powerpc/eeh: Keep PE during hotplug
[deliverable/linux.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #ifdef CONFIG_PPC32
48 #include <asm/reg.h>
49 #endif
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65
66 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
67 int (*__debugger)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
74
75 EXPORT_SYMBOL(__debugger);
76 EXPORT_SYMBOL(__debugger_ipi);
77 EXPORT_SYMBOL(__debugger_bpt);
78 EXPORT_SYMBOL(__debugger_sstep);
79 EXPORT_SYMBOL(__debugger_iabr_match);
80 EXPORT_SYMBOL(__debugger_break_match);
81 EXPORT_SYMBOL(__debugger_fault_handler);
82 #endif
83
84 /* Transactional Memory trap debug */
85 #ifdef TM_DEBUG_SW
86 #define TM_DEBUG(x...) printk(KERN_INFO x)
87 #else
88 #define TM_DEBUG(x...) do { } while(0)
89 #endif
90
91 /*
92 * Trap & Exception support
93 */
94
95 #ifdef CONFIG_PMAC_BACKLIGHT
96 static void pmac_backlight_unblank(void)
97 {
98 mutex_lock(&pmac_backlight_mutex);
99 if (pmac_backlight) {
100 struct backlight_properties *props;
101
102 props = &pmac_backlight->props;
103 props->brightness = props->max_brightness;
104 props->power = FB_BLANK_UNBLANK;
105 backlight_update_status(pmac_backlight);
106 }
107 mutex_unlock(&pmac_backlight_mutex);
108 }
109 #else
110 static inline void pmac_backlight_unblank(void) { }
111 #endif
112
113 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
114 static int die_owner = -1;
115 static unsigned int die_nest_count;
116 static int die_counter;
117
118 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
119 {
120 int cpu;
121 unsigned long flags;
122
123 if (debugger(regs))
124 return 1;
125
126 oops_enter();
127
128 /* racy, but better than risking deadlock. */
129 raw_local_irq_save(flags);
130 cpu = smp_processor_id();
131 if (!arch_spin_trylock(&die_lock)) {
132 if (cpu == die_owner)
133 /* nested oops. should stop eventually */;
134 else
135 arch_spin_lock(&die_lock);
136 }
137 die_nest_count++;
138 die_owner = cpu;
139 console_verbose();
140 bust_spinlocks(1);
141 if (machine_is(powermac))
142 pmac_backlight_unblank();
143 return flags;
144 }
145
146 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
147 int signr)
148 {
149 bust_spinlocks(0);
150 die_owner = -1;
151 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
152 die_nest_count--;
153 oops_exit();
154 printk("\n");
155 if (!die_nest_count)
156 /* Nest count reaches zero, release the lock. */
157 arch_spin_unlock(&die_lock);
158 raw_local_irq_restore(flags);
159
160 crash_fadump(regs, "die oops");
161
162 /*
163 * A system reset (0x100) is a request to dump, so we always send
164 * it through the crashdump code.
165 */
166 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
167 crash_kexec(regs);
168
169 /*
170 * We aren't the primary crash CPU. We need to send it
171 * to a holding pattern to avoid it ending up in the panic
172 * code.
173 */
174 crash_kexec_secondary(regs);
175 }
176
177 if (!signr)
178 return;
179
180 /*
181 * While our oops output is serialised by a spinlock, output
182 * from panic() called below can race and corrupt it. If we
183 * know we are going to panic, delay for 1 second so we have a
184 * chance to get clean backtraces from all CPUs that are oopsing.
185 */
186 if (in_interrupt() || panic_on_oops || !current->pid ||
187 is_global_init(current)) {
188 mdelay(MSEC_PER_SEC);
189 }
190
191 if (in_interrupt())
192 panic("Fatal exception in interrupt");
193 if (panic_on_oops)
194 panic("Fatal exception");
195 do_exit(signr);
196 }
197
198 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
199 {
200 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
201 #ifdef CONFIG_PREEMPT
202 printk("PREEMPT ");
203 #endif
204 #ifdef CONFIG_SMP
205 printk("SMP NR_CPUS=%d ", NR_CPUS);
206 #endif
207 #ifdef CONFIG_DEBUG_PAGEALLOC
208 printk("DEBUG_PAGEALLOC ");
209 #endif
210 #ifdef CONFIG_NUMA
211 printk("NUMA ");
212 #endif
213 printk("%s\n", ppc_md.name ? ppc_md.name : "");
214
215 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
216 return 1;
217
218 print_modules();
219 show_regs(regs);
220
221 return 0;
222 }
223
224 void die(const char *str, struct pt_regs *regs, long err)
225 {
226 unsigned long flags = oops_begin(regs);
227
228 if (__die(str, regs, err))
229 err = 0;
230 oops_end(flags, regs, err);
231 }
232
233 void user_single_step_siginfo(struct task_struct *tsk,
234 struct pt_regs *regs, siginfo_t *info)
235 {
236 memset(info, 0, sizeof(*info));
237 info->si_signo = SIGTRAP;
238 info->si_code = TRAP_TRACE;
239 info->si_addr = (void __user *)regs->nip;
240 }
241
242 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
243 {
244 siginfo_t info;
245 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 "at %08lx nip %08lx lr %08lx code %x\n";
247 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
248 "at %016lx nip %016lx lr %016lx code %x\n";
249
250 if (!user_mode(regs)) {
251 die("Exception in kernel mode", regs, signr);
252 return;
253 }
254
255 if (show_unhandled_signals && unhandled_signal(current, signr)) {
256 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
257 current->comm, current->pid, signr,
258 addr, regs->nip, regs->link, code);
259 }
260
261 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
262 local_irq_enable();
263
264 current->thread.trap_nr = code;
265 memset(&info, 0, sizeof(info));
266 info.si_signo = signr;
267 info.si_code = code;
268 info.si_addr = (void __user *) addr;
269 force_sig_info(signr, &info, current);
270 }
271
272 #ifdef CONFIG_PPC64
273 void system_reset_exception(struct pt_regs *regs)
274 {
275 /* See if any machine dependent calls */
276 if (ppc_md.system_reset_exception) {
277 if (ppc_md.system_reset_exception(regs))
278 return;
279 }
280
281 die("System Reset", regs, SIGABRT);
282
283 /* Must die if the interrupt is not recoverable */
284 if (!(regs->msr & MSR_RI))
285 panic("Unrecoverable System Reset");
286
287 /* What should we do here? We could issue a shutdown or hard reset. */
288 }
289 #endif
290
291 /*
292 * I/O accesses can cause machine checks on powermacs.
293 * Check if the NIP corresponds to the address of a sync
294 * instruction for which there is an entry in the exception
295 * table.
296 * Note that the 601 only takes a machine check on TEA
297 * (transfer error ack) signal assertion, and does not
298 * set any of the top 16 bits of SRR1.
299 * -- paulus.
300 */
301 static inline int check_io_access(struct pt_regs *regs)
302 {
303 #ifdef CONFIG_PPC32
304 unsigned long msr = regs->msr;
305 const struct exception_table_entry *entry;
306 unsigned int *nip = (unsigned int *)regs->nip;
307
308 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
309 && (entry = search_exception_tables(regs->nip)) != NULL) {
310 /*
311 * Check that it's a sync instruction, or somewhere
312 * in the twi; isync; nop sequence that inb/inw/inl uses.
313 * As the address is in the exception table
314 * we should be able to read the instr there.
315 * For the debug message, we look at the preceding
316 * load or store.
317 */
318 if (*nip == 0x60000000) /* nop */
319 nip -= 2;
320 else if (*nip == 0x4c00012c) /* isync */
321 --nip;
322 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
323 /* sync or twi */
324 unsigned int rb;
325
326 --nip;
327 rb = (*nip >> 11) & 0x1f;
328 printk(KERN_DEBUG "%s bad port %lx at %p\n",
329 (*nip & 0x100)? "OUT to": "IN from",
330 regs->gpr[rb] - _IO_BASE, nip);
331 regs->msr |= MSR_RI;
332 regs->nip = entry->fixup;
333 return 1;
334 }
335 }
336 #endif /* CONFIG_PPC32 */
337 return 0;
338 }
339
340 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
341 /* On 4xx, the reason for the machine check or program exception
342 is in the ESR. */
343 #define get_reason(regs) ((regs)->dsisr)
344 #ifndef CONFIG_FSL_BOOKE
345 #define get_mc_reason(regs) ((regs)->dsisr)
346 #else
347 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
348 #endif
349 #define REASON_FP ESR_FP
350 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
351 #define REASON_PRIVILEGED ESR_PPR
352 #define REASON_TRAP ESR_PTR
353
354 /* single-step stuff */
355 #define single_stepping(regs) (current->thread.dbcr0 & DBCR0_IC)
356 #define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
357
358 #else
359 /* On non-4xx, the reason for the machine check or program
360 exception is in the MSR. */
361 #define get_reason(regs) ((regs)->msr)
362 #define get_mc_reason(regs) ((regs)->msr)
363 #define REASON_TM 0x200000
364 #define REASON_FP 0x100000
365 #define REASON_ILLEGAL 0x80000
366 #define REASON_PRIVILEGED 0x40000
367 #define REASON_TRAP 0x20000
368
369 #define single_stepping(regs) ((regs)->msr & MSR_SE)
370 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
371 #endif
372
373 #if defined(CONFIG_4xx)
374 int machine_check_4xx(struct pt_regs *regs)
375 {
376 unsigned long reason = get_mc_reason(regs);
377
378 if (reason & ESR_IMCP) {
379 printk("Instruction");
380 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
381 } else
382 printk("Data");
383 printk(" machine check in kernel mode.\n");
384
385 return 0;
386 }
387
388 int machine_check_440A(struct pt_regs *regs)
389 {
390 unsigned long reason = get_mc_reason(regs);
391
392 printk("Machine check in kernel mode.\n");
393 if (reason & ESR_IMCP){
394 printk("Instruction Synchronous Machine Check exception\n");
395 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
396 }
397 else {
398 u32 mcsr = mfspr(SPRN_MCSR);
399 if (mcsr & MCSR_IB)
400 printk("Instruction Read PLB Error\n");
401 if (mcsr & MCSR_DRB)
402 printk("Data Read PLB Error\n");
403 if (mcsr & MCSR_DWB)
404 printk("Data Write PLB Error\n");
405 if (mcsr & MCSR_TLBP)
406 printk("TLB Parity Error\n");
407 if (mcsr & MCSR_ICP){
408 flush_instruction_cache();
409 printk("I-Cache Parity Error\n");
410 }
411 if (mcsr & MCSR_DCSP)
412 printk("D-Cache Search Parity Error\n");
413 if (mcsr & MCSR_DCFP)
414 printk("D-Cache Flush Parity Error\n");
415 if (mcsr & MCSR_IMPE)
416 printk("Machine Check exception is imprecise\n");
417
418 /* Clear MCSR */
419 mtspr(SPRN_MCSR, mcsr);
420 }
421 return 0;
422 }
423
424 int machine_check_47x(struct pt_regs *regs)
425 {
426 unsigned long reason = get_mc_reason(regs);
427 u32 mcsr;
428
429 printk(KERN_ERR "Machine check in kernel mode.\n");
430 if (reason & ESR_IMCP) {
431 printk(KERN_ERR
432 "Instruction Synchronous Machine Check exception\n");
433 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
434 return 0;
435 }
436 mcsr = mfspr(SPRN_MCSR);
437 if (mcsr & MCSR_IB)
438 printk(KERN_ERR "Instruction Read PLB Error\n");
439 if (mcsr & MCSR_DRB)
440 printk(KERN_ERR "Data Read PLB Error\n");
441 if (mcsr & MCSR_DWB)
442 printk(KERN_ERR "Data Write PLB Error\n");
443 if (mcsr & MCSR_TLBP)
444 printk(KERN_ERR "TLB Parity Error\n");
445 if (mcsr & MCSR_ICP) {
446 flush_instruction_cache();
447 printk(KERN_ERR "I-Cache Parity Error\n");
448 }
449 if (mcsr & MCSR_DCSP)
450 printk(KERN_ERR "D-Cache Search Parity Error\n");
451 if (mcsr & PPC47x_MCSR_GPR)
452 printk(KERN_ERR "GPR Parity Error\n");
453 if (mcsr & PPC47x_MCSR_FPR)
454 printk(KERN_ERR "FPR Parity Error\n");
455 if (mcsr & PPC47x_MCSR_IPR)
456 printk(KERN_ERR "Machine Check exception is imprecise\n");
457
458 /* Clear MCSR */
459 mtspr(SPRN_MCSR, mcsr);
460
461 return 0;
462 }
463 #elif defined(CONFIG_E500)
464 int machine_check_e500mc(struct pt_regs *regs)
465 {
466 unsigned long mcsr = mfspr(SPRN_MCSR);
467 unsigned long reason = mcsr;
468 int recoverable = 1;
469
470 if (reason & MCSR_LD) {
471 recoverable = fsl_rio_mcheck_exception(regs);
472 if (recoverable == 1)
473 goto silent_out;
474 }
475
476 printk("Machine check in kernel mode.\n");
477 printk("Caused by (from MCSR=%lx): ", reason);
478
479 if (reason & MCSR_MCP)
480 printk("Machine Check Signal\n");
481
482 if (reason & MCSR_ICPERR) {
483 printk("Instruction Cache Parity Error\n");
484
485 /*
486 * This is recoverable by invalidating the i-cache.
487 */
488 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
489 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
490 ;
491
492 /*
493 * This will generally be accompanied by an instruction
494 * fetch error report -- only treat MCSR_IF as fatal
495 * if it wasn't due to an L1 parity error.
496 */
497 reason &= ~MCSR_IF;
498 }
499
500 if (reason & MCSR_DCPERR_MC) {
501 printk("Data Cache Parity Error\n");
502
503 /*
504 * In write shadow mode we auto-recover from the error, but it
505 * may still get logged and cause a machine check. We should
506 * only treat the non-write shadow case as non-recoverable.
507 */
508 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
509 recoverable = 0;
510 }
511
512 if (reason & MCSR_L2MMU_MHIT) {
513 printk("Hit on multiple TLB entries\n");
514 recoverable = 0;
515 }
516
517 if (reason & MCSR_NMI)
518 printk("Non-maskable interrupt\n");
519
520 if (reason & MCSR_IF) {
521 printk("Instruction Fetch Error Report\n");
522 recoverable = 0;
523 }
524
525 if (reason & MCSR_LD) {
526 printk("Load Error Report\n");
527 recoverable = 0;
528 }
529
530 if (reason & MCSR_ST) {
531 printk("Store Error Report\n");
532 recoverable = 0;
533 }
534
535 if (reason & MCSR_LDG) {
536 printk("Guarded Load Error Report\n");
537 recoverable = 0;
538 }
539
540 if (reason & MCSR_TLBSYNC)
541 printk("Simultaneous tlbsync operations\n");
542
543 if (reason & MCSR_BSL2_ERR) {
544 printk("Level 2 Cache Error\n");
545 recoverable = 0;
546 }
547
548 if (reason & MCSR_MAV) {
549 u64 addr;
550
551 addr = mfspr(SPRN_MCAR);
552 addr |= (u64)mfspr(SPRN_MCARU) << 32;
553
554 printk("Machine Check %s Address: %#llx\n",
555 reason & MCSR_MEA ? "Effective" : "Physical", addr);
556 }
557
558 silent_out:
559 mtspr(SPRN_MCSR, mcsr);
560 return mfspr(SPRN_MCSR) == 0 && recoverable;
561 }
562
563 int machine_check_e500(struct pt_regs *regs)
564 {
565 unsigned long reason = get_mc_reason(regs);
566
567 if (reason & MCSR_BUS_RBERR) {
568 if (fsl_rio_mcheck_exception(regs))
569 return 1;
570 }
571
572 printk("Machine check in kernel mode.\n");
573 printk("Caused by (from MCSR=%lx): ", reason);
574
575 if (reason & MCSR_MCP)
576 printk("Machine Check Signal\n");
577 if (reason & MCSR_ICPERR)
578 printk("Instruction Cache Parity Error\n");
579 if (reason & MCSR_DCP_PERR)
580 printk("Data Cache Push Parity Error\n");
581 if (reason & MCSR_DCPERR)
582 printk("Data Cache Parity Error\n");
583 if (reason & MCSR_BUS_IAERR)
584 printk("Bus - Instruction Address Error\n");
585 if (reason & MCSR_BUS_RAERR)
586 printk("Bus - Read Address Error\n");
587 if (reason & MCSR_BUS_WAERR)
588 printk("Bus - Write Address Error\n");
589 if (reason & MCSR_BUS_IBERR)
590 printk("Bus - Instruction Data Error\n");
591 if (reason & MCSR_BUS_RBERR)
592 printk("Bus - Read Data Bus Error\n");
593 if (reason & MCSR_BUS_WBERR)
594 printk("Bus - Read Data Bus Error\n");
595 if (reason & MCSR_BUS_IPERR)
596 printk("Bus - Instruction Parity Error\n");
597 if (reason & MCSR_BUS_RPERR)
598 printk("Bus - Read Parity Error\n");
599
600 return 0;
601 }
602
603 int machine_check_generic(struct pt_regs *regs)
604 {
605 return 0;
606 }
607 #elif defined(CONFIG_E200)
608 int machine_check_e200(struct pt_regs *regs)
609 {
610 unsigned long reason = get_mc_reason(regs);
611
612 printk("Machine check in kernel mode.\n");
613 printk("Caused by (from MCSR=%lx): ", reason);
614
615 if (reason & MCSR_MCP)
616 printk("Machine Check Signal\n");
617 if (reason & MCSR_CP_PERR)
618 printk("Cache Push Parity Error\n");
619 if (reason & MCSR_CPERR)
620 printk("Cache Parity Error\n");
621 if (reason & MCSR_EXCP_ERR)
622 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
623 if (reason & MCSR_BUS_IRERR)
624 printk("Bus - Read Bus Error on instruction fetch\n");
625 if (reason & MCSR_BUS_DRERR)
626 printk("Bus - Read Bus Error on data load\n");
627 if (reason & MCSR_BUS_WRERR)
628 printk("Bus - Write Bus Error on buffered store or cache line push\n");
629
630 return 0;
631 }
632 #else
633 int machine_check_generic(struct pt_regs *regs)
634 {
635 unsigned long reason = get_mc_reason(regs);
636
637 printk("Machine check in kernel mode.\n");
638 printk("Caused by (from SRR1=%lx): ", reason);
639 switch (reason & 0x601F0000) {
640 case 0x80000:
641 printk("Machine check signal\n");
642 break;
643 case 0: /* for 601 */
644 case 0x40000:
645 case 0x140000: /* 7450 MSS error and TEA */
646 printk("Transfer error ack signal\n");
647 break;
648 case 0x20000:
649 printk("Data parity error signal\n");
650 break;
651 case 0x10000:
652 printk("Address parity error signal\n");
653 break;
654 case 0x20000000:
655 printk("L1 Data Cache error\n");
656 break;
657 case 0x40000000:
658 printk("L1 Instruction Cache error\n");
659 break;
660 case 0x00100000:
661 printk("L2 data cache parity error\n");
662 break;
663 default:
664 printk("Unknown values in msr\n");
665 }
666 return 0;
667 }
668 #endif /* everything else */
669
670 void machine_check_exception(struct pt_regs *regs)
671 {
672 enum ctx_state prev_state = exception_enter();
673 int recover = 0;
674
675 __get_cpu_var(irq_stat).mce_exceptions++;
676
677 /* See if any machine dependent calls. In theory, we would want
678 * to call the CPU first, and call the ppc_md. one if the CPU
679 * one returns a positive number. However there is existing code
680 * that assumes the board gets a first chance, so let's keep it
681 * that way for now and fix things later. --BenH.
682 */
683 if (ppc_md.machine_check_exception)
684 recover = ppc_md.machine_check_exception(regs);
685 else if (cur_cpu_spec->machine_check)
686 recover = cur_cpu_spec->machine_check(regs);
687
688 if (recover > 0)
689 goto bail;
690
691 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
692 /* the qspan pci read routines can cause machine checks -- Cort
693 *
694 * yuck !!! that totally needs to go away ! There are better ways
695 * to deal with that than having a wart in the mcheck handler.
696 * -- BenH
697 */
698 bad_page_fault(regs, regs->dar, SIGBUS);
699 goto bail;
700 #endif
701
702 if (debugger_fault_handler(regs))
703 goto bail;
704
705 if (check_io_access(regs))
706 goto bail;
707
708 die("Machine check", regs, SIGBUS);
709
710 /* Must die if the interrupt is not recoverable */
711 if (!(regs->msr & MSR_RI))
712 panic("Unrecoverable Machine check");
713
714 bail:
715 exception_exit(prev_state);
716 }
717
718 void SMIException(struct pt_regs *regs)
719 {
720 die("System Management Interrupt", regs, SIGABRT);
721 }
722
723 void unknown_exception(struct pt_regs *regs)
724 {
725 enum ctx_state prev_state = exception_enter();
726
727 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
728 regs->nip, regs->msr, regs->trap);
729
730 _exception(SIGTRAP, regs, 0, 0);
731
732 exception_exit(prev_state);
733 }
734
735 void instruction_breakpoint_exception(struct pt_regs *regs)
736 {
737 enum ctx_state prev_state = exception_enter();
738
739 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
740 5, SIGTRAP) == NOTIFY_STOP)
741 goto bail;
742 if (debugger_iabr_match(regs))
743 goto bail;
744 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
745
746 bail:
747 exception_exit(prev_state);
748 }
749
750 void RunModeException(struct pt_regs *regs)
751 {
752 _exception(SIGTRAP, regs, 0, 0);
753 }
754
755 void __kprobes single_step_exception(struct pt_regs *regs)
756 {
757 enum ctx_state prev_state = exception_enter();
758
759 clear_single_step(regs);
760
761 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
762 5, SIGTRAP) == NOTIFY_STOP)
763 goto bail;
764 if (debugger_sstep(regs))
765 goto bail;
766
767 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
768
769 bail:
770 exception_exit(prev_state);
771 }
772
773 /*
774 * After we have successfully emulated an instruction, we have to
775 * check if the instruction was being single-stepped, and if so,
776 * pretend we got a single-step exception. This was pointed out
777 * by Kumar Gala. -- paulus
778 */
779 static void emulate_single_step(struct pt_regs *regs)
780 {
781 if (single_stepping(regs))
782 single_step_exception(regs);
783 }
784
785 static inline int __parse_fpscr(unsigned long fpscr)
786 {
787 int ret = 0;
788
789 /* Invalid operation */
790 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
791 ret = FPE_FLTINV;
792
793 /* Overflow */
794 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
795 ret = FPE_FLTOVF;
796
797 /* Underflow */
798 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
799 ret = FPE_FLTUND;
800
801 /* Divide by zero */
802 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
803 ret = FPE_FLTDIV;
804
805 /* Inexact result */
806 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
807 ret = FPE_FLTRES;
808
809 return ret;
810 }
811
812 static void parse_fpe(struct pt_regs *regs)
813 {
814 int code = 0;
815
816 flush_fp_to_thread(current);
817
818 code = __parse_fpscr(current->thread.fpscr.val);
819
820 _exception(SIGFPE, regs, code, regs->nip);
821 }
822
823 /*
824 * Illegal instruction emulation support. Originally written to
825 * provide the PVR to user applications using the mfspr rd, PVR.
826 * Return non-zero if we can't emulate, or -EFAULT if the associated
827 * memory access caused an access fault. Return zero on success.
828 *
829 * There are a couple of ways to do this, either "decode" the instruction
830 * or directly match lots of bits. In this case, matching lots of
831 * bits is faster and easier.
832 *
833 */
834 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
835 {
836 u8 rT = (instword >> 21) & 0x1f;
837 u8 rA = (instword >> 16) & 0x1f;
838 u8 NB_RB = (instword >> 11) & 0x1f;
839 u32 num_bytes;
840 unsigned long EA;
841 int pos = 0;
842
843 /* Early out if we are an invalid form of lswx */
844 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
845 if ((rT == rA) || (rT == NB_RB))
846 return -EINVAL;
847
848 EA = (rA == 0) ? 0 : regs->gpr[rA];
849
850 switch (instword & PPC_INST_STRING_MASK) {
851 case PPC_INST_LSWX:
852 case PPC_INST_STSWX:
853 EA += NB_RB;
854 num_bytes = regs->xer & 0x7f;
855 break;
856 case PPC_INST_LSWI:
857 case PPC_INST_STSWI:
858 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
859 break;
860 default:
861 return -EINVAL;
862 }
863
864 while (num_bytes != 0)
865 {
866 u8 val;
867 u32 shift = 8 * (3 - (pos & 0x3));
868
869 /* if process is 32-bit, clear upper 32 bits of EA */
870 if ((regs->msr & MSR_64BIT) == 0)
871 EA &= 0xFFFFFFFF;
872
873 switch ((instword & PPC_INST_STRING_MASK)) {
874 case PPC_INST_LSWX:
875 case PPC_INST_LSWI:
876 if (get_user(val, (u8 __user *)EA))
877 return -EFAULT;
878 /* first time updating this reg,
879 * zero it out */
880 if (pos == 0)
881 regs->gpr[rT] = 0;
882 regs->gpr[rT] |= val << shift;
883 break;
884 case PPC_INST_STSWI:
885 case PPC_INST_STSWX:
886 val = regs->gpr[rT] >> shift;
887 if (put_user(val, (u8 __user *)EA))
888 return -EFAULT;
889 break;
890 }
891 /* move EA to next address */
892 EA += 1;
893 num_bytes--;
894
895 /* manage our position within the register */
896 if (++pos == 4) {
897 pos = 0;
898 if (++rT == 32)
899 rT = 0;
900 }
901 }
902
903 return 0;
904 }
905
906 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
907 {
908 u32 ra,rs;
909 unsigned long tmp;
910
911 ra = (instword >> 16) & 0x1f;
912 rs = (instword >> 21) & 0x1f;
913
914 tmp = regs->gpr[rs];
915 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
916 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
917 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
918 regs->gpr[ra] = tmp;
919
920 return 0;
921 }
922
923 static int emulate_isel(struct pt_regs *regs, u32 instword)
924 {
925 u8 rT = (instword >> 21) & 0x1f;
926 u8 rA = (instword >> 16) & 0x1f;
927 u8 rB = (instword >> 11) & 0x1f;
928 u8 BC = (instword >> 6) & 0x1f;
929 u8 bit;
930 unsigned long tmp;
931
932 tmp = (rA == 0) ? 0 : regs->gpr[rA];
933 bit = (regs->ccr >> (31 - BC)) & 0x1;
934
935 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
936
937 return 0;
938 }
939
940 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
941 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
942 {
943 /* If we're emulating a load/store in an active transaction, we cannot
944 * emulate it as the kernel operates in transaction suspended context.
945 * We need to abort the transaction. This creates a persistent TM
946 * abort so tell the user what caused it with a new code.
947 */
948 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
949 tm_enable();
950 tm_abort(cause);
951 return true;
952 }
953 return false;
954 }
955 #else
956 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
957 {
958 return false;
959 }
960 #endif
961
962 static int emulate_instruction(struct pt_regs *regs)
963 {
964 u32 instword;
965 u32 rd;
966
967 if (!user_mode(regs) || (regs->msr & MSR_LE))
968 return -EINVAL;
969 CHECK_FULL_REGS(regs);
970
971 if (get_user(instword, (u32 __user *)(regs->nip)))
972 return -EFAULT;
973
974 /* Emulate the mfspr rD, PVR. */
975 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
976 PPC_WARN_EMULATED(mfpvr, regs);
977 rd = (instword >> 21) & 0x1f;
978 regs->gpr[rd] = mfspr(SPRN_PVR);
979 return 0;
980 }
981
982 /* Emulating the dcba insn is just a no-op. */
983 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
984 PPC_WARN_EMULATED(dcba, regs);
985 return 0;
986 }
987
988 /* Emulate the mcrxr insn. */
989 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
990 int shift = (instword >> 21) & 0x1c;
991 unsigned long msk = 0xf0000000UL >> shift;
992
993 PPC_WARN_EMULATED(mcrxr, regs);
994 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
995 regs->xer &= ~0xf0000000UL;
996 return 0;
997 }
998
999 /* Emulate load/store string insn. */
1000 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1001 if (tm_abort_check(regs,
1002 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1003 return -EINVAL;
1004 PPC_WARN_EMULATED(string, regs);
1005 return emulate_string_inst(regs, instword);
1006 }
1007
1008 /* Emulate the popcntb (Population Count Bytes) instruction. */
1009 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1010 PPC_WARN_EMULATED(popcntb, regs);
1011 return emulate_popcntb_inst(regs, instword);
1012 }
1013
1014 /* Emulate isel (Integer Select) instruction */
1015 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1016 PPC_WARN_EMULATED(isel, regs);
1017 return emulate_isel(regs, instword);
1018 }
1019
1020 #ifdef CONFIG_PPC64
1021 /* Emulate the mfspr rD, DSCR. */
1022 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1023 PPC_INST_MFSPR_DSCR_USER) ||
1024 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1025 PPC_INST_MFSPR_DSCR)) &&
1026 cpu_has_feature(CPU_FTR_DSCR)) {
1027 PPC_WARN_EMULATED(mfdscr, regs);
1028 rd = (instword >> 21) & 0x1f;
1029 regs->gpr[rd] = mfspr(SPRN_DSCR);
1030 return 0;
1031 }
1032 /* Emulate the mtspr DSCR, rD. */
1033 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1034 PPC_INST_MTSPR_DSCR_USER) ||
1035 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1036 PPC_INST_MTSPR_DSCR)) &&
1037 cpu_has_feature(CPU_FTR_DSCR)) {
1038 PPC_WARN_EMULATED(mtdscr, regs);
1039 rd = (instword >> 21) & 0x1f;
1040 current->thread.dscr = regs->gpr[rd];
1041 current->thread.dscr_inherit = 1;
1042 mtspr(SPRN_DSCR, current->thread.dscr);
1043 return 0;
1044 }
1045 #endif
1046
1047 return -EINVAL;
1048 }
1049
1050 int is_valid_bugaddr(unsigned long addr)
1051 {
1052 return is_kernel_addr(addr);
1053 }
1054
1055 void __kprobes program_check_exception(struct pt_regs *regs)
1056 {
1057 enum ctx_state prev_state = exception_enter();
1058 unsigned int reason = get_reason(regs);
1059 extern int do_mathemu(struct pt_regs *regs);
1060
1061 /* We can now get here via a FP Unavailable exception if the core
1062 * has no FPU, in that case the reason flags will be 0 */
1063
1064 if (reason & REASON_FP) {
1065 /* IEEE FP exception */
1066 parse_fpe(regs);
1067 goto bail;
1068 }
1069 if (reason & REASON_TRAP) {
1070 /* Debugger is first in line to stop recursive faults in
1071 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1072 if (debugger_bpt(regs))
1073 goto bail;
1074
1075 /* trap exception */
1076 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1077 == NOTIFY_STOP)
1078 goto bail;
1079
1080 if (!(regs->msr & MSR_PR) && /* not user-mode */
1081 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1082 regs->nip += 4;
1083 goto bail;
1084 }
1085 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1086 goto bail;
1087 }
1088 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1089 if (reason & REASON_TM) {
1090 /* This is a TM "Bad Thing Exception" program check.
1091 * This occurs when:
1092 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1093 * transition in TM states.
1094 * - A trechkpt is attempted when transactional.
1095 * - A treclaim is attempted when non transactional.
1096 * - A tend is illegally attempted.
1097 * - writing a TM SPR when transactional.
1098 */
1099 if (!user_mode(regs) &&
1100 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1101 regs->nip += 4;
1102 goto bail;
1103 }
1104 /* If usermode caused this, it's done something illegal and
1105 * gets a SIGILL slap on the wrist. We call it an illegal
1106 * operand to distinguish from the instruction just being bad
1107 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1108 * illegal /placement/ of a valid instruction.
1109 */
1110 if (user_mode(regs)) {
1111 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1112 goto bail;
1113 } else {
1114 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1115 "at %lx (msr 0x%x)\n", regs->nip, reason);
1116 die("Unrecoverable exception", regs, SIGABRT);
1117 }
1118 }
1119 #endif
1120
1121 /* We restore the interrupt state now */
1122 if (!arch_irq_disabled_regs(regs))
1123 local_irq_enable();
1124
1125 #ifdef CONFIG_MATH_EMULATION
1126 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1127 * but there seems to be a hardware bug on the 405GP (RevD)
1128 * that means ESR is sometimes set incorrectly - either to
1129 * ESR_DST (!?) or 0. In the process of chasing this with the
1130 * hardware people - not sure if it can happen on any illegal
1131 * instruction or only on FP instructions, whether there is a
1132 * pattern to occurrences etc. -dgibson 31/Mar/2003
1133 */
1134
1135 /*
1136 * If we support a HW FPU, we need to ensure the FP state
1137 * if flushed into the thread_struct before attempting
1138 * emulation
1139 */
1140 #ifdef CONFIG_PPC_FPU
1141 flush_fp_to_thread(current);
1142 #endif
1143 switch (do_mathemu(regs)) {
1144 case 0:
1145 emulate_single_step(regs);
1146 goto bail;
1147 case 1: {
1148 int code = 0;
1149 code = __parse_fpscr(current->thread.fpscr.val);
1150 _exception(SIGFPE, regs, code, regs->nip);
1151 goto bail;
1152 }
1153 case -EFAULT:
1154 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1155 goto bail;
1156 }
1157 /* fall through on any other errors */
1158 #endif /* CONFIG_MATH_EMULATION */
1159
1160 /* Try to emulate it if we should. */
1161 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1162 switch (emulate_instruction(regs)) {
1163 case 0:
1164 regs->nip += 4;
1165 emulate_single_step(regs);
1166 goto bail;
1167 case -EFAULT:
1168 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1169 goto bail;
1170 }
1171 }
1172
1173 if (reason & REASON_PRIVILEGED)
1174 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1175 else
1176 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1177
1178 bail:
1179 exception_exit(prev_state);
1180 }
1181
1182 /*
1183 * This occurs when running in hypervisor mode on POWER6 or later
1184 * and an illegal instruction is encountered.
1185 */
1186 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1187 {
1188 regs->msr |= REASON_ILLEGAL;
1189 program_check_exception(regs);
1190 }
1191
1192 void alignment_exception(struct pt_regs *regs)
1193 {
1194 enum ctx_state prev_state = exception_enter();
1195 int sig, code, fixed = 0;
1196
1197 /* We restore the interrupt state now */
1198 if (!arch_irq_disabled_regs(regs))
1199 local_irq_enable();
1200
1201 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1202 goto bail;
1203
1204 /* we don't implement logging of alignment exceptions */
1205 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1206 fixed = fix_alignment(regs);
1207
1208 if (fixed == 1) {
1209 regs->nip += 4; /* skip over emulated instruction */
1210 emulate_single_step(regs);
1211 goto bail;
1212 }
1213
1214 /* Operand address was bad */
1215 if (fixed == -EFAULT) {
1216 sig = SIGSEGV;
1217 code = SEGV_ACCERR;
1218 } else {
1219 sig = SIGBUS;
1220 code = BUS_ADRALN;
1221 }
1222 if (user_mode(regs))
1223 _exception(sig, regs, code, regs->dar);
1224 else
1225 bad_page_fault(regs, regs->dar, sig);
1226
1227 bail:
1228 exception_exit(prev_state);
1229 }
1230
1231 void StackOverflow(struct pt_regs *regs)
1232 {
1233 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1234 current, regs->gpr[1]);
1235 debugger(regs);
1236 show_regs(regs);
1237 panic("kernel stack overflow");
1238 }
1239
1240 void nonrecoverable_exception(struct pt_regs *regs)
1241 {
1242 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1243 regs->nip, regs->msr);
1244 debugger(regs);
1245 die("nonrecoverable exception", regs, SIGKILL);
1246 }
1247
1248 void trace_syscall(struct pt_regs *regs)
1249 {
1250 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1251 current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1252 regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1253 }
1254
1255 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1256 {
1257 enum ctx_state prev_state = exception_enter();
1258
1259 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1260 "%lx at %lx\n", regs->trap, regs->nip);
1261 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1262
1263 exception_exit(prev_state);
1264 }
1265
1266 void altivec_unavailable_exception(struct pt_regs *regs)
1267 {
1268 enum ctx_state prev_state = exception_enter();
1269
1270 if (user_mode(regs)) {
1271 /* A user program has executed an altivec instruction,
1272 but this kernel doesn't support altivec. */
1273 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1274 goto bail;
1275 }
1276
1277 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1278 "%lx at %lx\n", regs->trap, regs->nip);
1279 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1280
1281 bail:
1282 exception_exit(prev_state);
1283 }
1284
1285 void vsx_unavailable_exception(struct pt_regs *regs)
1286 {
1287 if (user_mode(regs)) {
1288 /* A user program has executed an vsx instruction,
1289 but this kernel doesn't support vsx. */
1290 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1291 return;
1292 }
1293
1294 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1295 "%lx at %lx\n", regs->trap, regs->nip);
1296 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1297 }
1298
1299 void facility_unavailable_exception(struct pt_regs *regs)
1300 {
1301 static char *facility_strings[] = {
1302 "FPU",
1303 "VMX/VSX",
1304 "DSCR",
1305 "PMU SPRs",
1306 "BHRB",
1307 "TM",
1308 "AT",
1309 "EBB",
1310 "TAR",
1311 };
1312 char *facility, *prefix;
1313 u64 value;
1314
1315 if (regs->trap == 0xf60) {
1316 value = mfspr(SPRN_FSCR);
1317 prefix = "";
1318 } else {
1319 value = mfspr(SPRN_HFSCR);
1320 prefix = "Hypervisor ";
1321 }
1322
1323 value = value >> 56;
1324
1325 /* We restore the interrupt state now */
1326 if (!arch_irq_disabled_regs(regs))
1327 local_irq_enable();
1328
1329 if (value < ARRAY_SIZE(facility_strings))
1330 facility = facility_strings[value];
1331 else
1332 facility = "unknown";
1333
1334 pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1335 prefix, facility, regs->nip, regs->msr);
1336
1337 if (user_mode(regs)) {
1338 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1339 return;
1340 }
1341
1342 die("Unexpected facility unavailable exception", regs, SIGABRT);
1343 }
1344
1345 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1346
1347 extern void do_load_up_fpu(struct pt_regs *regs);
1348
1349 void fp_unavailable_tm(struct pt_regs *regs)
1350 {
1351 /* Note: This does not handle any kind of FP laziness. */
1352
1353 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1354 regs->nip, regs->msr);
1355 tm_enable();
1356
1357 /* We can only have got here if the task started using FP after
1358 * beginning the transaction. So, the transactional regs are just a
1359 * copy of the checkpointed ones. But, we still need to recheckpoint
1360 * as we're enabling FP for the process; it will return, abort the
1361 * transaction, and probably retry but now with FP enabled. So the
1362 * checkpointed FP registers need to be loaded.
1363 */
1364 tm_reclaim(&current->thread, current->thread.regs->msr,
1365 TM_CAUSE_FAC_UNAV);
1366 /* Reclaim didn't save out any FPRs to transact_fprs. */
1367
1368 /* Enable FP for the task: */
1369 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1370
1371 /* This loads and recheckpoints the FP registers from
1372 * thread.fpr[]. They will remain in registers after the
1373 * checkpoint so we don't need to reload them after.
1374 */
1375 tm_recheckpoint(&current->thread, regs->msr);
1376 }
1377
1378 #ifdef CONFIG_ALTIVEC
1379 extern void do_load_up_altivec(struct pt_regs *regs);
1380
1381 void altivec_unavailable_tm(struct pt_regs *regs)
1382 {
1383 /* See the comments in fp_unavailable_tm(). This function operates
1384 * the same way.
1385 */
1386
1387 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1388 "MSR=%lx\n",
1389 regs->nip, regs->msr);
1390 tm_enable();
1391 tm_reclaim(&current->thread, current->thread.regs->msr,
1392 TM_CAUSE_FAC_UNAV);
1393 regs->msr |= MSR_VEC;
1394 tm_recheckpoint(&current->thread, regs->msr);
1395 current->thread.used_vr = 1;
1396 }
1397 #endif
1398
1399 #ifdef CONFIG_VSX
1400 void vsx_unavailable_tm(struct pt_regs *regs)
1401 {
1402 /* See the comments in fp_unavailable_tm(). This works similarly,
1403 * though we're loading both FP and VEC registers in here.
1404 *
1405 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1406 * regs. Either way, set MSR_VSX.
1407 */
1408
1409 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1410 "MSR=%lx\n",
1411 regs->nip, regs->msr);
1412
1413 tm_enable();
1414 /* This reclaims FP and/or VR regs if they're already enabled */
1415 tm_reclaim(&current->thread, current->thread.regs->msr,
1416 TM_CAUSE_FAC_UNAV);
1417
1418 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1419 MSR_VSX;
1420 /* This loads & recheckpoints FP and VRs. */
1421 tm_recheckpoint(&current->thread, regs->msr);
1422 current->thread.used_vsr = 1;
1423 }
1424 #endif
1425 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1426
1427 void performance_monitor_exception(struct pt_regs *regs)
1428 {
1429 __get_cpu_var(irq_stat).pmu_irqs++;
1430
1431 perf_irq(regs);
1432 }
1433
1434 #ifdef CONFIG_8xx
1435 void SoftwareEmulation(struct pt_regs *regs)
1436 {
1437 extern int do_mathemu(struct pt_regs *);
1438 #if defined(CONFIG_MATH_EMULATION)
1439 int errcode;
1440 #endif
1441
1442 CHECK_FULL_REGS(regs);
1443
1444 if (!user_mode(regs)) {
1445 debugger(regs);
1446 die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1447 }
1448
1449 #ifdef CONFIG_MATH_EMULATION
1450 errcode = do_mathemu(regs);
1451 if (errcode >= 0)
1452 PPC_WARN_EMULATED(math, regs);
1453
1454 switch (errcode) {
1455 case 0:
1456 emulate_single_step(regs);
1457 return;
1458 case 1: {
1459 int code = 0;
1460 code = __parse_fpscr(current->thread.fpscr.val);
1461 _exception(SIGFPE, regs, code, regs->nip);
1462 return;
1463 }
1464 case -EFAULT:
1465 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1466 return;
1467 default:
1468 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1469 return;
1470 }
1471 #else
1472 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1473 #endif
1474 }
1475 #endif /* CONFIG_8xx */
1476
1477 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1478 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1479 {
1480 int changed = 0;
1481 /*
1482 * Determine the cause of the debug event, clear the
1483 * event flags and send a trap to the handler. Torez
1484 */
1485 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1486 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1487 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1488 current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1489 #endif
1490 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1491 5);
1492 changed |= 0x01;
1493 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1494 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1495 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1496 6);
1497 changed |= 0x01;
1498 } else if (debug_status & DBSR_IAC1) {
1499 current->thread.dbcr0 &= ~DBCR0_IAC1;
1500 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1501 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1502 1);
1503 changed |= 0x01;
1504 } else if (debug_status & DBSR_IAC2) {
1505 current->thread.dbcr0 &= ~DBCR0_IAC2;
1506 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1507 2);
1508 changed |= 0x01;
1509 } else if (debug_status & DBSR_IAC3) {
1510 current->thread.dbcr0 &= ~DBCR0_IAC3;
1511 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1512 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1513 3);
1514 changed |= 0x01;
1515 } else if (debug_status & DBSR_IAC4) {
1516 current->thread.dbcr0 &= ~DBCR0_IAC4;
1517 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1518 4);
1519 changed |= 0x01;
1520 }
1521 /*
1522 * At the point this routine was called, the MSR(DE) was turned off.
1523 * Check all other debug flags and see if that bit needs to be turned
1524 * back on or not.
1525 */
1526 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1527 regs->msr |= MSR_DE;
1528 else
1529 /* Make sure the IDM flag is off */
1530 current->thread.dbcr0 &= ~DBCR0_IDM;
1531
1532 if (changed & 0x01)
1533 mtspr(SPRN_DBCR0, current->thread.dbcr0);
1534 }
1535
1536 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1537 {
1538 current->thread.dbsr = debug_status;
1539
1540 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1541 * on server, it stops on the target of the branch. In order to simulate
1542 * the server behaviour, we thus restart right away with a single step
1543 * instead of stopping here when hitting a BT
1544 */
1545 if (debug_status & DBSR_BT) {
1546 regs->msr &= ~MSR_DE;
1547
1548 /* Disable BT */
1549 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1550 /* Clear the BT event */
1551 mtspr(SPRN_DBSR, DBSR_BT);
1552
1553 /* Do the single step trick only when coming from userspace */
1554 if (user_mode(regs)) {
1555 current->thread.dbcr0 &= ~DBCR0_BT;
1556 current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1557 regs->msr |= MSR_DE;
1558 return;
1559 }
1560
1561 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1562 5, SIGTRAP) == NOTIFY_STOP) {
1563 return;
1564 }
1565 if (debugger_sstep(regs))
1566 return;
1567 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1568 regs->msr &= ~MSR_DE;
1569
1570 /* Disable instruction completion */
1571 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1572 /* Clear the instruction completion event */
1573 mtspr(SPRN_DBSR, DBSR_IC);
1574
1575 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1576 5, SIGTRAP) == NOTIFY_STOP) {
1577 return;
1578 }
1579
1580 if (debugger_sstep(regs))
1581 return;
1582
1583 if (user_mode(regs)) {
1584 current->thread.dbcr0 &= ~DBCR0_IC;
1585 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1586 current->thread.dbcr1))
1587 regs->msr |= MSR_DE;
1588 else
1589 /* Make sure the IDM bit is off */
1590 current->thread.dbcr0 &= ~DBCR0_IDM;
1591 }
1592
1593 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1594 } else
1595 handle_debug(regs, debug_status);
1596 }
1597 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1598
1599 #if !defined(CONFIG_TAU_INT)
1600 void TAUException(struct pt_regs *regs)
1601 {
1602 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1603 regs->nip, regs->msr, regs->trap, print_tainted());
1604 }
1605 #endif /* CONFIG_INT_TAU */
1606
1607 #ifdef CONFIG_ALTIVEC
1608 void altivec_assist_exception(struct pt_regs *regs)
1609 {
1610 int err;
1611
1612 if (!user_mode(regs)) {
1613 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1614 " at %lx\n", regs->nip);
1615 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1616 }
1617
1618 flush_altivec_to_thread(current);
1619
1620 PPC_WARN_EMULATED(altivec, regs);
1621 err = emulate_altivec(regs);
1622 if (err == 0) {
1623 regs->nip += 4; /* skip emulated instruction */
1624 emulate_single_step(regs);
1625 return;
1626 }
1627
1628 if (err == -EFAULT) {
1629 /* got an error reading the instruction */
1630 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1631 } else {
1632 /* didn't recognize the instruction */
1633 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1634 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1635 "in %s at %lx\n", current->comm, regs->nip);
1636 current->thread.vscr.u[3] |= 0x10000;
1637 }
1638 }
1639 #endif /* CONFIG_ALTIVEC */
1640
1641 #ifdef CONFIG_VSX
1642 void vsx_assist_exception(struct pt_regs *regs)
1643 {
1644 if (!user_mode(regs)) {
1645 printk(KERN_EMERG "VSX assist exception in kernel mode"
1646 " at %lx\n", regs->nip);
1647 die("Kernel VSX assist exception", regs, SIGILL);
1648 }
1649
1650 flush_vsx_to_thread(current);
1651 printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1652 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1653 }
1654 #endif /* CONFIG_VSX */
1655
1656 #ifdef CONFIG_FSL_BOOKE
1657 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1658 unsigned long error_code)
1659 {
1660 /* We treat cache locking instructions from the user
1661 * as priv ops, in the future we could try to do
1662 * something smarter
1663 */
1664 if (error_code & (ESR_DLK|ESR_ILK))
1665 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1666 return;
1667 }
1668 #endif /* CONFIG_FSL_BOOKE */
1669
1670 #ifdef CONFIG_SPE
1671 void SPEFloatingPointException(struct pt_regs *regs)
1672 {
1673 extern int do_spe_mathemu(struct pt_regs *regs);
1674 unsigned long spefscr;
1675 int fpexc_mode;
1676 int code = 0;
1677 int err;
1678
1679 flush_spe_to_thread(current);
1680
1681 spefscr = current->thread.spefscr;
1682 fpexc_mode = current->thread.fpexc_mode;
1683
1684 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1685 code = FPE_FLTOVF;
1686 }
1687 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1688 code = FPE_FLTUND;
1689 }
1690 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1691 code = FPE_FLTDIV;
1692 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1693 code = FPE_FLTINV;
1694 }
1695 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1696 code = FPE_FLTRES;
1697
1698 err = do_spe_mathemu(regs);
1699 if (err == 0) {
1700 regs->nip += 4; /* skip emulated instruction */
1701 emulate_single_step(regs);
1702 return;
1703 }
1704
1705 if (err == -EFAULT) {
1706 /* got an error reading the instruction */
1707 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1708 } else if (err == -EINVAL) {
1709 /* didn't recognize the instruction */
1710 printk(KERN_ERR "unrecognized spe instruction "
1711 "in %s at %lx\n", current->comm, regs->nip);
1712 } else {
1713 _exception(SIGFPE, regs, code, regs->nip);
1714 }
1715
1716 return;
1717 }
1718
1719 void SPEFloatingPointRoundException(struct pt_regs *regs)
1720 {
1721 extern int speround_handler(struct pt_regs *regs);
1722 int err;
1723
1724 preempt_disable();
1725 if (regs->msr & MSR_SPE)
1726 giveup_spe(current);
1727 preempt_enable();
1728
1729 regs->nip -= 4;
1730 err = speround_handler(regs);
1731 if (err == 0) {
1732 regs->nip += 4; /* skip emulated instruction */
1733 emulate_single_step(regs);
1734 return;
1735 }
1736
1737 if (err == -EFAULT) {
1738 /* got an error reading the instruction */
1739 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1740 } else if (err == -EINVAL) {
1741 /* didn't recognize the instruction */
1742 printk(KERN_ERR "unrecognized spe instruction "
1743 "in %s at %lx\n", current->comm, regs->nip);
1744 } else {
1745 _exception(SIGFPE, regs, 0, regs->nip);
1746 return;
1747 }
1748 }
1749 #endif
1750
1751 /*
1752 * We enter here if we get an unrecoverable exception, that is, one
1753 * that happened at a point where the RI (recoverable interrupt) bit
1754 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1755 * we therefore lost state by taking this exception.
1756 */
1757 void unrecoverable_exception(struct pt_regs *regs)
1758 {
1759 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1760 regs->trap, regs->nip);
1761 die("Unrecoverable exception", regs, SIGABRT);
1762 }
1763
1764 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1765 /*
1766 * Default handler for a Watchdog exception,
1767 * spins until a reboot occurs
1768 */
1769 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1770 {
1771 /* Generic WatchdogHandler, implement your own */
1772 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1773 return;
1774 }
1775
1776 void WatchdogException(struct pt_regs *regs)
1777 {
1778 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1779 WatchdogHandler(regs);
1780 }
1781 #endif
1782
1783 /*
1784 * We enter here if we discover during exception entry that we are
1785 * running in supervisor mode with a userspace value in the stack pointer.
1786 */
1787 void kernel_bad_stack(struct pt_regs *regs)
1788 {
1789 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1790 regs->gpr[1], regs->nip);
1791 die("Bad kernel stack pointer", regs, SIGABRT);
1792 }
1793
1794 void __init trap_init(void)
1795 {
1796 }
1797
1798
1799 #ifdef CONFIG_PPC_EMULATED_STATS
1800
1801 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1802
1803 struct ppc_emulated ppc_emulated = {
1804 #ifdef CONFIG_ALTIVEC
1805 WARN_EMULATED_SETUP(altivec),
1806 #endif
1807 WARN_EMULATED_SETUP(dcba),
1808 WARN_EMULATED_SETUP(dcbz),
1809 WARN_EMULATED_SETUP(fp_pair),
1810 WARN_EMULATED_SETUP(isel),
1811 WARN_EMULATED_SETUP(mcrxr),
1812 WARN_EMULATED_SETUP(mfpvr),
1813 WARN_EMULATED_SETUP(multiple),
1814 WARN_EMULATED_SETUP(popcntb),
1815 WARN_EMULATED_SETUP(spe),
1816 WARN_EMULATED_SETUP(string),
1817 WARN_EMULATED_SETUP(unaligned),
1818 #ifdef CONFIG_MATH_EMULATION
1819 WARN_EMULATED_SETUP(math),
1820 #endif
1821 #ifdef CONFIG_VSX
1822 WARN_EMULATED_SETUP(vsx),
1823 #endif
1824 #ifdef CONFIG_PPC64
1825 WARN_EMULATED_SETUP(mfdscr),
1826 WARN_EMULATED_SETUP(mtdscr),
1827 #endif
1828 };
1829
1830 u32 ppc_warn_emulated;
1831
1832 void ppc_warn_emulated_print(const char *type)
1833 {
1834 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1835 type);
1836 }
1837
1838 static int __init ppc_warn_emulated_init(void)
1839 {
1840 struct dentry *dir, *d;
1841 unsigned int i;
1842 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1843
1844 if (!powerpc_debugfs_root)
1845 return -ENODEV;
1846
1847 dir = debugfs_create_dir("emulated_instructions",
1848 powerpc_debugfs_root);
1849 if (!dir)
1850 return -ENOMEM;
1851
1852 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1853 &ppc_warn_emulated);
1854 if (!d)
1855 goto fail;
1856
1857 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1858 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1859 (u32 *)&entries[i].val.counter);
1860 if (!d)
1861 goto fail;
1862 }
1863
1864 return 0;
1865
1866 fail:
1867 debugfs_remove_recursive(dir);
1868 return -ENOMEM;
1869 }
1870
1871 device_initcall(ppc_warn_emulated_init);
1872
1873 #endif /* CONFIG_PPC_EMULATED_STATS */
This page took 0.125366 seconds and 5 git commands to generate.