Merge remote-tracking branch 'asoc/topic/ac97' into asoc-fsl
[deliverable/linux.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63
64 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
65 int (*__debugger)(struct pt_regs *regs) __read_mostly;
66 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
72
73 EXPORT_SYMBOL(__debugger);
74 EXPORT_SYMBOL(__debugger_ipi);
75 EXPORT_SYMBOL(__debugger_bpt);
76 EXPORT_SYMBOL(__debugger_sstep);
77 EXPORT_SYMBOL(__debugger_iabr_match);
78 EXPORT_SYMBOL(__debugger_break_match);
79 EXPORT_SYMBOL(__debugger_fault_handler);
80 #endif
81
82 /* Transactional Memory trap debug */
83 #ifdef TM_DEBUG_SW
84 #define TM_DEBUG(x...) printk(KERN_INFO x)
85 #else
86 #define TM_DEBUG(x...) do { } while(0)
87 #endif
88
89 /*
90 * Trap & Exception support
91 */
92
93 #ifdef CONFIG_PMAC_BACKLIGHT
94 static void pmac_backlight_unblank(void)
95 {
96 mutex_lock(&pmac_backlight_mutex);
97 if (pmac_backlight) {
98 struct backlight_properties *props;
99
100 props = &pmac_backlight->props;
101 props->brightness = props->max_brightness;
102 props->power = FB_BLANK_UNBLANK;
103 backlight_update_status(pmac_backlight);
104 }
105 mutex_unlock(&pmac_backlight_mutex);
106 }
107 #else
108 static inline void pmac_backlight_unblank(void) { }
109 #endif
110
111 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
112 static int die_owner = -1;
113 static unsigned int die_nest_count;
114 static int die_counter;
115
116 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
117 {
118 int cpu;
119 unsigned long flags;
120
121 if (debugger(regs))
122 return 1;
123
124 oops_enter();
125
126 /* racy, but better than risking deadlock. */
127 raw_local_irq_save(flags);
128 cpu = smp_processor_id();
129 if (!arch_spin_trylock(&die_lock)) {
130 if (cpu == die_owner)
131 /* nested oops. should stop eventually */;
132 else
133 arch_spin_lock(&die_lock);
134 }
135 die_nest_count++;
136 die_owner = cpu;
137 console_verbose();
138 bust_spinlocks(1);
139 if (machine_is(powermac))
140 pmac_backlight_unblank();
141 return flags;
142 }
143
144 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
145 int signr)
146 {
147 bust_spinlocks(0);
148 die_owner = -1;
149 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
150 die_nest_count--;
151 oops_exit();
152 printk("\n");
153 if (!die_nest_count)
154 /* Nest count reaches zero, release the lock. */
155 arch_spin_unlock(&die_lock);
156 raw_local_irq_restore(flags);
157
158 crash_fadump(regs, "die oops");
159
160 /*
161 * A system reset (0x100) is a request to dump, so we always send
162 * it through the crashdump code.
163 */
164 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
165 crash_kexec(regs);
166
167 /*
168 * We aren't the primary crash CPU. We need to send it
169 * to a holding pattern to avoid it ending up in the panic
170 * code.
171 */
172 crash_kexec_secondary(regs);
173 }
174
175 if (!signr)
176 return;
177
178 /*
179 * While our oops output is serialised by a spinlock, output
180 * from panic() called below can race and corrupt it. If we
181 * know we are going to panic, delay for 1 second so we have a
182 * chance to get clean backtraces from all CPUs that are oopsing.
183 */
184 if (in_interrupt() || panic_on_oops || !current->pid ||
185 is_global_init(current)) {
186 mdelay(MSEC_PER_SEC);
187 }
188
189 if (in_interrupt())
190 panic("Fatal exception in interrupt");
191 if (panic_on_oops)
192 panic("Fatal exception");
193 do_exit(signr);
194 }
195
196 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
197 {
198 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
199 #ifdef CONFIG_PREEMPT
200 printk("PREEMPT ");
201 #endif
202 #ifdef CONFIG_SMP
203 printk("SMP NR_CPUS=%d ", NR_CPUS);
204 #endif
205 #ifdef CONFIG_DEBUG_PAGEALLOC
206 printk("DEBUG_PAGEALLOC ");
207 #endif
208 #ifdef CONFIG_NUMA
209 printk("NUMA ");
210 #endif
211 printk("%s\n", ppc_md.name ? ppc_md.name : "");
212
213 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
214 return 1;
215
216 print_modules();
217 show_regs(regs);
218
219 return 0;
220 }
221
222 void die(const char *str, struct pt_regs *regs, long err)
223 {
224 unsigned long flags = oops_begin(regs);
225
226 if (__die(str, regs, err))
227 err = 0;
228 oops_end(flags, regs, err);
229 }
230
231 void user_single_step_siginfo(struct task_struct *tsk,
232 struct pt_regs *regs, siginfo_t *info)
233 {
234 memset(info, 0, sizeof(*info));
235 info->si_signo = SIGTRAP;
236 info->si_code = TRAP_TRACE;
237 info->si_addr = (void __user *)regs->nip;
238 }
239
240 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
241 {
242 siginfo_t info;
243 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
244 "at %08lx nip %08lx lr %08lx code %x\n";
245 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 "at %016lx nip %016lx lr %016lx code %x\n";
247
248 if (!user_mode(regs)) {
249 die("Exception in kernel mode", regs, signr);
250 return;
251 }
252
253 if (show_unhandled_signals && unhandled_signal(current, signr)) {
254 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
255 current->comm, current->pid, signr,
256 addr, regs->nip, regs->link, code);
257 }
258
259 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
260 local_irq_enable();
261
262 current->thread.trap_nr = code;
263 memset(&info, 0, sizeof(info));
264 info.si_signo = signr;
265 info.si_code = code;
266 info.si_addr = (void __user *) addr;
267 force_sig_info(signr, &info, current);
268 }
269
270 #ifdef CONFIG_PPC64
271 void system_reset_exception(struct pt_regs *regs)
272 {
273 /* See if any machine dependent calls */
274 if (ppc_md.system_reset_exception) {
275 if (ppc_md.system_reset_exception(regs))
276 return;
277 }
278
279 die("System Reset", regs, SIGABRT);
280
281 /* Must die if the interrupt is not recoverable */
282 if (!(regs->msr & MSR_RI))
283 panic("Unrecoverable System Reset");
284
285 /* What should we do here? We could issue a shutdown or hard reset. */
286 }
287 #endif
288
289 /*
290 * I/O accesses can cause machine checks on powermacs.
291 * Check if the NIP corresponds to the address of a sync
292 * instruction for which there is an entry in the exception
293 * table.
294 * Note that the 601 only takes a machine check on TEA
295 * (transfer error ack) signal assertion, and does not
296 * set any of the top 16 bits of SRR1.
297 * -- paulus.
298 */
299 static inline int check_io_access(struct pt_regs *regs)
300 {
301 #ifdef CONFIG_PPC32
302 unsigned long msr = regs->msr;
303 const struct exception_table_entry *entry;
304 unsigned int *nip = (unsigned int *)regs->nip;
305
306 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
307 && (entry = search_exception_tables(regs->nip)) != NULL) {
308 /*
309 * Check that it's a sync instruction, or somewhere
310 * in the twi; isync; nop sequence that inb/inw/inl uses.
311 * As the address is in the exception table
312 * we should be able to read the instr there.
313 * For the debug message, we look at the preceding
314 * load or store.
315 */
316 if (*nip == 0x60000000) /* nop */
317 nip -= 2;
318 else if (*nip == 0x4c00012c) /* isync */
319 --nip;
320 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
321 /* sync or twi */
322 unsigned int rb;
323
324 --nip;
325 rb = (*nip >> 11) & 0x1f;
326 printk(KERN_DEBUG "%s bad port %lx at %p\n",
327 (*nip & 0x100)? "OUT to": "IN from",
328 regs->gpr[rb] - _IO_BASE, nip);
329 regs->msr |= MSR_RI;
330 regs->nip = entry->fixup;
331 return 1;
332 }
333 }
334 #endif /* CONFIG_PPC32 */
335 return 0;
336 }
337
338 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
339 /* On 4xx, the reason for the machine check or program exception
340 is in the ESR. */
341 #define get_reason(regs) ((regs)->dsisr)
342 #ifndef CONFIG_FSL_BOOKE
343 #define get_mc_reason(regs) ((regs)->dsisr)
344 #else
345 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
346 #endif
347 #define REASON_FP ESR_FP
348 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
349 #define REASON_PRIVILEGED ESR_PPR
350 #define REASON_TRAP ESR_PTR
351
352 /* single-step stuff */
353 #define single_stepping(regs) (current->thread.dbcr0 & DBCR0_IC)
354 #define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
355
356 #else
357 /* On non-4xx, the reason for the machine check or program
358 exception is in the MSR. */
359 #define get_reason(regs) ((regs)->msr)
360 #define get_mc_reason(regs) ((regs)->msr)
361 #define REASON_TM 0x200000
362 #define REASON_FP 0x100000
363 #define REASON_ILLEGAL 0x80000
364 #define REASON_PRIVILEGED 0x40000
365 #define REASON_TRAP 0x20000
366
367 #define single_stepping(regs) ((regs)->msr & MSR_SE)
368 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
369 #endif
370
371 #if defined(CONFIG_4xx)
372 int machine_check_4xx(struct pt_regs *regs)
373 {
374 unsigned long reason = get_mc_reason(regs);
375
376 if (reason & ESR_IMCP) {
377 printk("Instruction");
378 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
379 } else
380 printk("Data");
381 printk(" machine check in kernel mode.\n");
382
383 return 0;
384 }
385
386 int machine_check_440A(struct pt_regs *regs)
387 {
388 unsigned long reason = get_mc_reason(regs);
389
390 printk("Machine check in kernel mode.\n");
391 if (reason & ESR_IMCP){
392 printk("Instruction Synchronous Machine Check exception\n");
393 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
394 }
395 else {
396 u32 mcsr = mfspr(SPRN_MCSR);
397 if (mcsr & MCSR_IB)
398 printk("Instruction Read PLB Error\n");
399 if (mcsr & MCSR_DRB)
400 printk("Data Read PLB Error\n");
401 if (mcsr & MCSR_DWB)
402 printk("Data Write PLB Error\n");
403 if (mcsr & MCSR_TLBP)
404 printk("TLB Parity Error\n");
405 if (mcsr & MCSR_ICP){
406 flush_instruction_cache();
407 printk("I-Cache Parity Error\n");
408 }
409 if (mcsr & MCSR_DCSP)
410 printk("D-Cache Search Parity Error\n");
411 if (mcsr & MCSR_DCFP)
412 printk("D-Cache Flush Parity Error\n");
413 if (mcsr & MCSR_IMPE)
414 printk("Machine Check exception is imprecise\n");
415
416 /* Clear MCSR */
417 mtspr(SPRN_MCSR, mcsr);
418 }
419 return 0;
420 }
421
422 int machine_check_47x(struct pt_regs *regs)
423 {
424 unsigned long reason = get_mc_reason(regs);
425 u32 mcsr;
426
427 printk(KERN_ERR "Machine check in kernel mode.\n");
428 if (reason & ESR_IMCP) {
429 printk(KERN_ERR
430 "Instruction Synchronous Machine Check exception\n");
431 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
432 return 0;
433 }
434 mcsr = mfspr(SPRN_MCSR);
435 if (mcsr & MCSR_IB)
436 printk(KERN_ERR "Instruction Read PLB Error\n");
437 if (mcsr & MCSR_DRB)
438 printk(KERN_ERR "Data Read PLB Error\n");
439 if (mcsr & MCSR_DWB)
440 printk(KERN_ERR "Data Write PLB Error\n");
441 if (mcsr & MCSR_TLBP)
442 printk(KERN_ERR "TLB Parity Error\n");
443 if (mcsr & MCSR_ICP) {
444 flush_instruction_cache();
445 printk(KERN_ERR "I-Cache Parity Error\n");
446 }
447 if (mcsr & MCSR_DCSP)
448 printk(KERN_ERR "D-Cache Search Parity Error\n");
449 if (mcsr & PPC47x_MCSR_GPR)
450 printk(KERN_ERR "GPR Parity Error\n");
451 if (mcsr & PPC47x_MCSR_FPR)
452 printk(KERN_ERR "FPR Parity Error\n");
453 if (mcsr & PPC47x_MCSR_IPR)
454 printk(KERN_ERR "Machine Check exception is imprecise\n");
455
456 /* Clear MCSR */
457 mtspr(SPRN_MCSR, mcsr);
458
459 return 0;
460 }
461 #elif defined(CONFIG_E500)
462 int machine_check_e500mc(struct pt_regs *regs)
463 {
464 unsigned long mcsr = mfspr(SPRN_MCSR);
465 unsigned long reason = mcsr;
466 int recoverable = 1;
467
468 if (reason & MCSR_LD) {
469 recoverable = fsl_rio_mcheck_exception(regs);
470 if (recoverable == 1)
471 goto silent_out;
472 }
473
474 printk("Machine check in kernel mode.\n");
475 printk("Caused by (from MCSR=%lx): ", reason);
476
477 if (reason & MCSR_MCP)
478 printk("Machine Check Signal\n");
479
480 if (reason & MCSR_ICPERR) {
481 printk("Instruction Cache Parity Error\n");
482
483 /*
484 * This is recoverable by invalidating the i-cache.
485 */
486 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
487 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
488 ;
489
490 /*
491 * This will generally be accompanied by an instruction
492 * fetch error report -- only treat MCSR_IF as fatal
493 * if it wasn't due to an L1 parity error.
494 */
495 reason &= ~MCSR_IF;
496 }
497
498 if (reason & MCSR_DCPERR_MC) {
499 printk("Data Cache Parity Error\n");
500
501 /*
502 * In write shadow mode we auto-recover from the error, but it
503 * may still get logged and cause a machine check. We should
504 * only treat the non-write shadow case as non-recoverable.
505 */
506 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
507 recoverable = 0;
508 }
509
510 if (reason & MCSR_L2MMU_MHIT) {
511 printk("Hit on multiple TLB entries\n");
512 recoverable = 0;
513 }
514
515 if (reason & MCSR_NMI)
516 printk("Non-maskable interrupt\n");
517
518 if (reason & MCSR_IF) {
519 printk("Instruction Fetch Error Report\n");
520 recoverable = 0;
521 }
522
523 if (reason & MCSR_LD) {
524 printk("Load Error Report\n");
525 recoverable = 0;
526 }
527
528 if (reason & MCSR_ST) {
529 printk("Store Error Report\n");
530 recoverable = 0;
531 }
532
533 if (reason & MCSR_LDG) {
534 printk("Guarded Load Error Report\n");
535 recoverable = 0;
536 }
537
538 if (reason & MCSR_TLBSYNC)
539 printk("Simultaneous tlbsync operations\n");
540
541 if (reason & MCSR_BSL2_ERR) {
542 printk("Level 2 Cache Error\n");
543 recoverable = 0;
544 }
545
546 if (reason & MCSR_MAV) {
547 u64 addr;
548
549 addr = mfspr(SPRN_MCAR);
550 addr |= (u64)mfspr(SPRN_MCARU) << 32;
551
552 printk("Machine Check %s Address: %#llx\n",
553 reason & MCSR_MEA ? "Effective" : "Physical", addr);
554 }
555
556 silent_out:
557 mtspr(SPRN_MCSR, mcsr);
558 return mfspr(SPRN_MCSR) == 0 && recoverable;
559 }
560
561 int machine_check_e500(struct pt_regs *regs)
562 {
563 unsigned long reason = get_mc_reason(regs);
564
565 if (reason & MCSR_BUS_RBERR) {
566 if (fsl_rio_mcheck_exception(regs))
567 return 1;
568 }
569
570 printk("Machine check in kernel mode.\n");
571 printk("Caused by (from MCSR=%lx): ", reason);
572
573 if (reason & MCSR_MCP)
574 printk("Machine Check Signal\n");
575 if (reason & MCSR_ICPERR)
576 printk("Instruction Cache Parity Error\n");
577 if (reason & MCSR_DCP_PERR)
578 printk("Data Cache Push Parity Error\n");
579 if (reason & MCSR_DCPERR)
580 printk("Data Cache Parity Error\n");
581 if (reason & MCSR_BUS_IAERR)
582 printk("Bus - Instruction Address Error\n");
583 if (reason & MCSR_BUS_RAERR)
584 printk("Bus - Read Address Error\n");
585 if (reason & MCSR_BUS_WAERR)
586 printk("Bus - Write Address Error\n");
587 if (reason & MCSR_BUS_IBERR)
588 printk("Bus - Instruction Data Error\n");
589 if (reason & MCSR_BUS_RBERR)
590 printk("Bus - Read Data Bus Error\n");
591 if (reason & MCSR_BUS_WBERR)
592 printk("Bus - Read Data Bus Error\n");
593 if (reason & MCSR_BUS_IPERR)
594 printk("Bus - Instruction Parity Error\n");
595 if (reason & MCSR_BUS_RPERR)
596 printk("Bus - Read Parity Error\n");
597
598 return 0;
599 }
600
601 int machine_check_generic(struct pt_regs *regs)
602 {
603 return 0;
604 }
605 #elif defined(CONFIG_E200)
606 int machine_check_e200(struct pt_regs *regs)
607 {
608 unsigned long reason = get_mc_reason(regs);
609
610 printk("Machine check in kernel mode.\n");
611 printk("Caused by (from MCSR=%lx): ", reason);
612
613 if (reason & MCSR_MCP)
614 printk("Machine Check Signal\n");
615 if (reason & MCSR_CP_PERR)
616 printk("Cache Push Parity Error\n");
617 if (reason & MCSR_CPERR)
618 printk("Cache Parity Error\n");
619 if (reason & MCSR_EXCP_ERR)
620 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
621 if (reason & MCSR_BUS_IRERR)
622 printk("Bus - Read Bus Error on instruction fetch\n");
623 if (reason & MCSR_BUS_DRERR)
624 printk("Bus - Read Bus Error on data load\n");
625 if (reason & MCSR_BUS_WRERR)
626 printk("Bus - Write Bus Error on buffered store or cache line push\n");
627
628 return 0;
629 }
630 #else
631 int machine_check_generic(struct pt_regs *regs)
632 {
633 unsigned long reason = get_mc_reason(regs);
634
635 printk("Machine check in kernel mode.\n");
636 printk("Caused by (from SRR1=%lx): ", reason);
637 switch (reason & 0x601F0000) {
638 case 0x80000:
639 printk("Machine check signal\n");
640 break;
641 case 0: /* for 601 */
642 case 0x40000:
643 case 0x140000: /* 7450 MSS error and TEA */
644 printk("Transfer error ack signal\n");
645 break;
646 case 0x20000:
647 printk("Data parity error signal\n");
648 break;
649 case 0x10000:
650 printk("Address parity error signal\n");
651 break;
652 case 0x20000000:
653 printk("L1 Data Cache error\n");
654 break;
655 case 0x40000000:
656 printk("L1 Instruction Cache error\n");
657 break;
658 case 0x00100000:
659 printk("L2 data cache parity error\n");
660 break;
661 default:
662 printk("Unknown values in msr\n");
663 }
664 return 0;
665 }
666 #endif /* everything else */
667
668 void machine_check_exception(struct pt_regs *regs)
669 {
670 enum ctx_state prev_state = exception_enter();
671 int recover = 0;
672
673 __get_cpu_var(irq_stat).mce_exceptions++;
674
675 /* See if any machine dependent calls. In theory, we would want
676 * to call the CPU first, and call the ppc_md. one if the CPU
677 * one returns a positive number. However there is existing code
678 * that assumes the board gets a first chance, so let's keep it
679 * that way for now and fix things later. --BenH.
680 */
681 if (ppc_md.machine_check_exception)
682 recover = ppc_md.machine_check_exception(regs);
683 else if (cur_cpu_spec->machine_check)
684 recover = cur_cpu_spec->machine_check(regs);
685
686 if (recover > 0)
687 goto bail;
688
689 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
690 /* the qspan pci read routines can cause machine checks -- Cort
691 *
692 * yuck !!! that totally needs to go away ! There are better ways
693 * to deal with that than having a wart in the mcheck handler.
694 * -- BenH
695 */
696 bad_page_fault(regs, regs->dar, SIGBUS);
697 goto bail;
698 #endif
699
700 if (debugger_fault_handler(regs))
701 goto bail;
702
703 if (check_io_access(regs))
704 goto bail;
705
706 die("Machine check", regs, SIGBUS);
707
708 /* Must die if the interrupt is not recoverable */
709 if (!(regs->msr & MSR_RI))
710 panic("Unrecoverable Machine check");
711
712 bail:
713 exception_exit(prev_state);
714 }
715
716 void SMIException(struct pt_regs *regs)
717 {
718 die("System Management Interrupt", regs, SIGABRT);
719 }
720
721 void unknown_exception(struct pt_regs *regs)
722 {
723 enum ctx_state prev_state = exception_enter();
724
725 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
726 regs->nip, regs->msr, regs->trap);
727
728 _exception(SIGTRAP, regs, 0, 0);
729
730 exception_exit(prev_state);
731 }
732
733 void instruction_breakpoint_exception(struct pt_regs *regs)
734 {
735 enum ctx_state prev_state = exception_enter();
736
737 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
738 5, SIGTRAP) == NOTIFY_STOP)
739 goto bail;
740 if (debugger_iabr_match(regs))
741 goto bail;
742 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
743
744 bail:
745 exception_exit(prev_state);
746 }
747
748 void RunModeException(struct pt_regs *regs)
749 {
750 _exception(SIGTRAP, regs, 0, 0);
751 }
752
753 void __kprobes single_step_exception(struct pt_regs *regs)
754 {
755 enum ctx_state prev_state = exception_enter();
756
757 clear_single_step(regs);
758
759 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
760 5, SIGTRAP) == NOTIFY_STOP)
761 goto bail;
762 if (debugger_sstep(regs))
763 goto bail;
764
765 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
766
767 bail:
768 exception_exit(prev_state);
769 }
770
771 /*
772 * After we have successfully emulated an instruction, we have to
773 * check if the instruction was being single-stepped, and if so,
774 * pretend we got a single-step exception. This was pointed out
775 * by Kumar Gala. -- paulus
776 */
777 static void emulate_single_step(struct pt_regs *regs)
778 {
779 if (single_stepping(regs))
780 single_step_exception(regs);
781 }
782
783 static inline int __parse_fpscr(unsigned long fpscr)
784 {
785 int ret = 0;
786
787 /* Invalid operation */
788 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
789 ret = FPE_FLTINV;
790
791 /* Overflow */
792 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
793 ret = FPE_FLTOVF;
794
795 /* Underflow */
796 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
797 ret = FPE_FLTUND;
798
799 /* Divide by zero */
800 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
801 ret = FPE_FLTDIV;
802
803 /* Inexact result */
804 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
805 ret = FPE_FLTRES;
806
807 return ret;
808 }
809
810 static void parse_fpe(struct pt_regs *regs)
811 {
812 int code = 0;
813
814 flush_fp_to_thread(current);
815
816 code = __parse_fpscr(current->thread.fpscr.val);
817
818 _exception(SIGFPE, regs, code, regs->nip);
819 }
820
821 /*
822 * Illegal instruction emulation support. Originally written to
823 * provide the PVR to user applications using the mfspr rd, PVR.
824 * Return non-zero if we can't emulate, or -EFAULT if the associated
825 * memory access caused an access fault. Return zero on success.
826 *
827 * There are a couple of ways to do this, either "decode" the instruction
828 * or directly match lots of bits. In this case, matching lots of
829 * bits is faster and easier.
830 *
831 */
832 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
833 {
834 u8 rT = (instword >> 21) & 0x1f;
835 u8 rA = (instword >> 16) & 0x1f;
836 u8 NB_RB = (instword >> 11) & 0x1f;
837 u32 num_bytes;
838 unsigned long EA;
839 int pos = 0;
840
841 /* Early out if we are an invalid form of lswx */
842 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
843 if ((rT == rA) || (rT == NB_RB))
844 return -EINVAL;
845
846 EA = (rA == 0) ? 0 : regs->gpr[rA];
847
848 switch (instword & PPC_INST_STRING_MASK) {
849 case PPC_INST_LSWX:
850 case PPC_INST_STSWX:
851 EA += NB_RB;
852 num_bytes = regs->xer & 0x7f;
853 break;
854 case PPC_INST_LSWI:
855 case PPC_INST_STSWI:
856 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
857 break;
858 default:
859 return -EINVAL;
860 }
861
862 while (num_bytes != 0)
863 {
864 u8 val;
865 u32 shift = 8 * (3 - (pos & 0x3));
866
867 /* if process is 32-bit, clear upper 32 bits of EA */
868 if ((regs->msr & MSR_64BIT) == 0)
869 EA &= 0xFFFFFFFF;
870
871 switch ((instword & PPC_INST_STRING_MASK)) {
872 case PPC_INST_LSWX:
873 case PPC_INST_LSWI:
874 if (get_user(val, (u8 __user *)EA))
875 return -EFAULT;
876 /* first time updating this reg,
877 * zero it out */
878 if (pos == 0)
879 regs->gpr[rT] = 0;
880 regs->gpr[rT] |= val << shift;
881 break;
882 case PPC_INST_STSWI:
883 case PPC_INST_STSWX:
884 val = regs->gpr[rT] >> shift;
885 if (put_user(val, (u8 __user *)EA))
886 return -EFAULT;
887 break;
888 }
889 /* move EA to next address */
890 EA += 1;
891 num_bytes--;
892
893 /* manage our position within the register */
894 if (++pos == 4) {
895 pos = 0;
896 if (++rT == 32)
897 rT = 0;
898 }
899 }
900
901 return 0;
902 }
903
904 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
905 {
906 u32 ra,rs;
907 unsigned long tmp;
908
909 ra = (instword >> 16) & 0x1f;
910 rs = (instword >> 21) & 0x1f;
911
912 tmp = regs->gpr[rs];
913 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
914 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
915 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
916 regs->gpr[ra] = tmp;
917
918 return 0;
919 }
920
921 static int emulate_isel(struct pt_regs *regs, u32 instword)
922 {
923 u8 rT = (instword >> 21) & 0x1f;
924 u8 rA = (instword >> 16) & 0x1f;
925 u8 rB = (instword >> 11) & 0x1f;
926 u8 BC = (instword >> 6) & 0x1f;
927 u8 bit;
928 unsigned long tmp;
929
930 tmp = (rA == 0) ? 0 : regs->gpr[rA];
931 bit = (regs->ccr >> (31 - BC)) & 0x1;
932
933 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
934
935 return 0;
936 }
937
938 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
939 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
940 {
941 /* If we're emulating a load/store in an active transaction, we cannot
942 * emulate it as the kernel operates in transaction suspended context.
943 * We need to abort the transaction. This creates a persistent TM
944 * abort so tell the user what caused it with a new code.
945 */
946 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
947 tm_enable();
948 tm_abort(cause);
949 return true;
950 }
951 return false;
952 }
953 #else
954 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
955 {
956 return false;
957 }
958 #endif
959
960 static int emulate_instruction(struct pt_regs *regs)
961 {
962 u32 instword;
963 u32 rd;
964
965 if (!user_mode(regs) || (regs->msr & MSR_LE))
966 return -EINVAL;
967 CHECK_FULL_REGS(regs);
968
969 if (get_user(instword, (u32 __user *)(regs->nip)))
970 return -EFAULT;
971
972 /* Emulate the mfspr rD, PVR. */
973 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
974 PPC_WARN_EMULATED(mfpvr, regs);
975 rd = (instword >> 21) & 0x1f;
976 regs->gpr[rd] = mfspr(SPRN_PVR);
977 return 0;
978 }
979
980 /* Emulating the dcba insn is just a no-op. */
981 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
982 PPC_WARN_EMULATED(dcba, regs);
983 return 0;
984 }
985
986 /* Emulate the mcrxr insn. */
987 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
988 int shift = (instword >> 21) & 0x1c;
989 unsigned long msk = 0xf0000000UL >> shift;
990
991 PPC_WARN_EMULATED(mcrxr, regs);
992 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
993 regs->xer &= ~0xf0000000UL;
994 return 0;
995 }
996
997 /* Emulate load/store string insn. */
998 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
999 if (tm_abort_check(regs,
1000 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1001 return -EINVAL;
1002 PPC_WARN_EMULATED(string, regs);
1003 return emulate_string_inst(regs, instword);
1004 }
1005
1006 /* Emulate the popcntb (Population Count Bytes) instruction. */
1007 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1008 PPC_WARN_EMULATED(popcntb, regs);
1009 return emulate_popcntb_inst(regs, instword);
1010 }
1011
1012 /* Emulate isel (Integer Select) instruction */
1013 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1014 PPC_WARN_EMULATED(isel, regs);
1015 return emulate_isel(regs, instword);
1016 }
1017
1018 #ifdef CONFIG_PPC64
1019 /* Emulate the mfspr rD, DSCR. */
1020 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1021 PPC_INST_MFSPR_DSCR_USER) ||
1022 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1023 PPC_INST_MFSPR_DSCR)) &&
1024 cpu_has_feature(CPU_FTR_DSCR)) {
1025 PPC_WARN_EMULATED(mfdscr, regs);
1026 rd = (instword >> 21) & 0x1f;
1027 regs->gpr[rd] = mfspr(SPRN_DSCR);
1028 return 0;
1029 }
1030 /* Emulate the mtspr DSCR, rD. */
1031 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1032 PPC_INST_MTSPR_DSCR_USER) ||
1033 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1034 PPC_INST_MTSPR_DSCR)) &&
1035 cpu_has_feature(CPU_FTR_DSCR)) {
1036 PPC_WARN_EMULATED(mtdscr, regs);
1037 rd = (instword >> 21) & 0x1f;
1038 current->thread.dscr = regs->gpr[rd];
1039 current->thread.dscr_inherit = 1;
1040 mtspr(SPRN_DSCR, current->thread.dscr);
1041 return 0;
1042 }
1043 #endif
1044
1045 return -EINVAL;
1046 }
1047
1048 int is_valid_bugaddr(unsigned long addr)
1049 {
1050 return is_kernel_addr(addr);
1051 }
1052
1053 void __kprobes program_check_exception(struct pt_regs *regs)
1054 {
1055 enum ctx_state prev_state = exception_enter();
1056 unsigned int reason = get_reason(regs);
1057 extern int do_mathemu(struct pt_regs *regs);
1058
1059 /* We can now get here via a FP Unavailable exception if the core
1060 * has no FPU, in that case the reason flags will be 0 */
1061
1062 if (reason & REASON_FP) {
1063 /* IEEE FP exception */
1064 parse_fpe(regs);
1065 goto bail;
1066 }
1067 if (reason & REASON_TRAP) {
1068 /* Debugger is first in line to stop recursive faults in
1069 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1070 if (debugger_bpt(regs))
1071 goto bail;
1072
1073 /* trap exception */
1074 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1075 == NOTIFY_STOP)
1076 goto bail;
1077
1078 if (!(regs->msr & MSR_PR) && /* not user-mode */
1079 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1080 regs->nip += 4;
1081 goto bail;
1082 }
1083 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1084 goto bail;
1085 }
1086 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1087 if (reason & REASON_TM) {
1088 /* This is a TM "Bad Thing Exception" program check.
1089 * This occurs when:
1090 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1091 * transition in TM states.
1092 * - A trechkpt is attempted when transactional.
1093 * - A treclaim is attempted when non transactional.
1094 * - A tend is illegally attempted.
1095 * - writing a TM SPR when transactional.
1096 */
1097 if (!user_mode(regs) &&
1098 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1099 regs->nip += 4;
1100 goto bail;
1101 }
1102 /* If usermode caused this, it's done something illegal and
1103 * gets a SIGILL slap on the wrist. We call it an illegal
1104 * operand to distinguish from the instruction just being bad
1105 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1106 * illegal /placement/ of a valid instruction.
1107 */
1108 if (user_mode(regs)) {
1109 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1110 goto bail;
1111 } else {
1112 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1113 "at %lx (msr 0x%x)\n", regs->nip, reason);
1114 die("Unrecoverable exception", regs, SIGABRT);
1115 }
1116 }
1117 #endif
1118
1119 /* We restore the interrupt state now */
1120 if (!arch_irq_disabled_regs(regs))
1121 local_irq_enable();
1122
1123 #ifdef CONFIG_MATH_EMULATION
1124 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1125 * but there seems to be a hardware bug on the 405GP (RevD)
1126 * that means ESR is sometimes set incorrectly - either to
1127 * ESR_DST (!?) or 0. In the process of chasing this with the
1128 * hardware people - not sure if it can happen on any illegal
1129 * instruction or only on FP instructions, whether there is a
1130 * pattern to occurrences etc. -dgibson 31/Mar/2003
1131 */
1132
1133 /*
1134 * If we support a HW FPU, we need to ensure the FP state
1135 * if flushed into the thread_struct before attempting
1136 * emulation
1137 */
1138 #ifdef CONFIG_PPC_FPU
1139 flush_fp_to_thread(current);
1140 #endif
1141 switch (do_mathemu(regs)) {
1142 case 0:
1143 emulate_single_step(regs);
1144 goto bail;
1145 case 1: {
1146 int code = 0;
1147 code = __parse_fpscr(current->thread.fpscr.val);
1148 _exception(SIGFPE, regs, code, regs->nip);
1149 goto bail;
1150 }
1151 case -EFAULT:
1152 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1153 goto bail;
1154 }
1155 /* fall through on any other errors */
1156 #endif /* CONFIG_MATH_EMULATION */
1157
1158 /* Try to emulate it if we should. */
1159 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1160 switch (emulate_instruction(regs)) {
1161 case 0:
1162 regs->nip += 4;
1163 emulate_single_step(regs);
1164 goto bail;
1165 case -EFAULT:
1166 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1167 goto bail;
1168 }
1169 }
1170
1171 if (reason & REASON_PRIVILEGED)
1172 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1173 else
1174 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1175
1176 bail:
1177 exception_exit(prev_state);
1178 }
1179
1180 /*
1181 * This occurs when running in hypervisor mode on POWER6 or later
1182 * and an illegal instruction is encountered.
1183 */
1184 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1185 {
1186 regs->msr |= REASON_ILLEGAL;
1187 program_check_exception(regs);
1188 }
1189
1190 void alignment_exception(struct pt_regs *regs)
1191 {
1192 enum ctx_state prev_state = exception_enter();
1193 int sig, code, fixed = 0;
1194
1195 /* We restore the interrupt state now */
1196 if (!arch_irq_disabled_regs(regs))
1197 local_irq_enable();
1198
1199 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1200 goto bail;
1201
1202 /* we don't implement logging of alignment exceptions */
1203 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1204 fixed = fix_alignment(regs);
1205
1206 if (fixed == 1) {
1207 regs->nip += 4; /* skip over emulated instruction */
1208 emulate_single_step(regs);
1209 goto bail;
1210 }
1211
1212 /* Operand address was bad */
1213 if (fixed == -EFAULT) {
1214 sig = SIGSEGV;
1215 code = SEGV_ACCERR;
1216 } else {
1217 sig = SIGBUS;
1218 code = BUS_ADRALN;
1219 }
1220 if (user_mode(regs))
1221 _exception(sig, regs, code, regs->dar);
1222 else
1223 bad_page_fault(regs, regs->dar, sig);
1224
1225 bail:
1226 exception_exit(prev_state);
1227 }
1228
1229 void StackOverflow(struct pt_regs *regs)
1230 {
1231 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1232 current, regs->gpr[1]);
1233 debugger(regs);
1234 show_regs(regs);
1235 panic("kernel stack overflow");
1236 }
1237
1238 void nonrecoverable_exception(struct pt_regs *regs)
1239 {
1240 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1241 regs->nip, regs->msr);
1242 debugger(regs);
1243 die("nonrecoverable exception", regs, SIGKILL);
1244 }
1245
1246 void trace_syscall(struct pt_regs *regs)
1247 {
1248 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1249 current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1250 regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1251 }
1252
1253 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1254 {
1255 enum ctx_state prev_state = exception_enter();
1256
1257 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1258 "%lx at %lx\n", regs->trap, regs->nip);
1259 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1260
1261 exception_exit(prev_state);
1262 }
1263
1264 void altivec_unavailable_exception(struct pt_regs *regs)
1265 {
1266 enum ctx_state prev_state = exception_enter();
1267
1268 if (user_mode(regs)) {
1269 /* A user program has executed an altivec instruction,
1270 but this kernel doesn't support altivec. */
1271 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1272 goto bail;
1273 }
1274
1275 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1276 "%lx at %lx\n", regs->trap, regs->nip);
1277 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1278
1279 bail:
1280 exception_exit(prev_state);
1281 }
1282
1283 void vsx_unavailable_exception(struct pt_regs *regs)
1284 {
1285 if (user_mode(regs)) {
1286 /* A user program has executed an vsx instruction,
1287 but this kernel doesn't support vsx. */
1288 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1289 return;
1290 }
1291
1292 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1293 "%lx at %lx\n", regs->trap, regs->nip);
1294 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1295 }
1296
1297 #ifdef CONFIG_PPC64
1298 void facility_unavailable_exception(struct pt_regs *regs)
1299 {
1300 static char *facility_strings[] = {
1301 [FSCR_FP_LG] = "FPU",
1302 [FSCR_VECVSX_LG] = "VMX/VSX",
1303 [FSCR_DSCR_LG] = "DSCR",
1304 [FSCR_PM_LG] = "PMU SPRs",
1305 [FSCR_BHRB_LG] = "BHRB",
1306 [FSCR_TM_LG] = "TM",
1307 [FSCR_EBB_LG] = "EBB",
1308 [FSCR_TAR_LG] = "TAR",
1309 };
1310 char *facility = "unknown";
1311 u64 value;
1312 u8 status;
1313 bool hv;
1314
1315 hv = (regs->trap == 0xf80);
1316 if (hv)
1317 value = mfspr(SPRN_HFSCR);
1318 else
1319 value = mfspr(SPRN_FSCR);
1320
1321 status = value >> 56;
1322 if (status == FSCR_DSCR_LG) {
1323 /* User is acessing the DSCR. Set the inherit bit and allow
1324 * the user to set it directly in future by setting via the
1325 * H/FSCR DSCR bit.
1326 */
1327 current->thread.dscr_inherit = 1;
1328 if (hv)
1329 mtspr(SPRN_HFSCR, value | HFSCR_DSCR);
1330 else
1331 mtspr(SPRN_FSCR, value | FSCR_DSCR);
1332 return;
1333 }
1334
1335 if ((status < ARRAY_SIZE(facility_strings)) &&
1336 facility_strings[status])
1337 facility = facility_strings[status];
1338
1339 /* We restore the interrupt state now */
1340 if (!arch_irq_disabled_regs(regs))
1341 local_irq_enable();
1342
1343 pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1344 hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1345
1346 if (user_mode(regs)) {
1347 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1348 return;
1349 }
1350
1351 die("Unexpected facility unavailable exception", regs, SIGABRT);
1352 }
1353 #endif
1354
1355 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1356
1357 extern void do_load_up_fpu(struct pt_regs *regs);
1358
1359 void fp_unavailable_tm(struct pt_regs *regs)
1360 {
1361 /* Note: This does not handle any kind of FP laziness. */
1362
1363 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1364 regs->nip, regs->msr);
1365 tm_enable();
1366
1367 /* We can only have got here if the task started using FP after
1368 * beginning the transaction. So, the transactional regs are just a
1369 * copy of the checkpointed ones. But, we still need to recheckpoint
1370 * as we're enabling FP for the process; it will return, abort the
1371 * transaction, and probably retry but now with FP enabled. So the
1372 * checkpointed FP registers need to be loaded.
1373 */
1374 tm_reclaim(&current->thread, current->thread.regs->msr,
1375 TM_CAUSE_FAC_UNAV);
1376 /* Reclaim didn't save out any FPRs to transact_fprs. */
1377
1378 /* Enable FP for the task: */
1379 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1380
1381 /* This loads and recheckpoints the FP registers from
1382 * thread.fpr[]. They will remain in registers after the
1383 * checkpoint so we don't need to reload them after.
1384 */
1385 tm_recheckpoint(&current->thread, regs->msr);
1386 }
1387
1388 #ifdef CONFIG_ALTIVEC
1389 extern void do_load_up_altivec(struct pt_regs *regs);
1390
1391 void altivec_unavailable_tm(struct pt_regs *regs)
1392 {
1393 /* See the comments in fp_unavailable_tm(). This function operates
1394 * the same way.
1395 */
1396
1397 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1398 "MSR=%lx\n",
1399 regs->nip, regs->msr);
1400 tm_enable();
1401 tm_reclaim(&current->thread, current->thread.regs->msr,
1402 TM_CAUSE_FAC_UNAV);
1403 regs->msr |= MSR_VEC;
1404 tm_recheckpoint(&current->thread, regs->msr);
1405 current->thread.used_vr = 1;
1406 }
1407 #endif
1408
1409 #ifdef CONFIG_VSX
1410 void vsx_unavailable_tm(struct pt_regs *regs)
1411 {
1412 /* See the comments in fp_unavailable_tm(). This works similarly,
1413 * though we're loading both FP and VEC registers in here.
1414 *
1415 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1416 * regs. Either way, set MSR_VSX.
1417 */
1418
1419 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1420 "MSR=%lx\n",
1421 regs->nip, regs->msr);
1422
1423 tm_enable();
1424 /* This reclaims FP and/or VR regs if they're already enabled */
1425 tm_reclaim(&current->thread, current->thread.regs->msr,
1426 TM_CAUSE_FAC_UNAV);
1427
1428 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1429 MSR_VSX;
1430 /* This loads & recheckpoints FP and VRs. */
1431 tm_recheckpoint(&current->thread, regs->msr);
1432 current->thread.used_vsr = 1;
1433 }
1434 #endif
1435 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1436
1437 void performance_monitor_exception(struct pt_regs *regs)
1438 {
1439 __get_cpu_var(irq_stat).pmu_irqs++;
1440
1441 perf_irq(regs);
1442 }
1443
1444 #ifdef CONFIG_8xx
1445 void SoftwareEmulation(struct pt_regs *regs)
1446 {
1447 extern int do_mathemu(struct pt_regs *);
1448 #if defined(CONFIG_MATH_EMULATION)
1449 int errcode;
1450 #endif
1451
1452 CHECK_FULL_REGS(regs);
1453
1454 if (!user_mode(regs)) {
1455 debugger(regs);
1456 die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1457 }
1458
1459 #ifdef CONFIG_MATH_EMULATION
1460 errcode = do_mathemu(regs);
1461 if (errcode >= 0)
1462 PPC_WARN_EMULATED(math, regs);
1463
1464 switch (errcode) {
1465 case 0:
1466 emulate_single_step(regs);
1467 return;
1468 case 1: {
1469 int code = 0;
1470 code = __parse_fpscr(current->thread.fpscr.val);
1471 _exception(SIGFPE, regs, code, regs->nip);
1472 return;
1473 }
1474 case -EFAULT:
1475 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1476 return;
1477 default:
1478 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1479 return;
1480 }
1481 #else
1482 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1483 #endif
1484 }
1485 #endif /* CONFIG_8xx */
1486
1487 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1488 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1489 {
1490 int changed = 0;
1491 /*
1492 * Determine the cause of the debug event, clear the
1493 * event flags and send a trap to the handler. Torez
1494 */
1495 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1496 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1497 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1498 current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1499 #endif
1500 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1501 5);
1502 changed |= 0x01;
1503 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1504 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1505 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1506 6);
1507 changed |= 0x01;
1508 } else if (debug_status & DBSR_IAC1) {
1509 current->thread.dbcr0 &= ~DBCR0_IAC1;
1510 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1511 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1512 1);
1513 changed |= 0x01;
1514 } else if (debug_status & DBSR_IAC2) {
1515 current->thread.dbcr0 &= ~DBCR0_IAC2;
1516 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1517 2);
1518 changed |= 0x01;
1519 } else if (debug_status & DBSR_IAC3) {
1520 current->thread.dbcr0 &= ~DBCR0_IAC3;
1521 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1522 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1523 3);
1524 changed |= 0x01;
1525 } else if (debug_status & DBSR_IAC4) {
1526 current->thread.dbcr0 &= ~DBCR0_IAC4;
1527 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1528 4);
1529 changed |= 0x01;
1530 }
1531 /*
1532 * At the point this routine was called, the MSR(DE) was turned off.
1533 * Check all other debug flags and see if that bit needs to be turned
1534 * back on or not.
1535 */
1536 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1537 regs->msr |= MSR_DE;
1538 else
1539 /* Make sure the IDM flag is off */
1540 current->thread.dbcr0 &= ~DBCR0_IDM;
1541
1542 if (changed & 0x01)
1543 mtspr(SPRN_DBCR0, current->thread.dbcr0);
1544 }
1545
1546 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1547 {
1548 current->thread.dbsr = debug_status;
1549
1550 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1551 * on server, it stops on the target of the branch. In order to simulate
1552 * the server behaviour, we thus restart right away with a single step
1553 * instead of stopping here when hitting a BT
1554 */
1555 if (debug_status & DBSR_BT) {
1556 regs->msr &= ~MSR_DE;
1557
1558 /* Disable BT */
1559 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1560 /* Clear the BT event */
1561 mtspr(SPRN_DBSR, DBSR_BT);
1562
1563 /* Do the single step trick only when coming from userspace */
1564 if (user_mode(regs)) {
1565 current->thread.dbcr0 &= ~DBCR0_BT;
1566 current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1567 regs->msr |= MSR_DE;
1568 return;
1569 }
1570
1571 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1572 5, SIGTRAP) == NOTIFY_STOP) {
1573 return;
1574 }
1575 if (debugger_sstep(regs))
1576 return;
1577 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1578 regs->msr &= ~MSR_DE;
1579
1580 /* Disable instruction completion */
1581 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1582 /* Clear the instruction completion event */
1583 mtspr(SPRN_DBSR, DBSR_IC);
1584
1585 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1586 5, SIGTRAP) == NOTIFY_STOP) {
1587 return;
1588 }
1589
1590 if (debugger_sstep(regs))
1591 return;
1592
1593 if (user_mode(regs)) {
1594 current->thread.dbcr0 &= ~DBCR0_IC;
1595 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1596 current->thread.dbcr1))
1597 regs->msr |= MSR_DE;
1598 else
1599 /* Make sure the IDM bit is off */
1600 current->thread.dbcr0 &= ~DBCR0_IDM;
1601 }
1602
1603 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1604 } else
1605 handle_debug(regs, debug_status);
1606 }
1607 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1608
1609 #if !defined(CONFIG_TAU_INT)
1610 void TAUException(struct pt_regs *regs)
1611 {
1612 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1613 regs->nip, regs->msr, regs->trap, print_tainted());
1614 }
1615 #endif /* CONFIG_INT_TAU */
1616
1617 #ifdef CONFIG_ALTIVEC
1618 void altivec_assist_exception(struct pt_regs *regs)
1619 {
1620 int err;
1621
1622 if (!user_mode(regs)) {
1623 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1624 " at %lx\n", regs->nip);
1625 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1626 }
1627
1628 flush_altivec_to_thread(current);
1629
1630 PPC_WARN_EMULATED(altivec, regs);
1631 err = emulate_altivec(regs);
1632 if (err == 0) {
1633 regs->nip += 4; /* skip emulated instruction */
1634 emulate_single_step(regs);
1635 return;
1636 }
1637
1638 if (err == -EFAULT) {
1639 /* got an error reading the instruction */
1640 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1641 } else {
1642 /* didn't recognize the instruction */
1643 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1644 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1645 "in %s at %lx\n", current->comm, regs->nip);
1646 current->thread.vscr.u[3] |= 0x10000;
1647 }
1648 }
1649 #endif /* CONFIG_ALTIVEC */
1650
1651 #ifdef CONFIG_VSX
1652 void vsx_assist_exception(struct pt_regs *regs)
1653 {
1654 if (!user_mode(regs)) {
1655 printk(KERN_EMERG "VSX assist exception in kernel mode"
1656 " at %lx\n", regs->nip);
1657 die("Kernel VSX assist exception", regs, SIGILL);
1658 }
1659
1660 flush_vsx_to_thread(current);
1661 printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1662 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1663 }
1664 #endif /* CONFIG_VSX */
1665
1666 #ifdef CONFIG_FSL_BOOKE
1667 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1668 unsigned long error_code)
1669 {
1670 /* We treat cache locking instructions from the user
1671 * as priv ops, in the future we could try to do
1672 * something smarter
1673 */
1674 if (error_code & (ESR_DLK|ESR_ILK))
1675 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1676 return;
1677 }
1678 #endif /* CONFIG_FSL_BOOKE */
1679
1680 #ifdef CONFIG_SPE
1681 void SPEFloatingPointException(struct pt_regs *regs)
1682 {
1683 extern int do_spe_mathemu(struct pt_regs *regs);
1684 unsigned long spefscr;
1685 int fpexc_mode;
1686 int code = 0;
1687 int err;
1688
1689 flush_spe_to_thread(current);
1690
1691 spefscr = current->thread.spefscr;
1692 fpexc_mode = current->thread.fpexc_mode;
1693
1694 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1695 code = FPE_FLTOVF;
1696 }
1697 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1698 code = FPE_FLTUND;
1699 }
1700 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1701 code = FPE_FLTDIV;
1702 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1703 code = FPE_FLTINV;
1704 }
1705 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1706 code = FPE_FLTRES;
1707
1708 err = do_spe_mathemu(regs);
1709 if (err == 0) {
1710 regs->nip += 4; /* skip emulated instruction */
1711 emulate_single_step(regs);
1712 return;
1713 }
1714
1715 if (err == -EFAULT) {
1716 /* got an error reading the instruction */
1717 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1718 } else if (err == -EINVAL) {
1719 /* didn't recognize the instruction */
1720 printk(KERN_ERR "unrecognized spe instruction "
1721 "in %s at %lx\n", current->comm, regs->nip);
1722 } else {
1723 _exception(SIGFPE, regs, code, regs->nip);
1724 }
1725
1726 return;
1727 }
1728
1729 void SPEFloatingPointRoundException(struct pt_regs *regs)
1730 {
1731 extern int speround_handler(struct pt_regs *regs);
1732 int err;
1733
1734 preempt_disable();
1735 if (regs->msr & MSR_SPE)
1736 giveup_spe(current);
1737 preempt_enable();
1738
1739 regs->nip -= 4;
1740 err = speround_handler(regs);
1741 if (err == 0) {
1742 regs->nip += 4; /* skip emulated instruction */
1743 emulate_single_step(regs);
1744 return;
1745 }
1746
1747 if (err == -EFAULT) {
1748 /* got an error reading the instruction */
1749 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1750 } else if (err == -EINVAL) {
1751 /* didn't recognize the instruction */
1752 printk(KERN_ERR "unrecognized spe instruction "
1753 "in %s at %lx\n", current->comm, regs->nip);
1754 } else {
1755 _exception(SIGFPE, regs, 0, regs->nip);
1756 return;
1757 }
1758 }
1759 #endif
1760
1761 /*
1762 * We enter here if we get an unrecoverable exception, that is, one
1763 * that happened at a point where the RI (recoverable interrupt) bit
1764 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1765 * we therefore lost state by taking this exception.
1766 */
1767 void unrecoverable_exception(struct pt_regs *regs)
1768 {
1769 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1770 regs->trap, regs->nip);
1771 die("Unrecoverable exception", regs, SIGABRT);
1772 }
1773
1774 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1775 /*
1776 * Default handler for a Watchdog exception,
1777 * spins until a reboot occurs
1778 */
1779 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1780 {
1781 /* Generic WatchdogHandler, implement your own */
1782 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1783 return;
1784 }
1785
1786 void WatchdogException(struct pt_regs *regs)
1787 {
1788 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1789 WatchdogHandler(regs);
1790 }
1791 #endif
1792
1793 /*
1794 * We enter here if we discover during exception entry that we are
1795 * running in supervisor mode with a userspace value in the stack pointer.
1796 */
1797 void kernel_bad_stack(struct pt_regs *regs)
1798 {
1799 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1800 regs->gpr[1], regs->nip);
1801 die("Bad kernel stack pointer", regs, SIGABRT);
1802 }
1803
1804 void __init trap_init(void)
1805 {
1806 }
1807
1808
1809 #ifdef CONFIG_PPC_EMULATED_STATS
1810
1811 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1812
1813 struct ppc_emulated ppc_emulated = {
1814 #ifdef CONFIG_ALTIVEC
1815 WARN_EMULATED_SETUP(altivec),
1816 #endif
1817 WARN_EMULATED_SETUP(dcba),
1818 WARN_EMULATED_SETUP(dcbz),
1819 WARN_EMULATED_SETUP(fp_pair),
1820 WARN_EMULATED_SETUP(isel),
1821 WARN_EMULATED_SETUP(mcrxr),
1822 WARN_EMULATED_SETUP(mfpvr),
1823 WARN_EMULATED_SETUP(multiple),
1824 WARN_EMULATED_SETUP(popcntb),
1825 WARN_EMULATED_SETUP(spe),
1826 WARN_EMULATED_SETUP(string),
1827 WARN_EMULATED_SETUP(unaligned),
1828 #ifdef CONFIG_MATH_EMULATION
1829 WARN_EMULATED_SETUP(math),
1830 #endif
1831 #ifdef CONFIG_VSX
1832 WARN_EMULATED_SETUP(vsx),
1833 #endif
1834 #ifdef CONFIG_PPC64
1835 WARN_EMULATED_SETUP(mfdscr),
1836 WARN_EMULATED_SETUP(mtdscr),
1837 #endif
1838 };
1839
1840 u32 ppc_warn_emulated;
1841
1842 void ppc_warn_emulated_print(const char *type)
1843 {
1844 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1845 type);
1846 }
1847
1848 static int __init ppc_warn_emulated_init(void)
1849 {
1850 struct dentry *dir, *d;
1851 unsigned int i;
1852 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1853
1854 if (!powerpc_debugfs_root)
1855 return -ENODEV;
1856
1857 dir = debugfs_create_dir("emulated_instructions",
1858 powerpc_debugfs_root);
1859 if (!dir)
1860 return -ENOMEM;
1861
1862 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1863 &ppc_warn_emulated);
1864 if (!d)
1865 goto fail;
1866
1867 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1868 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1869 (u32 *)&entries[i].val.counter);
1870 if (!d)
1871 goto fail;
1872 }
1873
1874 return 0;
1875
1876 fail:
1877 debugfs_remove_recursive(dir);
1878 return -ENOMEM;
1879 }
1880
1881 device_initcall(ppc_warn_emulated_init);
1882
1883 #endif /* CONFIG_PPC_EMULATED_STATS */
This page took 0.074672 seconds and 5 git commands to generate.