KVM: PPC: Book3S HV: Make a HPTE removal function available
[deliverable/linux.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28
29 #include <asm/tlbflush.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu-hash64.h>
33 #include <asm/hvcall.h>
34 #include <asm/synch.h>
35 #include <asm/ppc-opcode.h>
36 #include <asm/cputable.h>
37
38 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
39 #define MAX_LPID_970 63
40
41 /* Power architecture requires HPT is at least 256kB */
42 #define PPC_MIN_HPT_ORDER 18
43
44 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
45 long pte_index, unsigned long pteh,
46 unsigned long ptel, unsigned long *pte_idx_ret);
47
48 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
49 {
50 unsigned long hpt;
51 struct revmap_entry *rev;
52 struct kvmppc_linear_info *li;
53 long order = kvm_hpt_order;
54
55 if (htab_orderp) {
56 order = *htab_orderp;
57 if (order < PPC_MIN_HPT_ORDER)
58 order = PPC_MIN_HPT_ORDER;
59 }
60
61 /*
62 * If the user wants a different size from default,
63 * try first to allocate it from the kernel page allocator.
64 */
65 hpt = 0;
66 if (order != kvm_hpt_order) {
67 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
68 __GFP_NOWARN, order - PAGE_SHIFT);
69 if (!hpt)
70 --order;
71 }
72
73 /* Next try to allocate from the preallocated pool */
74 if (!hpt) {
75 li = kvm_alloc_hpt();
76 if (li) {
77 hpt = (ulong)li->base_virt;
78 kvm->arch.hpt_li = li;
79 order = kvm_hpt_order;
80 }
81 }
82
83 /* Lastly try successively smaller sizes from the page allocator */
84 while (!hpt && order > PPC_MIN_HPT_ORDER) {
85 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
86 __GFP_NOWARN, order - PAGE_SHIFT);
87 if (!hpt)
88 --order;
89 }
90
91 if (!hpt)
92 return -ENOMEM;
93
94 kvm->arch.hpt_virt = hpt;
95 kvm->arch.hpt_order = order;
96 /* HPTEs are 2**4 bytes long */
97 kvm->arch.hpt_npte = 1ul << (order - 4);
98 /* 128 (2**7) bytes in each HPTEG */
99 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
100
101 /* Allocate reverse map array */
102 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
103 if (!rev) {
104 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
105 goto out_freehpt;
106 }
107 kvm->arch.revmap = rev;
108 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
109
110 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
111 hpt, order, kvm->arch.lpid);
112
113 if (htab_orderp)
114 *htab_orderp = order;
115 return 0;
116
117 out_freehpt:
118 if (kvm->arch.hpt_li)
119 kvm_release_hpt(kvm->arch.hpt_li);
120 else
121 free_pages(hpt, order - PAGE_SHIFT);
122 return -ENOMEM;
123 }
124
125 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
126 {
127 long err = -EBUSY;
128 long order;
129
130 mutex_lock(&kvm->lock);
131 if (kvm->arch.rma_setup_done) {
132 kvm->arch.rma_setup_done = 0;
133 /* order rma_setup_done vs. vcpus_running */
134 smp_mb();
135 if (atomic_read(&kvm->arch.vcpus_running)) {
136 kvm->arch.rma_setup_done = 1;
137 goto out;
138 }
139 }
140 if (kvm->arch.hpt_virt) {
141 order = kvm->arch.hpt_order;
142 /* Set the entire HPT to 0, i.e. invalid HPTEs */
143 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
144 /*
145 * Set the whole last_vcpu array to an invalid vcpu number.
146 * This ensures that each vcpu will flush its TLB on next entry.
147 */
148 memset(kvm->arch.last_vcpu, 0xff, sizeof(kvm->arch.last_vcpu));
149 *htab_orderp = order;
150 err = 0;
151 } else {
152 err = kvmppc_alloc_hpt(kvm, htab_orderp);
153 order = *htab_orderp;
154 }
155 out:
156 mutex_unlock(&kvm->lock);
157 return err;
158 }
159
160 void kvmppc_free_hpt(struct kvm *kvm)
161 {
162 kvmppc_free_lpid(kvm->arch.lpid);
163 vfree(kvm->arch.revmap);
164 if (kvm->arch.hpt_li)
165 kvm_release_hpt(kvm->arch.hpt_li);
166 else
167 free_pages(kvm->arch.hpt_virt,
168 kvm->arch.hpt_order - PAGE_SHIFT);
169 }
170
171 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
172 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
173 {
174 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
175 }
176
177 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
178 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
179 {
180 return (pgsize == 0x10000) ? 0x1000 : 0;
181 }
182
183 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
184 unsigned long porder)
185 {
186 unsigned long i;
187 unsigned long npages;
188 unsigned long hp_v, hp_r;
189 unsigned long addr, hash;
190 unsigned long psize;
191 unsigned long hp0, hp1;
192 unsigned long idx_ret;
193 long ret;
194 struct kvm *kvm = vcpu->kvm;
195
196 psize = 1ul << porder;
197 npages = memslot->npages >> (porder - PAGE_SHIFT);
198
199 /* VRMA can't be > 1TB */
200 if (npages > 1ul << (40 - porder))
201 npages = 1ul << (40 - porder);
202 /* Can't use more than 1 HPTE per HPTEG */
203 if (npages > kvm->arch.hpt_mask + 1)
204 npages = kvm->arch.hpt_mask + 1;
205
206 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
207 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
208 hp1 = hpte1_pgsize_encoding(psize) |
209 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
210
211 for (i = 0; i < npages; ++i) {
212 addr = i << porder;
213 /* can't use hpt_hash since va > 64 bits */
214 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
215 /*
216 * We assume that the hash table is empty and no
217 * vcpus are using it at this stage. Since we create
218 * at most one HPTE per HPTEG, we just assume entry 7
219 * is available and use it.
220 */
221 hash = (hash << 3) + 7;
222 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
223 hp_r = hp1 | addr;
224 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
225 &idx_ret);
226 if (ret != H_SUCCESS) {
227 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
228 addr, ret);
229 break;
230 }
231 }
232 }
233
234 int kvmppc_mmu_hv_init(void)
235 {
236 unsigned long host_lpid, rsvd_lpid;
237
238 if (!cpu_has_feature(CPU_FTR_HVMODE))
239 return -EINVAL;
240
241 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
242 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
243 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
244 rsvd_lpid = LPID_RSVD;
245 } else {
246 host_lpid = 0; /* PPC970 */
247 rsvd_lpid = MAX_LPID_970;
248 }
249
250 kvmppc_init_lpid(rsvd_lpid + 1);
251
252 kvmppc_claim_lpid(host_lpid);
253 /* rsvd_lpid is reserved for use in partition switching */
254 kvmppc_claim_lpid(rsvd_lpid);
255
256 return 0;
257 }
258
259 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
260 {
261 }
262
263 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
264 {
265 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
266 }
267
268 /*
269 * This is called to get a reference to a guest page if there isn't
270 * one already in the memslot->arch.slot_phys[] array.
271 */
272 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
273 struct kvm_memory_slot *memslot,
274 unsigned long psize)
275 {
276 unsigned long start;
277 long np, err;
278 struct page *page, *hpage, *pages[1];
279 unsigned long s, pgsize;
280 unsigned long *physp;
281 unsigned int is_io, got, pgorder;
282 struct vm_area_struct *vma;
283 unsigned long pfn, i, npages;
284
285 physp = memslot->arch.slot_phys;
286 if (!physp)
287 return -EINVAL;
288 if (physp[gfn - memslot->base_gfn])
289 return 0;
290
291 is_io = 0;
292 got = 0;
293 page = NULL;
294 pgsize = psize;
295 err = -EINVAL;
296 start = gfn_to_hva_memslot(memslot, gfn);
297
298 /* Instantiate and get the page we want access to */
299 np = get_user_pages_fast(start, 1, 1, pages);
300 if (np != 1) {
301 /* Look up the vma for the page */
302 down_read(&current->mm->mmap_sem);
303 vma = find_vma(current->mm, start);
304 if (!vma || vma->vm_start > start ||
305 start + psize > vma->vm_end ||
306 !(vma->vm_flags & VM_PFNMAP))
307 goto up_err;
308 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
309 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
310 /* check alignment of pfn vs. requested page size */
311 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
312 goto up_err;
313 up_read(&current->mm->mmap_sem);
314
315 } else {
316 page = pages[0];
317 got = KVMPPC_GOT_PAGE;
318
319 /* See if this is a large page */
320 s = PAGE_SIZE;
321 if (PageHuge(page)) {
322 hpage = compound_head(page);
323 s <<= compound_order(hpage);
324 /* Get the whole large page if slot alignment is ok */
325 if (s > psize && slot_is_aligned(memslot, s) &&
326 !(memslot->userspace_addr & (s - 1))) {
327 start &= ~(s - 1);
328 pgsize = s;
329 get_page(hpage);
330 put_page(page);
331 page = hpage;
332 }
333 }
334 if (s < psize)
335 goto out;
336 pfn = page_to_pfn(page);
337 }
338
339 npages = pgsize >> PAGE_SHIFT;
340 pgorder = __ilog2(npages);
341 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
342 spin_lock(&kvm->arch.slot_phys_lock);
343 for (i = 0; i < npages; ++i) {
344 if (!physp[i]) {
345 physp[i] = ((pfn + i) << PAGE_SHIFT) +
346 got + is_io + pgorder;
347 got = 0;
348 }
349 }
350 spin_unlock(&kvm->arch.slot_phys_lock);
351 err = 0;
352
353 out:
354 if (got)
355 put_page(page);
356 return err;
357
358 up_err:
359 up_read(&current->mm->mmap_sem);
360 return err;
361 }
362
363 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
364 long pte_index, unsigned long pteh,
365 unsigned long ptel, unsigned long *pte_idx_ret)
366 {
367 unsigned long psize, gpa, gfn;
368 struct kvm_memory_slot *memslot;
369 long ret;
370
371 if (kvm->arch.using_mmu_notifiers)
372 goto do_insert;
373
374 psize = hpte_page_size(pteh, ptel);
375 if (!psize)
376 return H_PARAMETER;
377
378 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
379
380 /* Find the memslot (if any) for this address */
381 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
382 gfn = gpa >> PAGE_SHIFT;
383 memslot = gfn_to_memslot(kvm, gfn);
384 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
385 if (!slot_is_aligned(memslot, psize))
386 return H_PARAMETER;
387 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
388 return H_PARAMETER;
389 }
390
391 do_insert:
392 /* Protect linux PTE lookup from page table destruction */
393 rcu_read_lock_sched(); /* this disables preemption too */
394 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
395 current->mm->pgd, false, pte_idx_ret);
396 rcu_read_unlock_sched();
397 if (ret == H_TOO_HARD) {
398 /* this can't happen */
399 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
400 ret = H_RESOURCE; /* or something */
401 }
402 return ret;
403
404 }
405
406 /*
407 * We come here on a H_ENTER call from the guest when we are not
408 * using mmu notifiers and we don't have the requested page pinned
409 * already.
410 */
411 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
412 long pte_index, unsigned long pteh,
413 unsigned long ptel)
414 {
415 return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
416 pteh, ptel, &vcpu->arch.gpr[4]);
417 }
418
419 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
420 gva_t eaddr)
421 {
422 u64 mask;
423 int i;
424
425 for (i = 0; i < vcpu->arch.slb_nr; i++) {
426 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
427 continue;
428
429 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
430 mask = ESID_MASK_1T;
431 else
432 mask = ESID_MASK;
433
434 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
435 return &vcpu->arch.slb[i];
436 }
437 return NULL;
438 }
439
440 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
441 unsigned long ea)
442 {
443 unsigned long ra_mask;
444
445 ra_mask = hpte_page_size(v, r) - 1;
446 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
447 }
448
449 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
450 struct kvmppc_pte *gpte, bool data)
451 {
452 struct kvm *kvm = vcpu->kvm;
453 struct kvmppc_slb *slbe;
454 unsigned long slb_v;
455 unsigned long pp, key;
456 unsigned long v, gr;
457 unsigned long *hptep;
458 int index;
459 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
460
461 /* Get SLB entry */
462 if (virtmode) {
463 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
464 if (!slbe)
465 return -EINVAL;
466 slb_v = slbe->origv;
467 } else {
468 /* real mode access */
469 slb_v = vcpu->kvm->arch.vrma_slb_v;
470 }
471
472 /* Find the HPTE in the hash table */
473 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
474 HPTE_V_VALID | HPTE_V_ABSENT);
475 if (index < 0)
476 return -ENOENT;
477 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
478 v = hptep[0] & ~HPTE_V_HVLOCK;
479 gr = kvm->arch.revmap[index].guest_rpte;
480
481 /* Unlock the HPTE */
482 asm volatile("lwsync" : : : "memory");
483 hptep[0] = v;
484
485 gpte->eaddr = eaddr;
486 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
487
488 /* Get PP bits and key for permission check */
489 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
490 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
491 key &= slb_v;
492
493 /* Calculate permissions */
494 gpte->may_read = hpte_read_permission(pp, key);
495 gpte->may_write = hpte_write_permission(pp, key);
496 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
497
498 /* Storage key permission check for POWER7 */
499 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
500 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
501 if (amrfield & 1)
502 gpte->may_read = 0;
503 if (amrfield & 2)
504 gpte->may_write = 0;
505 }
506
507 /* Get the guest physical address */
508 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
509 return 0;
510 }
511
512 /*
513 * Quick test for whether an instruction is a load or a store.
514 * If the instruction is a load or a store, then this will indicate
515 * which it is, at least on server processors. (Embedded processors
516 * have some external PID instructions that don't follow the rule
517 * embodied here.) If the instruction isn't a load or store, then
518 * this doesn't return anything useful.
519 */
520 static int instruction_is_store(unsigned int instr)
521 {
522 unsigned int mask;
523
524 mask = 0x10000000;
525 if ((instr & 0xfc000000) == 0x7c000000)
526 mask = 0x100; /* major opcode 31 */
527 return (instr & mask) != 0;
528 }
529
530 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
531 unsigned long gpa, gva_t ea, int is_store)
532 {
533 int ret;
534 u32 last_inst;
535 unsigned long srr0 = kvmppc_get_pc(vcpu);
536
537 /* We try to load the last instruction. We don't let
538 * emulate_instruction do it as it doesn't check what
539 * kvmppc_ld returns.
540 * If we fail, we just return to the guest and try executing it again.
541 */
542 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
543 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
544 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
545 return RESUME_GUEST;
546 vcpu->arch.last_inst = last_inst;
547 }
548
549 /*
550 * WARNING: We do not know for sure whether the instruction we just
551 * read from memory is the same that caused the fault in the first
552 * place. If the instruction we read is neither an load or a store,
553 * then it can't access memory, so we don't need to worry about
554 * enforcing access permissions. So, assuming it is a load or
555 * store, we just check that its direction (load or store) is
556 * consistent with the original fault, since that's what we
557 * checked the access permissions against. If there is a mismatch
558 * we just return and retry the instruction.
559 */
560
561 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
562 return RESUME_GUEST;
563
564 /*
565 * Emulated accesses are emulated by looking at the hash for
566 * translation once, then performing the access later. The
567 * translation could be invalidated in the meantime in which
568 * point performing the subsequent memory access on the old
569 * physical address could possibly be a security hole for the
570 * guest (but not the host).
571 *
572 * This is less of an issue for MMIO stores since they aren't
573 * globally visible. It could be an issue for MMIO loads to
574 * a certain extent but we'll ignore it for now.
575 */
576
577 vcpu->arch.paddr_accessed = gpa;
578 vcpu->arch.vaddr_accessed = ea;
579 return kvmppc_emulate_mmio(run, vcpu);
580 }
581
582 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
583 unsigned long ea, unsigned long dsisr)
584 {
585 struct kvm *kvm = vcpu->kvm;
586 unsigned long *hptep, hpte[3], r;
587 unsigned long mmu_seq, psize, pte_size;
588 unsigned long gpa, gfn, hva, pfn;
589 struct kvm_memory_slot *memslot;
590 unsigned long *rmap;
591 struct revmap_entry *rev;
592 struct page *page, *pages[1];
593 long index, ret, npages;
594 unsigned long is_io;
595 unsigned int writing, write_ok;
596 struct vm_area_struct *vma;
597 unsigned long rcbits;
598
599 /*
600 * Real-mode code has already searched the HPT and found the
601 * entry we're interested in. Lock the entry and check that
602 * it hasn't changed. If it has, just return and re-execute the
603 * instruction.
604 */
605 if (ea != vcpu->arch.pgfault_addr)
606 return RESUME_GUEST;
607 index = vcpu->arch.pgfault_index;
608 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
609 rev = &kvm->arch.revmap[index];
610 preempt_disable();
611 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
612 cpu_relax();
613 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
614 hpte[1] = hptep[1];
615 hpte[2] = r = rev->guest_rpte;
616 asm volatile("lwsync" : : : "memory");
617 hptep[0] = hpte[0];
618 preempt_enable();
619
620 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
621 hpte[1] != vcpu->arch.pgfault_hpte[1])
622 return RESUME_GUEST;
623
624 /* Translate the logical address and get the page */
625 psize = hpte_page_size(hpte[0], r);
626 gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
627 gfn = gpa >> PAGE_SHIFT;
628 memslot = gfn_to_memslot(kvm, gfn);
629
630 /* No memslot means it's an emulated MMIO region */
631 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
632 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
633 dsisr & DSISR_ISSTORE);
634
635 if (!kvm->arch.using_mmu_notifiers)
636 return -EFAULT; /* should never get here */
637
638 /* used to check for invalidations in progress */
639 mmu_seq = kvm->mmu_notifier_seq;
640 smp_rmb();
641
642 is_io = 0;
643 pfn = 0;
644 page = NULL;
645 pte_size = PAGE_SIZE;
646 writing = (dsisr & DSISR_ISSTORE) != 0;
647 /* If writing != 0, then the HPTE must allow writing, if we get here */
648 write_ok = writing;
649 hva = gfn_to_hva_memslot(memslot, gfn);
650 npages = get_user_pages_fast(hva, 1, writing, pages);
651 if (npages < 1) {
652 /* Check if it's an I/O mapping */
653 down_read(&current->mm->mmap_sem);
654 vma = find_vma(current->mm, hva);
655 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
656 (vma->vm_flags & VM_PFNMAP)) {
657 pfn = vma->vm_pgoff +
658 ((hva - vma->vm_start) >> PAGE_SHIFT);
659 pte_size = psize;
660 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
661 write_ok = vma->vm_flags & VM_WRITE;
662 }
663 up_read(&current->mm->mmap_sem);
664 if (!pfn)
665 return -EFAULT;
666 } else {
667 page = pages[0];
668 if (PageHuge(page)) {
669 page = compound_head(page);
670 pte_size <<= compound_order(page);
671 }
672 /* if the guest wants write access, see if that is OK */
673 if (!writing && hpte_is_writable(r)) {
674 pte_t *ptep, pte;
675
676 /*
677 * We need to protect against page table destruction
678 * while looking up and updating the pte.
679 */
680 rcu_read_lock_sched();
681 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
682 hva, NULL);
683 if (ptep && pte_present(*ptep)) {
684 pte = kvmppc_read_update_linux_pte(ptep, 1);
685 if (pte_write(pte))
686 write_ok = 1;
687 }
688 rcu_read_unlock_sched();
689 }
690 pfn = page_to_pfn(page);
691 }
692
693 ret = -EFAULT;
694 if (psize > pte_size)
695 goto out_put;
696
697 /* Check WIMG vs. the actual page we're accessing */
698 if (!hpte_cache_flags_ok(r, is_io)) {
699 if (is_io)
700 return -EFAULT;
701 /*
702 * Allow guest to map emulated device memory as
703 * uncacheable, but actually make it cacheable.
704 */
705 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
706 }
707
708 /* Set the HPTE to point to pfn */
709 r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
710 if (hpte_is_writable(r) && !write_ok)
711 r = hpte_make_readonly(r);
712 ret = RESUME_GUEST;
713 preempt_disable();
714 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
715 cpu_relax();
716 if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
717 rev->guest_rpte != hpte[2])
718 /* HPTE has been changed under us; let the guest retry */
719 goto out_unlock;
720 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
721
722 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
723 lock_rmap(rmap);
724
725 /* Check if we might have been invalidated; let the guest retry if so */
726 ret = RESUME_GUEST;
727 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
728 unlock_rmap(rmap);
729 goto out_unlock;
730 }
731
732 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
733 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
734 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
735
736 if (hptep[0] & HPTE_V_VALID) {
737 /* HPTE was previously valid, so we need to invalidate it */
738 unlock_rmap(rmap);
739 hptep[0] |= HPTE_V_ABSENT;
740 kvmppc_invalidate_hpte(kvm, hptep, index);
741 /* don't lose previous R and C bits */
742 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
743 } else {
744 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
745 }
746
747 hptep[1] = r;
748 eieio();
749 hptep[0] = hpte[0];
750 asm volatile("ptesync" : : : "memory");
751 preempt_enable();
752 if (page && hpte_is_writable(r))
753 SetPageDirty(page);
754
755 out_put:
756 if (page) {
757 /*
758 * We drop pages[0] here, not page because page might
759 * have been set to the head page of a compound, but
760 * we have to drop the reference on the correct tail
761 * page to match the get inside gup()
762 */
763 put_page(pages[0]);
764 }
765 return ret;
766
767 out_unlock:
768 hptep[0] &= ~HPTE_V_HVLOCK;
769 preempt_enable();
770 goto out_put;
771 }
772
773 static int kvm_handle_hva_range(struct kvm *kvm,
774 unsigned long start,
775 unsigned long end,
776 int (*handler)(struct kvm *kvm,
777 unsigned long *rmapp,
778 unsigned long gfn))
779 {
780 int ret;
781 int retval = 0;
782 struct kvm_memslots *slots;
783 struct kvm_memory_slot *memslot;
784
785 slots = kvm_memslots(kvm);
786 kvm_for_each_memslot(memslot, slots) {
787 unsigned long hva_start, hva_end;
788 gfn_t gfn, gfn_end;
789
790 hva_start = max(start, memslot->userspace_addr);
791 hva_end = min(end, memslot->userspace_addr +
792 (memslot->npages << PAGE_SHIFT));
793 if (hva_start >= hva_end)
794 continue;
795 /*
796 * {gfn(page) | page intersects with [hva_start, hva_end)} =
797 * {gfn, gfn+1, ..., gfn_end-1}.
798 */
799 gfn = hva_to_gfn_memslot(hva_start, memslot);
800 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
801
802 for (; gfn < gfn_end; ++gfn) {
803 gfn_t gfn_offset = gfn - memslot->base_gfn;
804
805 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
806 retval |= ret;
807 }
808 }
809
810 return retval;
811 }
812
813 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
814 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
815 unsigned long gfn))
816 {
817 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
818 }
819
820 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
821 unsigned long gfn)
822 {
823 struct revmap_entry *rev = kvm->arch.revmap;
824 unsigned long h, i, j;
825 unsigned long *hptep;
826 unsigned long ptel, psize, rcbits;
827
828 for (;;) {
829 lock_rmap(rmapp);
830 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
831 unlock_rmap(rmapp);
832 break;
833 }
834
835 /*
836 * To avoid an ABBA deadlock with the HPTE lock bit,
837 * we can't spin on the HPTE lock while holding the
838 * rmap chain lock.
839 */
840 i = *rmapp & KVMPPC_RMAP_INDEX;
841 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
842 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
843 /* unlock rmap before spinning on the HPTE lock */
844 unlock_rmap(rmapp);
845 while (hptep[0] & HPTE_V_HVLOCK)
846 cpu_relax();
847 continue;
848 }
849 j = rev[i].forw;
850 if (j == i) {
851 /* chain is now empty */
852 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
853 } else {
854 /* remove i from chain */
855 h = rev[i].back;
856 rev[h].forw = j;
857 rev[j].back = h;
858 rev[i].forw = rev[i].back = i;
859 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
860 }
861
862 /* Now check and modify the HPTE */
863 ptel = rev[i].guest_rpte;
864 psize = hpte_page_size(hptep[0], ptel);
865 if ((hptep[0] & HPTE_V_VALID) &&
866 hpte_rpn(ptel, psize) == gfn) {
867 if (kvm->arch.using_mmu_notifiers)
868 hptep[0] |= HPTE_V_ABSENT;
869 kvmppc_invalidate_hpte(kvm, hptep, i);
870 /* Harvest R and C */
871 rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
872 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
873 rev[i].guest_rpte = ptel | rcbits;
874 }
875 unlock_rmap(rmapp);
876 hptep[0] &= ~HPTE_V_HVLOCK;
877 }
878 return 0;
879 }
880
881 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
882 {
883 if (kvm->arch.using_mmu_notifiers)
884 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
885 return 0;
886 }
887
888 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
889 {
890 if (kvm->arch.using_mmu_notifiers)
891 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
892 return 0;
893 }
894
895 void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
896 {
897 unsigned long *rmapp;
898 unsigned long gfn;
899 unsigned long n;
900
901 rmapp = memslot->arch.rmap;
902 gfn = memslot->base_gfn;
903 for (n = memslot->npages; n; --n) {
904 /*
905 * Testing the present bit without locking is OK because
906 * the memslot has been marked invalid already, and hence
907 * no new HPTEs referencing this page can be created,
908 * thus the present bit can't go from 0 to 1.
909 */
910 if (*rmapp & KVMPPC_RMAP_PRESENT)
911 kvm_unmap_rmapp(kvm, rmapp, gfn);
912 ++rmapp;
913 ++gfn;
914 }
915 }
916
917 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
918 unsigned long gfn)
919 {
920 struct revmap_entry *rev = kvm->arch.revmap;
921 unsigned long head, i, j;
922 unsigned long *hptep;
923 int ret = 0;
924
925 retry:
926 lock_rmap(rmapp);
927 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
928 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
929 ret = 1;
930 }
931 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
932 unlock_rmap(rmapp);
933 return ret;
934 }
935
936 i = head = *rmapp & KVMPPC_RMAP_INDEX;
937 do {
938 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
939 j = rev[i].forw;
940
941 /* If this HPTE isn't referenced, ignore it */
942 if (!(hptep[1] & HPTE_R_R))
943 continue;
944
945 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
946 /* unlock rmap before spinning on the HPTE lock */
947 unlock_rmap(rmapp);
948 while (hptep[0] & HPTE_V_HVLOCK)
949 cpu_relax();
950 goto retry;
951 }
952
953 /* Now check and modify the HPTE */
954 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
955 kvmppc_clear_ref_hpte(kvm, hptep, i);
956 rev[i].guest_rpte |= HPTE_R_R;
957 ret = 1;
958 }
959 hptep[0] &= ~HPTE_V_HVLOCK;
960 } while ((i = j) != head);
961
962 unlock_rmap(rmapp);
963 return ret;
964 }
965
966 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
967 {
968 if (!kvm->arch.using_mmu_notifiers)
969 return 0;
970 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
971 }
972
973 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
974 unsigned long gfn)
975 {
976 struct revmap_entry *rev = kvm->arch.revmap;
977 unsigned long head, i, j;
978 unsigned long *hp;
979 int ret = 1;
980
981 if (*rmapp & KVMPPC_RMAP_REFERENCED)
982 return 1;
983
984 lock_rmap(rmapp);
985 if (*rmapp & KVMPPC_RMAP_REFERENCED)
986 goto out;
987
988 if (*rmapp & KVMPPC_RMAP_PRESENT) {
989 i = head = *rmapp & KVMPPC_RMAP_INDEX;
990 do {
991 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
992 j = rev[i].forw;
993 if (hp[1] & HPTE_R_R)
994 goto out;
995 } while ((i = j) != head);
996 }
997 ret = 0;
998
999 out:
1000 unlock_rmap(rmapp);
1001 return ret;
1002 }
1003
1004 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1005 {
1006 if (!kvm->arch.using_mmu_notifiers)
1007 return 0;
1008 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1009 }
1010
1011 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1012 {
1013 if (!kvm->arch.using_mmu_notifiers)
1014 return;
1015 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1016 }
1017
1018 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1019 {
1020 struct revmap_entry *rev = kvm->arch.revmap;
1021 unsigned long head, i, j;
1022 unsigned long *hptep;
1023 int ret = 0;
1024
1025 retry:
1026 lock_rmap(rmapp);
1027 if (*rmapp & KVMPPC_RMAP_CHANGED) {
1028 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1029 ret = 1;
1030 }
1031 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1032 unlock_rmap(rmapp);
1033 return ret;
1034 }
1035
1036 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1037 do {
1038 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1039 j = rev[i].forw;
1040
1041 if (!(hptep[1] & HPTE_R_C))
1042 continue;
1043
1044 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1045 /* unlock rmap before spinning on the HPTE lock */
1046 unlock_rmap(rmapp);
1047 while (hptep[0] & HPTE_V_HVLOCK)
1048 cpu_relax();
1049 goto retry;
1050 }
1051
1052 /* Now check and modify the HPTE */
1053 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1054 /* need to make it temporarily absent to clear C */
1055 hptep[0] |= HPTE_V_ABSENT;
1056 kvmppc_invalidate_hpte(kvm, hptep, i);
1057 hptep[1] &= ~HPTE_R_C;
1058 eieio();
1059 hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
1060 rev[i].guest_rpte |= HPTE_R_C;
1061 ret = 1;
1062 }
1063 hptep[0] &= ~HPTE_V_HVLOCK;
1064 } while ((i = j) != head);
1065
1066 unlock_rmap(rmapp);
1067 return ret;
1068 }
1069
1070 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1071 unsigned long *map)
1072 {
1073 unsigned long i;
1074 unsigned long *rmapp;
1075
1076 preempt_disable();
1077 rmapp = memslot->arch.rmap;
1078 for (i = 0; i < memslot->npages; ++i) {
1079 if (kvm_test_clear_dirty(kvm, rmapp) && map)
1080 __set_bit_le(i, map);
1081 ++rmapp;
1082 }
1083 preempt_enable();
1084 return 0;
1085 }
1086
1087 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1088 unsigned long *nb_ret)
1089 {
1090 struct kvm_memory_slot *memslot;
1091 unsigned long gfn = gpa >> PAGE_SHIFT;
1092 struct page *page, *pages[1];
1093 int npages;
1094 unsigned long hva, psize, offset;
1095 unsigned long pa;
1096 unsigned long *physp;
1097 int srcu_idx;
1098
1099 srcu_idx = srcu_read_lock(&kvm->srcu);
1100 memslot = gfn_to_memslot(kvm, gfn);
1101 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1102 goto err;
1103 if (!kvm->arch.using_mmu_notifiers) {
1104 physp = memslot->arch.slot_phys;
1105 if (!physp)
1106 goto err;
1107 physp += gfn - memslot->base_gfn;
1108 pa = *physp;
1109 if (!pa) {
1110 if (kvmppc_get_guest_page(kvm, gfn, memslot,
1111 PAGE_SIZE) < 0)
1112 goto err;
1113 pa = *physp;
1114 }
1115 page = pfn_to_page(pa >> PAGE_SHIFT);
1116 get_page(page);
1117 } else {
1118 hva = gfn_to_hva_memslot(memslot, gfn);
1119 npages = get_user_pages_fast(hva, 1, 1, pages);
1120 if (npages < 1)
1121 goto err;
1122 page = pages[0];
1123 }
1124 srcu_read_unlock(&kvm->srcu, srcu_idx);
1125
1126 psize = PAGE_SIZE;
1127 if (PageHuge(page)) {
1128 page = compound_head(page);
1129 psize <<= compound_order(page);
1130 }
1131 offset = gpa & (psize - 1);
1132 if (nb_ret)
1133 *nb_ret = psize - offset;
1134 return page_address(page) + offset;
1135
1136 err:
1137 srcu_read_unlock(&kvm->srcu, srcu_idx);
1138 return NULL;
1139 }
1140
1141 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
1142 {
1143 struct page *page = virt_to_page(va);
1144
1145 put_page(page);
1146 }
1147
1148 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1149 {
1150 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1151
1152 if (cpu_has_feature(CPU_FTR_ARCH_206))
1153 vcpu->arch.slb_nr = 32; /* POWER7 */
1154 else
1155 vcpu->arch.slb_nr = 64;
1156
1157 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1158 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1159
1160 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1161 }
This page took 0.096133 seconds and 6 git commands to generate.