX
1663 void vsx_assist_exception(struct pt_regs *regs)
1664 {
1665 if (!user_mode(regs)) {
1666 printk(KERN_EMERG "VSX assist exception in kernel mode"
1667 " at %lx\n", regs->nip);
1668 die("Kernel VSX assist exception", regs, SIGILL);
1669 }
1670
1671 flush_vsx_to_thread(current);
1672 printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1673 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1674 }
1675 #endif /* CONFIG_VSX */
1676
1677 #ifdef CONFIG_FSL_BOOKE
1678 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1679 unsigned long error_code)
1680 {
1681 /* We treat cache locking instructions from the user
1682 * as priv ops, in the future we could try to do
1683 * something smarter
1684 */
1685 if (error_code & (ESR_DLK|ESR_ILK))
1686 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1687 return;
1688 }
1689 #endif /* CONFIG_FSL_BOOKE */
1690
1691 #ifdef CONFIG_SPE
1692 void SPEFloatingPointException(struct pt_regs *regs)
1693 {
1694 extern int do_spe_mathemu(struct pt_regs *regs);
1695 unsigned long spefscr;
1696 int fpexc_mode;
1697 int code = 0;
1698 int err;
1699
1700 flush_spe_to_thread(current);
1701
1702 spefscr = current->thread.spefscr;
1703 fpexc_mode = current->thread.fpexc_mode;
1704
1705 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1706 code = FPE_FLTOVF;
1707 }
1708 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1709 code = FPE_FLTUND;
1710 }
1711 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1712 code = FPE_FLTDIV;
1713 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1714 code = FPE_FLTINV;
1715 }
1716 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1717 code = FPE_FLTRES;
1718
1719 err = do_spe_mathemu(regs);
1720 if (err == 0) {
1721 regs->nip += 4; /* skip emulated instruction */
1722 emulate_single_step(regs);
1723 return;
1724 }
1725
1726 if (err == -EFAULT) {
1727 /* got an error reading the instruction */
1728 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1729 } else if (err == -EINVAL) {
1730 /* didn't recognize the instruction */
1731 printk(KERN_ERR "unrecognized spe instruction "
1732 "in %s at %lx\n", current->comm, regs->nip);
1733 } else {
1734 _exception(SIGFPE, regs, code, regs->nip);
1735 }
1736
1737 return;
1738 }
1739
1740 void SPEFloatingPointRoundException(struct pt_regs *regs)
1741 {
1742 extern int speround_handler(struct pt_regs *regs);
1743 int err;
1744
1745 preempt_disable();
1746 if (regs->msr & MSR_SPE)
1747 giveup_spe(current);
1748 preempt_enable();
1749
1750 regs->nip -= 4;
1751 err = speround_handler(regs);
1752 if (err == 0) {
1753 regs->nip += 4; /* skip emulated instruction */
1754 emulate_single_step(regs);
1755 return;
1756 }
1757
1758 if (err == -EFAULT) {
1759 /* got an error reading the instruction */
1760 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1761 } else if (err == -EINVAL) {
1762 /* didn't recognize the instruction */
1763 printk(KERN_ERR "unrecognized spe instruction "
1764 "in %s at %lx\n", current->comm, regs->nip);
1765 } else {
1766 _exception(SIGFPE, regs, 0, regs->nip);
1767 return;
1768 }
1769 }
1770 #endif
1771
1772 /*
1773 * We enter here if we get an unrecoverable exception, that is, one
1774 * that happened at a point where the RI (recoverable interrupt) bit
1775 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1776 * we therefore lost state by taking this exception.
1777 */
1778 void unrecoverable_exception(struct pt_regs *regs)
1779 {
1780 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1781 regs->trap, regs->nip);
1782 die("Unrecoverable exception", regs, SIGABRT);
1783 }
1784
1785 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1786 /*
1787 * Default handler for a Watchdog exception,
1788 * spins until a reboot occurs
1789 */
1790 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1791 {
1792 /* Generic WatchdogHandler, implement your own */
1793 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1794 return;
1795 }
1796
1797 void WatchdogException(struct pt_regs *regs)
1798 {
1799 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1800 WatchdogHandler(regs);
1801 }
1802 #endif
1803
1804 /*
1805 * We enter here if we discover during exception entry that we are
1806 * running in supervisor mode with a userspace value in the stack pointer.
1807 */
1808 void kernel_bad_stack(struct pt_regs *regs)
1809 {
1810 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1811 regs->gpr[1], regs->nip);
1812 die("Bad kernel stack pointer", regs, SIGABRT);
1813 }
1814
1815 void __init trap_init(void)
1816 {
1817 }
1818
1819
1820 #ifdef CONFIG_PPC_EMULATED_STATS
1821
1822 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1823
1824 struct ppc_emulated ppc_emulated = {
1825 #ifdef CONFIG_ALTIVEC
1826 WARN_EMULATED_SETUP(altivec),
1827 #endif
1828 WARN_EMULATED_SETUP(dcba),
1829 WARN_EMULATED_SETUP(dcbz),
1830 WARN_EMULATED_SETUP(fp_pair),
1831 WARN_EMULATED_SETUP(isel),
1832 WARN_EMULATED_SETUP(mcrxr),
1833 WARN_EMULATED_SETUP(mfpvr),
1834 WARN_EMULATED_SETUP(multiple),
1835 WARN_EMULATED_SETUP(popcntb),
1836 WARN_EMULATED_SETUP(spe),
1837 WARN_EMULATED_SETUP(string),
1838 WARN_EMULATED_SETUP(sync),
1839 WARN_EMULATED_SETUP(unaligned),
1840 #ifdef CONFIG_MATH_EMULATION
1841 WARN_EMULATED_SETUP(math),
1842 #endif
1843 #ifdef CONFIG_VSX
1844 WARN_EMULATED_SETUP(vsx),
1845 #endif
1846 #ifdef CONFIG_PPC64
1847 WARN_EMULATED_SETUP(mfdscr),
1848 WARN_EMULATED_SETUP(mtdscr),
1849 #endif
1850 };
1851
1852 u32 ppc_warn_emulated;
1853
1854 void ppc_warn_emulated_print(const char *type)
1855 {
1856 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1857 type);
1858 }
1859
1860 static int __init ppc_warn_emulated_init(void)
1861 {
1862 struct dentry *dir, *d;
1863 unsigned int i;
1864 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1865
1866 if (!powerpc_debugfs_root)
1867 return -ENODEV;
1868
1869 dir = debugfs_create_dir("emulated_instructions",
1870 powerpc_debugfs_root);
1871 if (!dir)
1872 return -ENOMEM;
1873
1874 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1875 &ppc_warn_emulated);
1876 if (!d)
1877 goto fail;
1878
1879 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1880 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1881 (u32 *)&entries[i].val.counter);
1882 if (!d)
1883 goto fail;
1884 }
1885
1886 return 0;
1887
1888 fail:
1889 debugfs_remove_recursive(dir);
1890 return -ENOMEM;
1891 }
1892
1893 device_initcall(ppc_warn_emulated_init);
1894
1895 #endif /* CONFIG_PPC_EMULATED_STATS */
This page took 0.073445 seconds and 5 git commands to generate.