KVM: PPC: Convert RMA allocation into generic code
[deliverable/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <linux/gfp.h>
49 #include <linux/sched.h>
50 #include <linux/vmalloc.h>
51 #include <linux/highmem.h>
52 #include <linux/hugetlb.h>
53
54 /* #define EXIT_DEBUG */
55 /* #define EXIT_DEBUG_SIMPLE */
56 /* #define EXIT_DEBUG_INT */
57
58 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
60
61 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
62 {
63 local_paca->kvm_hstate.kvm_vcpu = vcpu;
64 local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
65 }
66
67 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
68 {
69 }
70
71 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
72 {
73 vcpu->arch.shregs.msr = msr;
74 kvmppc_end_cede(vcpu);
75 }
76
77 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
78 {
79 vcpu->arch.pvr = pvr;
80 }
81
82 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
83 {
84 int r;
85
86 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
87 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
88 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
89 for (r = 0; r < 16; ++r)
90 pr_err("r%2d = %.16lx r%d = %.16lx\n",
91 r, kvmppc_get_gpr(vcpu, r),
92 r+16, kvmppc_get_gpr(vcpu, r+16));
93 pr_err("ctr = %.16lx lr = %.16lx\n",
94 vcpu->arch.ctr, vcpu->arch.lr);
95 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
96 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
97 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
98 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
99 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
100 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
101 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
102 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
103 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
104 pr_err("fault dar = %.16lx dsisr = %.8x\n",
105 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
106 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
107 for (r = 0; r < vcpu->arch.slb_max; ++r)
108 pr_err(" ESID = %.16llx VSID = %.16llx\n",
109 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
110 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
111 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
112 vcpu->arch.last_inst);
113 }
114
115 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
116 {
117 int r;
118 struct kvm_vcpu *v, *ret = NULL;
119
120 mutex_lock(&kvm->lock);
121 kvm_for_each_vcpu(r, v, kvm) {
122 if (v->vcpu_id == id) {
123 ret = v;
124 break;
125 }
126 }
127 mutex_unlock(&kvm->lock);
128 return ret;
129 }
130
131 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
132 {
133 vpa->shared_proc = 1;
134 vpa->yield_count = 1;
135 }
136
137 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
138 unsigned long flags,
139 unsigned long vcpuid, unsigned long vpa)
140 {
141 struct kvm *kvm = vcpu->kvm;
142 unsigned long len, nb;
143 void *va;
144 struct kvm_vcpu *tvcpu;
145 int err = H_PARAMETER;
146
147 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
148 if (!tvcpu)
149 return H_PARAMETER;
150
151 flags >>= 63 - 18;
152 flags &= 7;
153 if (flags == 0 || flags == 4)
154 return H_PARAMETER;
155 if (flags < 4) {
156 if (vpa & 0x7f)
157 return H_PARAMETER;
158 if (flags >= 2 && !tvcpu->arch.vpa)
159 return H_RESOURCE;
160 /* registering new area; convert logical addr to real */
161 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
162 if (va == NULL)
163 return H_PARAMETER;
164 if (flags <= 1)
165 len = *(unsigned short *)(va + 4);
166 else
167 len = *(unsigned int *)(va + 4);
168 if (len > nb)
169 goto out_unpin;
170 switch (flags) {
171 case 1: /* register VPA */
172 if (len < 640)
173 goto out_unpin;
174 if (tvcpu->arch.vpa)
175 kvmppc_unpin_guest_page(kvm, vcpu->arch.vpa);
176 tvcpu->arch.vpa = va;
177 init_vpa(vcpu, va);
178 break;
179 case 2: /* register DTL */
180 if (len < 48)
181 goto out_unpin;
182 len -= len % 48;
183 if (tvcpu->arch.dtl)
184 kvmppc_unpin_guest_page(kvm, vcpu->arch.dtl);
185 tvcpu->arch.dtl = va;
186 tvcpu->arch.dtl_end = va + len;
187 break;
188 case 3: /* register SLB shadow buffer */
189 if (len < 16)
190 goto out_unpin;
191 if (tvcpu->arch.slb_shadow)
192 kvmppc_unpin_guest_page(kvm, vcpu->arch.slb_shadow);
193 tvcpu->arch.slb_shadow = va;
194 break;
195 }
196 } else {
197 switch (flags) {
198 case 5: /* unregister VPA */
199 if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
200 return H_RESOURCE;
201 if (!tvcpu->arch.vpa)
202 break;
203 kvmppc_unpin_guest_page(kvm, tvcpu->arch.vpa);
204 tvcpu->arch.vpa = NULL;
205 break;
206 case 6: /* unregister DTL */
207 if (!tvcpu->arch.dtl)
208 break;
209 kvmppc_unpin_guest_page(kvm, tvcpu->arch.dtl);
210 tvcpu->arch.dtl = NULL;
211 break;
212 case 7: /* unregister SLB shadow buffer */
213 if (!tvcpu->arch.slb_shadow)
214 break;
215 kvmppc_unpin_guest_page(kvm, tvcpu->arch.slb_shadow);
216 tvcpu->arch.slb_shadow = NULL;
217 break;
218 }
219 }
220 return H_SUCCESS;
221
222 out_unpin:
223 kvmppc_unpin_guest_page(kvm, va);
224 return err;
225 }
226
227 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
228 {
229 unsigned long req = kvmppc_get_gpr(vcpu, 3);
230 unsigned long target, ret = H_SUCCESS;
231 struct kvm_vcpu *tvcpu;
232
233 switch (req) {
234 case H_ENTER:
235 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
236 kvmppc_get_gpr(vcpu, 5),
237 kvmppc_get_gpr(vcpu, 6),
238 kvmppc_get_gpr(vcpu, 7));
239 break;
240 case H_CEDE:
241 break;
242 case H_PROD:
243 target = kvmppc_get_gpr(vcpu, 4);
244 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
245 if (!tvcpu) {
246 ret = H_PARAMETER;
247 break;
248 }
249 tvcpu->arch.prodded = 1;
250 smp_mb();
251 if (vcpu->arch.ceded) {
252 if (waitqueue_active(&vcpu->wq)) {
253 wake_up_interruptible(&vcpu->wq);
254 vcpu->stat.halt_wakeup++;
255 }
256 }
257 break;
258 case H_CONFER:
259 break;
260 case H_REGISTER_VPA:
261 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
262 kvmppc_get_gpr(vcpu, 5),
263 kvmppc_get_gpr(vcpu, 6));
264 break;
265 default:
266 return RESUME_HOST;
267 }
268 kvmppc_set_gpr(vcpu, 3, ret);
269 vcpu->arch.hcall_needed = 0;
270 return RESUME_GUEST;
271 }
272
273 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
274 struct task_struct *tsk)
275 {
276 int r = RESUME_HOST;
277
278 vcpu->stat.sum_exits++;
279
280 run->exit_reason = KVM_EXIT_UNKNOWN;
281 run->ready_for_interrupt_injection = 1;
282 switch (vcpu->arch.trap) {
283 /* We're good on these - the host merely wanted to get our attention */
284 case BOOK3S_INTERRUPT_HV_DECREMENTER:
285 vcpu->stat.dec_exits++;
286 r = RESUME_GUEST;
287 break;
288 case BOOK3S_INTERRUPT_EXTERNAL:
289 vcpu->stat.ext_intr_exits++;
290 r = RESUME_GUEST;
291 break;
292 case BOOK3S_INTERRUPT_PERFMON:
293 r = RESUME_GUEST;
294 break;
295 case BOOK3S_INTERRUPT_PROGRAM:
296 {
297 ulong flags;
298 /*
299 * Normally program interrupts are delivered directly
300 * to the guest by the hardware, but we can get here
301 * as a result of a hypervisor emulation interrupt
302 * (e40) getting turned into a 700 by BML RTAS.
303 */
304 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
305 kvmppc_core_queue_program(vcpu, flags);
306 r = RESUME_GUEST;
307 break;
308 }
309 case BOOK3S_INTERRUPT_SYSCALL:
310 {
311 /* hcall - punt to userspace */
312 int i;
313
314 if (vcpu->arch.shregs.msr & MSR_PR) {
315 /* sc 1 from userspace - reflect to guest syscall */
316 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
317 r = RESUME_GUEST;
318 break;
319 }
320 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
321 for (i = 0; i < 9; ++i)
322 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
323 run->exit_reason = KVM_EXIT_PAPR_HCALL;
324 vcpu->arch.hcall_needed = 1;
325 r = RESUME_HOST;
326 break;
327 }
328 /*
329 * We get these next two if the guest accesses a page which it thinks
330 * it has mapped but which is not actually present, either because
331 * it is for an emulated I/O device or because the corresonding
332 * host page has been paged out. Any other HDSI/HISI interrupts
333 * have been handled already.
334 */
335 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
336 r = kvmppc_book3s_hv_page_fault(run, vcpu,
337 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
338 break;
339 case BOOK3S_INTERRUPT_H_INST_STORAGE:
340 r = kvmppc_book3s_hv_page_fault(run, vcpu,
341 kvmppc_get_pc(vcpu), 0);
342 break;
343 /*
344 * This occurs if the guest executes an illegal instruction.
345 * We just generate a program interrupt to the guest, since
346 * we don't emulate any guest instructions at this stage.
347 */
348 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
349 kvmppc_core_queue_program(vcpu, 0x80000);
350 r = RESUME_GUEST;
351 break;
352 default:
353 kvmppc_dump_regs(vcpu);
354 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
355 vcpu->arch.trap, kvmppc_get_pc(vcpu),
356 vcpu->arch.shregs.msr);
357 r = RESUME_HOST;
358 BUG();
359 break;
360 }
361
362 return r;
363 }
364
365 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
366 struct kvm_sregs *sregs)
367 {
368 int i;
369
370 sregs->pvr = vcpu->arch.pvr;
371
372 memset(sregs, 0, sizeof(struct kvm_sregs));
373 for (i = 0; i < vcpu->arch.slb_max; i++) {
374 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
375 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
376 }
377
378 return 0;
379 }
380
381 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
382 struct kvm_sregs *sregs)
383 {
384 int i, j;
385
386 kvmppc_set_pvr(vcpu, sregs->pvr);
387
388 j = 0;
389 for (i = 0; i < vcpu->arch.slb_nr; i++) {
390 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
391 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
392 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
393 ++j;
394 }
395 }
396 vcpu->arch.slb_max = j;
397
398 return 0;
399 }
400
401 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
402 {
403 int r = -EINVAL;
404
405 switch (reg->id) {
406 case KVM_REG_PPC_HIOR:
407 r = put_user(0, (u64 __user *)reg->addr);
408 break;
409 default:
410 break;
411 }
412
413 return r;
414 }
415
416 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
417 {
418 int r = -EINVAL;
419
420 switch (reg->id) {
421 case KVM_REG_PPC_HIOR:
422 {
423 u64 hior;
424 /* Only allow this to be set to zero */
425 r = get_user(hior, (u64 __user *)reg->addr);
426 if (!r && (hior != 0))
427 r = -EINVAL;
428 break;
429 }
430 default:
431 break;
432 }
433
434 return r;
435 }
436
437 int kvmppc_core_check_processor_compat(void)
438 {
439 if (cpu_has_feature(CPU_FTR_HVMODE))
440 return 0;
441 return -EIO;
442 }
443
444 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
445 {
446 struct kvm_vcpu *vcpu;
447 int err = -EINVAL;
448 int core;
449 struct kvmppc_vcore *vcore;
450
451 core = id / threads_per_core;
452 if (core >= KVM_MAX_VCORES)
453 goto out;
454
455 err = -ENOMEM;
456 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
457 if (!vcpu)
458 goto out;
459
460 err = kvm_vcpu_init(vcpu, kvm, id);
461 if (err)
462 goto free_vcpu;
463
464 vcpu->arch.shared = &vcpu->arch.shregs;
465 vcpu->arch.last_cpu = -1;
466 vcpu->arch.mmcr[0] = MMCR0_FC;
467 vcpu->arch.ctrl = CTRL_RUNLATCH;
468 /* default to host PVR, since we can't spoof it */
469 vcpu->arch.pvr = mfspr(SPRN_PVR);
470 kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
471
472 kvmppc_mmu_book3s_hv_init(vcpu);
473
474 /*
475 * We consider the vcpu stopped until we see the first run ioctl for it.
476 */
477 vcpu->arch.state = KVMPPC_VCPU_STOPPED;
478
479 init_waitqueue_head(&vcpu->arch.cpu_run);
480
481 mutex_lock(&kvm->lock);
482 vcore = kvm->arch.vcores[core];
483 if (!vcore) {
484 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
485 if (vcore) {
486 INIT_LIST_HEAD(&vcore->runnable_threads);
487 spin_lock_init(&vcore->lock);
488 init_waitqueue_head(&vcore->wq);
489 }
490 kvm->arch.vcores[core] = vcore;
491 }
492 mutex_unlock(&kvm->lock);
493
494 if (!vcore)
495 goto free_vcpu;
496
497 spin_lock(&vcore->lock);
498 ++vcore->num_threads;
499 spin_unlock(&vcore->lock);
500 vcpu->arch.vcore = vcore;
501
502 vcpu->arch.cpu_type = KVM_CPU_3S_64;
503 kvmppc_sanity_check(vcpu);
504
505 return vcpu;
506
507 free_vcpu:
508 kmem_cache_free(kvm_vcpu_cache, vcpu);
509 out:
510 return ERR_PTR(err);
511 }
512
513 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
514 {
515 if (vcpu->arch.dtl)
516 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl);
517 if (vcpu->arch.slb_shadow)
518 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow);
519 if (vcpu->arch.vpa)
520 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa);
521 kvm_vcpu_uninit(vcpu);
522 kmem_cache_free(kvm_vcpu_cache, vcpu);
523 }
524
525 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
526 {
527 unsigned long dec_nsec, now;
528
529 now = get_tb();
530 if (now > vcpu->arch.dec_expires) {
531 /* decrementer has already gone negative */
532 kvmppc_core_queue_dec(vcpu);
533 kvmppc_core_prepare_to_enter(vcpu);
534 return;
535 }
536 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
537 / tb_ticks_per_sec;
538 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
539 HRTIMER_MODE_REL);
540 vcpu->arch.timer_running = 1;
541 }
542
543 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
544 {
545 vcpu->arch.ceded = 0;
546 if (vcpu->arch.timer_running) {
547 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
548 vcpu->arch.timer_running = 0;
549 }
550 }
551
552 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
553 extern void xics_wake_cpu(int cpu);
554
555 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
556 struct kvm_vcpu *vcpu)
557 {
558 struct kvm_vcpu *v;
559
560 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
561 return;
562 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
563 --vc->n_runnable;
564 ++vc->n_busy;
565 /* decrement the physical thread id of each following vcpu */
566 v = vcpu;
567 list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
568 --v->arch.ptid;
569 list_del(&vcpu->arch.run_list);
570 }
571
572 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
573 {
574 int cpu;
575 struct paca_struct *tpaca;
576 struct kvmppc_vcore *vc = vcpu->arch.vcore;
577
578 if (vcpu->arch.timer_running) {
579 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
580 vcpu->arch.timer_running = 0;
581 }
582 cpu = vc->pcpu + vcpu->arch.ptid;
583 tpaca = &paca[cpu];
584 tpaca->kvm_hstate.kvm_vcpu = vcpu;
585 tpaca->kvm_hstate.kvm_vcore = vc;
586 tpaca->kvm_hstate.napping = 0;
587 vcpu->cpu = vc->pcpu;
588 smp_wmb();
589 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
590 if (vcpu->arch.ptid) {
591 tpaca->cpu_start = 0x80;
592 wmb();
593 xics_wake_cpu(cpu);
594 ++vc->n_woken;
595 }
596 #endif
597 }
598
599 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
600 {
601 int i;
602
603 HMT_low();
604 i = 0;
605 while (vc->nap_count < vc->n_woken) {
606 if (++i >= 1000000) {
607 pr_err("kvmppc_wait_for_nap timeout %d %d\n",
608 vc->nap_count, vc->n_woken);
609 break;
610 }
611 cpu_relax();
612 }
613 HMT_medium();
614 }
615
616 /*
617 * Check that we are on thread 0 and that any other threads in
618 * this core are off-line.
619 */
620 static int on_primary_thread(void)
621 {
622 int cpu = smp_processor_id();
623 int thr = cpu_thread_in_core(cpu);
624
625 if (thr)
626 return 0;
627 while (++thr < threads_per_core)
628 if (cpu_online(cpu + thr))
629 return 0;
630 return 1;
631 }
632
633 /*
634 * Run a set of guest threads on a physical core.
635 * Called with vc->lock held.
636 */
637 static int kvmppc_run_core(struct kvmppc_vcore *vc)
638 {
639 struct kvm_vcpu *vcpu, *vcpu0, *vnext;
640 long ret;
641 u64 now;
642 int ptid;
643
644 /* don't start if any threads have a signal pending */
645 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
646 if (signal_pending(vcpu->arch.run_task))
647 return 0;
648
649 /*
650 * Make sure we are running on thread 0, and that
651 * secondary threads are offline.
652 * XXX we should also block attempts to bring any
653 * secondary threads online.
654 */
655 if (threads_per_core > 1 && !on_primary_thread()) {
656 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
657 vcpu->arch.ret = -EBUSY;
658 goto out;
659 }
660
661 /*
662 * Assign physical thread IDs, first to non-ceded vcpus
663 * and then to ceded ones.
664 */
665 ptid = 0;
666 vcpu0 = NULL;
667 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
668 if (!vcpu->arch.ceded) {
669 if (!ptid)
670 vcpu0 = vcpu;
671 vcpu->arch.ptid = ptid++;
672 }
673 }
674 if (!vcpu0)
675 return 0; /* nothing to run */
676 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
677 if (vcpu->arch.ceded)
678 vcpu->arch.ptid = ptid++;
679
680 vc->n_woken = 0;
681 vc->nap_count = 0;
682 vc->entry_exit_count = 0;
683 vc->vcore_state = VCORE_RUNNING;
684 vc->in_guest = 0;
685 vc->pcpu = smp_processor_id();
686 vc->napping_threads = 0;
687 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
688 kvmppc_start_thread(vcpu);
689
690 preempt_disable();
691 spin_unlock(&vc->lock);
692
693 kvm_guest_enter();
694 __kvmppc_vcore_entry(NULL, vcpu0);
695
696 spin_lock(&vc->lock);
697 /* disable sending of IPIs on virtual external irqs */
698 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
699 vcpu->cpu = -1;
700 /* wait for secondary threads to finish writing their state to memory */
701 if (vc->nap_count < vc->n_woken)
702 kvmppc_wait_for_nap(vc);
703 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
704 vc->vcore_state = VCORE_EXITING;
705 spin_unlock(&vc->lock);
706
707 /* make sure updates to secondary vcpu structs are visible now */
708 smp_mb();
709 kvm_guest_exit();
710
711 preempt_enable();
712 kvm_resched(vcpu);
713
714 now = get_tb();
715 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
716 /* cancel pending dec exception if dec is positive */
717 if (now < vcpu->arch.dec_expires &&
718 kvmppc_core_pending_dec(vcpu))
719 kvmppc_core_dequeue_dec(vcpu);
720
721 ret = RESUME_GUEST;
722 if (vcpu->arch.trap)
723 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
724 vcpu->arch.run_task);
725
726 vcpu->arch.ret = ret;
727 vcpu->arch.trap = 0;
728
729 if (vcpu->arch.ceded) {
730 if (ret != RESUME_GUEST)
731 kvmppc_end_cede(vcpu);
732 else
733 kvmppc_set_timer(vcpu);
734 }
735 }
736
737 spin_lock(&vc->lock);
738 out:
739 vc->vcore_state = VCORE_INACTIVE;
740 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
741 arch.run_list) {
742 if (vcpu->arch.ret != RESUME_GUEST) {
743 kvmppc_remove_runnable(vc, vcpu);
744 wake_up(&vcpu->arch.cpu_run);
745 }
746 }
747
748 return 1;
749 }
750
751 /*
752 * Wait for some other vcpu thread to execute us, and
753 * wake us up when we need to handle something in the host.
754 */
755 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
756 {
757 DEFINE_WAIT(wait);
758
759 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
760 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
761 schedule();
762 finish_wait(&vcpu->arch.cpu_run, &wait);
763 }
764
765 /*
766 * All the vcpus in this vcore are idle, so wait for a decrementer
767 * or external interrupt to one of the vcpus. vc->lock is held.
768 */
769 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
770 {
771 DEFINE_WAIT(wait);
772 struct kvm_vcpu *v;
773 int all_idle = 1;
774
775 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
776 vc->vcore_state = VCORE_SLEEPING;
777 spin_unlock(&vc->lock);
778 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
779 if (!v->arch.ceded || v->arch.pending_exceptions) {
780 all_idle = 0;
781 break;
782 }
783 }
784 if (all_idle)
785 schedule();
786 finish_wait(&vc->wq, &wait);
787 spin_lock(&vc->lock);
788 vc->vcore_state = VCORE_INACTIVE;
789 }
790
791 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
792 {
793 int n_ceded;
794 int prev_state;
795 struct kvmppc_vcore *vc;
796 struct kvm_vcpu *v, *vn;
797
798 kvm_run->exit_reason = 0;
799 vcpu->arch.ret = RESUME_GUEST;
800 vcpu->arch.trap = 0;
801
802 /*
803 * Synchronize with other threads in this virtual core
804 */
805 vc = vcpu->arch.vcore;
806 spin_lock(&vc->lock);
807 vcpu->arch.ceded = 0;
808 vcpu->arch.run_task = current;
809 vcpu->arch.kvm_run = kvm_run;
810 prev_state = vcpu->arch.state;
811 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
812 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
813 ++vc->n_runnable;
814
815 /*
816 * This happens the first time this is called for a vcpu.
817 * If the vcore is already running, we may be able to start
818 * this thread straight away and have it join in.
819 */
820 if (prev_state == KVMPPC_VCPU_STOPPED) {
821 if (vc->vcore_state == VCORE_RUNNING &&
822 VCORE_EXIT_COUNT(vc) == 0) {
823 vcpu->arch.ptid = vc->n_runnable - 1;
824 kvmppc_start_thread(vcpu);
825 }
826
827 } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
828 --vc->n_busy;
829
830 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
831 !signal_pending(current)) {
832 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
833 spin_unlock(&vc->lock);
834 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
835 spin_lock(&vc->lock);
836 continue;
837 }
838 n_ceded = 0;
839 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
840 n_ceded += v->arch.ceded;
841 if (n_ceded == vc->n_runnable)
842 kvmppc_vcore_blocked(vc);
843 else
844 kvmppc_run_core(vc);
845
846 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
847 arch.run_list) {
848 kvmppc_core_prepare_to_enter(v);
849 if (signal_pending(v->arch.run_task)) {
850 kvmppc_remove_runnable(vc, v);
851 v->stat.signal_exits++;
852 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
853 v->arch.ret = -EINTR;
854 wake_up(&v->arch.cpu_run);
855 }
856 }
857 }
858
859 if (signal_pending(current)) {
860 if (vc->vcore_state == VCORE_RUNNING ||
861 vc->vcore_state == VCORE_EXITING) {
862 spin_unlock(&vc->lock);
863 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
864 spin_lock(&vc->lock);
865 }
866 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
867 kvmppc_remove_runnable(vc, vcpu);
868 vcpu->stat.signal_exits++;
869 kvm_run->exit_reason = KVM_EXIT_INTR;
870 vcpu->arch.ret = -EINTR;
871 }
872 }
873
874 spin_unlock(&vc->lock);
875 return vcpu->arch.ret;
876 }
877
878 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
879 {
880 int r;
881
882 if (!vcpu->arch.sane) {
883 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
884 return -EINVAL;
885 }
886
887 kvmppc_core_prepare_to_enter(vcpu);
888
889 /* No need to go into the guest when all we'll do is come back out */
890 if (signal_pending(current)) {
891 run->exit_reason = KVM_EXIT_INTR;
892 return -EINTR;
893 }
894
895 /* On the first time here, set up VRMA or RMA */
896 if (!vcpu->kvm->arch.rma_setup_done) {
897 r = kvmppc_hv_setup_rma(vcpu);
898 if (r)
899 return r;
900 }
901
902 flush_fp_to_thread(current);
903 flush_altivec_to_thread(current);
904 flush_vsx_to_thread(current);
905 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
906 vcpu->arch.pgdir = current->mm->pgd;
907
908 do {
909 r = kvmppc_run_vcpu(run, vcpu);
910
911 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
912 !(vcpu->arch.shregs.msr & MSR_PR)) {
913 r = kvmppc_pseries_do_hcall(vcpu);
914 kvmppc_core_prepare_to_enter(vcpu);
915 }
916 } while (r == RESUME_GUEST);
917 return r;
918 }
919
920 static long kvmppc_stt_npages(unsigned long window_size)
921 {
922 return ALIGN((window_size >> SPAPR_TCE_SHIFT)
923 * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
924 }
925
926 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
927 {
928 struct kvm *kvm = stt->kvm;
929 int i;
930
931 mutex_lock(&kvm->lock);
932 list_del(&stt->list);
933 for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
934 __free_page(stt->pages[i]);
935 kfree(stt);
936 mutex_unlock(&kvm->lock);
937
938 kvm_put_kvm(kvm);
939 }
940
941 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
942 {
943 struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
944 struct page *page;
945
946 if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
947 return VM_FAULT_SIGBUS;
948
949 page = stt->pages[vmf->pgoff];
950 get_page(page);
951 vmf->page = page;
952 return 0;
953 }
954
955 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
956 .fault = kvm_spapr_tce_fault,
957 };
958
959 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
960 {
961 vma->vm_ops = &kvm_spapr_tce_vm_ops;
962 return 0;
963 }
964
965 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
966 {
967 struct kvmppc_spapr_tce_table *stt = filp->private_data;
968
969 release_spapr_tce_table(stt);
970 return 0;
971 }
972
973 static struct file_operations kvm_spapr_tce_fops = {
974 .mmap = kvm_spapr_tce_mmap,
975 .release = kvm_spapr_tce_release,
976 };
977
978 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
979 struct kvm_create_spapr_tce *args)
980 {
981 struct kvmppc_spapr_tce_table *stt = NULL;
982 long npages;
983 int ret = -ENOMEM;
984 int i;
985
986 /* Check this LIOBN hasn't been previously allocated */
987 list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
988 if (stt->liobn == args->liobn)
989 return -EBUSY;
990 }
991
992 npages = kvmppc_stt_npages(args->window_size);
993
994 stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
995 GFP_KERNEL);
996 if (!stt)
997 goto fail;
998
999 stt->liobn = args->liobn;
1000 stt->window_size = args->window_size;
1001 stt->kvm = kvm;
1002
1003 for (i = 0; i < npages; i++) {
1004 stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
1005 if (!stt->pages[i])
1006 goto fail;
1007 }
1008
1009 kvm_get_kvm(kvm);
1010
1011 mutex_lock(&kvm->lock);
1012 list_add(&stt->list, &kvm->arch.spapr_tce_tables);
1013
1014 mutex_unlock(&kvm->lock);
1015
1016 return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
1017 stt, O_RDWR);
1018
1019 fail:
1020 if (stt) {
1021 for (i = 0; i < npages; i++)
1022 if (stt->pages[i])
1023 __free_page(stt->pages[i]);
1024
1025 kfree(stt);
1026 }
1027 return ret;
1028 }
1029
1030 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1031 Assumes POWER7 or PPC970. */
1032 static inline int lpcr_rmls(unsigned long rma_size)
1033 {
1034 switch (rma_size) {
1035 case 32ul << 20: /* 32 MB */
1036 if (cpu_has_feature(CPU_FTR_ARCH_206))
1037 return 8; /* only supported on POWER7 */
1038 return -1;
1039 case 64ul << 20: /* 64 MB */
1040 return 3;
1041 case 128ul << 20: /* 128 MB */
1042 return 7;
1043 case 256ul << 20: /* 256 MB */
1044 return 4;
1045 case 1ul << 30: /* 1 GB */
1046 return 2;
1047 case 16ul << 30: /* 16 GB */
1048 return 1;
1049 case 256ul << 30: /* 256 GB */
1050 return 0;
1051 default:
1052 return -1;
1053 }
1054 }
1055
1056 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1057 {
1058 struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1059 struct page *page;
1060
1061 if (vmf->pgoff >= ri->npages)
1062 return VM_FAULT_SIGBUS;
1063
1064 page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1065 get_page(page);
1066 vmf->page = page;
1067 return 0;
1068 }
1069
1070 static const struct vm_operations_struct kvm_rma_vm_ops = {
1071 .fault = kvm_rma_fault,
1072 };
1073
1074 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1075 {
1076 vma->vm_flags |= VM_RESERVED;
1077 vma->vm_ops = &kvm_rma_vm_ops;
1078 return 0;
1079 }
1080
1081 static int kvm_rma_release(struct inode *inode, struct file *filp)
1082 {
1083 struct kvmppc_linear_info *ri = filp->private_data;
1084
1085 kvm_release_rma(ri);
1086 return 0;
1087 }
1088
1089 static struct file_operations kvm_rma_fops = {
1090 .mmap = kvm_rma_mmap,
1091 .release = kvm_rma_release,
1092 };
1093
1094 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1095 {
1096 struct kvmppc_linear_info *ri;
1097 long fd;
1098
1099 ri = kvm_alloc_rma();
1100 if (!ri)
1101 return -ENOMEM;
1102
1103 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1104 if (fd < 0)
1105 kvm_release_rma(ri);
1106
1107 ret->rma_size = ri->npages << PAGE_SHIFT;
1108 return fd;
1109 }
1110
1111 /*
1112 * Get (and clear) the dirty memory log for a memory slot.
1113 */
1114 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1115 {
1116 struct kvm_memory_slot *memslot;
1117 int r;
1118 unsigned long n;
1119
1120 mutex_lock(&kvm->slots_lock);
1121
1122 r = -EINVAL;
1123 if (log->slot >= KVM_MEMORY_SLOTS)
1124 goto out;
1125
1126 memslot = id_to_memslot(kvm->memslots, log->slot);
1127 r = -ENOENT;
1128 if (!memslot->dirty_bitmap)
1129 goto out;
1130
1131 n = kvm_dirty_bitmap_bytes(memslot);
1132 memset(memslot->dirty_bitmap, 0, n);
1133
1134 r = kvmppc_hv_get_dirty_log(kvm, memslot);
1135 if (r)
1136 goto out;
1137
1138 r = -EFAULT;
1139 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1140 goto out;
1141
1142 r = 0;
1143 out:
1144 mutex_unlock(&kvm->slots_lock);
1145 return r;
1146 }
1147
1148 static unsigned long slb_pgsize_encoding(unsigned long psize)
1149 {
1150 unsigned long senc = 0;
1151
1152 if (psize > 0x1000) {
1153 senc = SLB_VSID_L;
1154 if (psize == 0x10000)
1155 senc |= SLB_VSID_LP_01;
1156 }
1157 return senc;
1158 }
1159
1160 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1161 struct kvm_userspace_memory_region *mem)
1162 {
1163 unsigned long npages;
1164 unsigned long *phys;
1165
1166 /* Allocate a slot_phys array */
1167 phys = kvm->arch.slot_phys[mem->slot];
1168 if (!kvm->arch.using_mmu_notifiers && !phys) {
1169 npages = mem->memory_size >> PAGE_SHIFT;
1170 phys = vzalloc(npages * sizeof(unsigned long));
1171 if (!phys)
1172 return -ENOMEM;
1173 kvm->arch.slot_phys[mem->slot] = phys;
1174 kvm->arch.slot_npages[mem->slot] = npages;
1175 }
1176
1177 return 0;
1178 }
1179
1180 static void unpin_slot(struct kvm *kvm, int slot_id)
1181 {
1182 unsigned long *physp;
1183 unsigned long j, npages, pfn;
1184 struct page *page;
1185
1186 physp = kvm->arch.slot_phys[slot_id];
1187 npages = kvm->arch.slot_npages[slot_id];
1188 if (physp) {
1189 spin_lock(&kvm->arch.slot_phys_lock);
1190 for (j = 0; j < npages; j++) {
1191 if (!(physp[j] & KVMPPC_GOT_PAGE))
1192 continue;
1193 pfn = physp[j] >> PAGE_SHIFT;
1194 page = pfn_to_page(pfn);
1195 if (PageHuge(page))
1196 page = compound_head(page);
1197 SetPageDirty(page);
1198 put_page(page);
1199 }
1200 kvm->arch.slot_phys[slot_id] = NULL;
1201 spin_unlock(&kvm->arch.slot_phys_lock);
1202 vfree(physp);
1203 }
1204 }
1205
1206 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1207 struct kvm_userspace_memory_region *mem)
1208 {
1209 }
1210
1211 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
1212 {
1213 int err = 0;
1214 struct kvm *kvm = vcpu->kvm;
1215 struct kvmppc_linear_info *ri = NULL;
1216 unsigned long hva;
1217 struct kvm_memory_slot *memslot;
1218 struct vm_area_struct *vma;
1219 unsigned long lpcr, senc;
1220 unsigned long psize, porder;
1221 unsigned long rma_size;
1222 unsigned long rmls;
1223 unsigned long *physp;
1224 unsigned long i, npages;
1225
1226 mutex_lock(&kvm->lock);
1227 if (kvm->arch.rma_setup_done)
1228 goto out; /* another vcpu beat us to it */
1229
1230 /* Look up the memslot for guest physical address 0 */
1231 memslot = gfn_to_memslot(kvm, 0);
1232
1233 /* We must have some memory at 0 by now */
1234 err = -EINVAL;
1235 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1236 goto out;
1237
1238 /* Look up the VMA for the start of this memory slot */
1239 hva = memslot->userspace_addr;
1240 down_read(&current->mm->mmap_sem);
1241 vma = find_vma(current->mm, hva);
1242 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1243 goto up_out;
1244
1245 psize = vma_kernel_pagesize(vma);
1246 porder = __ilog2(psize);
1247
1248 /* Is this one of our preallocated RMAs? */
1249 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1250 hva == vma->vm_start)
1251 ri = vma->vm_file->private_data;
1252
1253 up_read(&current->mm->mmap_sem);
1254
1255 if (!ri) {
1256 /* On POWER7, use VRMA; on PPC970, give up */
1257 err = -EPERM;
1258 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1259 pr_err("KVM: CPU requires an RMO\n");
1260 goto out;
1261 }
1262
1263 /* We can handle 4k, 64k or 16M pages in the VRMA */
1264 err = -EINVAL;
1265 if (!(psize == 0x1000 || psize == 0x10000 ||
1266 psize == 0x1000000))
1267 goto out;
1268
1269 /* Update VRMASD field in the LPCR */
1270 senc = slb_pgsize_encoding(psize);
1271 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1272 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1273 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1274 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1275 kvm->arch.lpcr = lpcr;
1276
1277 /* Create HPTEs in the hash page table for the VRMA */
1278 kvmppc_map_vrma(vcpu, memslot, porder);
1279
1280 } else {
1281 /* Set up to use an RMO region */
1282 rma_size = ri->npages;
1283 if (rma_size > memslot->npages)
1284 rma_size = memslot->npages;
1285 rma_size <<= PAGE_SHIFT;
1286 rmls = lpcr_rmls(rma_size);
1287 err = -EINVAL;
1288 if (rmls < 0) {
1289 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1290 goto out;
1291 }
1292 atomic_inc(&ri->use_count);
1293 kvm->arch.rma = ri;
1294
1295 /* Update LPCR and RMOR */
1296 lpcr = kvm->arch.lpcr;
1297 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1298 /* PPC970; insert RMLS value (split field) in HID4 */
1299 lpcr &= ~((1ul << HID4_RMLS0_SH) |
1300 (3ul << HID4_RMLS2_SH));
1301 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1302 ((rmls & 3) << HID4_RMLS2_SH);
1303 /* RMOR is also in HID4 */
1304 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1305 << HID4_RMOR_SH;
1306 } else {
1307 /* POWER7 */
1308 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1309 lpcr |= rmls << LPCR_RMLS_SH;
1310 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1311 }
1312 kvm->arch.lpcr = lpcr;
1313 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1314 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1315
1316 /* Initialize phys addrs of pages in RMO */
1317 npages = ri->npages;
1318 porder = __ilog2(npages);
1319 physp = kvm->arch.slot_phys[memslot->id];
1320 spin_lock(&kvm->arch.slot_phys_lock);
1321 for (i = 0; i < npages; ++i)
1322 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1323 spin_unlock(&kvm->arch.slot_phys_lock);
1324 }
1325
1326 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1327 smp_wmb();
1328 kvm->arch.rma_setup_done = 1;
1329 err = 0;
1330 out:
1331 mutex_unlock(&kvm->lock);
1332 return err;
1333
1334 up_out:
1335 up_read(&current->mm->mmap_sem);
1336 goto out;
1337 }
1338
1339 int kvmppc_core_init_vm(struct kvm *kvm)
1340 {
1341 long r;
1342 unsigned long lpcr;
1343
1344 /* Allocate hashed page table */
1345 r = kvmppc_alloc_hpt(kvm);
1346 if (r)
1347 return r;
1348
1349 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1350
1351 kvm->arch.rma = NULL;
1352
1353 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1354
1355 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1356 /* PPC970; HID4 is effectively the LPCR */
1357 unsigned long lpid = kvm->arch.lpid;
1358 kvm->arch.host_lpid = 0;
1359 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1360 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1361 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1362 ((lpid & 0xf) << HID4_LPID5_SH);
1363 } else {
1364 /* POWER7; init LPCR for virtual RMA mode */
1365 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1366 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1367 lpcr &= LPCR_PECE | LPCR_LPES;
1368 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1369 LPCR_VPM0 | LPCR_VPM1;
1370 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1371 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1372 }
1373 kvm->arch.lpcr = lpcr;
1374
1375 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1376 spin_lock_init(&kvm->arch.slot_phys_lock);
1377 return 0;
1378 }
1379
1380 void kvmppc_core_destroy_vm(struct kvm *kvm)
1381 {
1382 unsigned long i;
1383
1384 if (!kvm->arch.using_mmu_notifiers)
1385 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
1386 unpin_slot(kvm, i);
1387
1388 if (kvm->arch.rma) {
1389 kvm_release_rma(kvm->arch.rma);
1390 kvm->arch.rma = NULL;
1391 }
1392
1393 kvmppc_free_hpt(kvm);
1394 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1395 }
1396
1397 /* These are stubs for now */
1398 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1399 {
1400 }
1401
1402 /* We don't need to emulate any privileged instructions or dcbz */
1403 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1404 unsigned int inst, int *advance)
1405 {
1406 return EMULATE_FAIL;
1407 }
1408
1409 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1410 {
1411 return EMULATE_FAIL;
1412 }
1413
1414 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1415 {
1416 return EMULATE_FAIL;
1417 }
1418
1419 static int kvmppc_book3s_hv_init(void)
1420 {
1421 int r;
1422
1423 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1424
1425 if (r)
1426 return r;
1427
1428 r = kvmppc_mmu_hv_init();
1429
1430 return r;
1431 }
1432
1433 static void kvmppc_book3s_hv_exit(void)
1434 {
1435 kvm_exit();
1436 }
1437
1438 module_init(kvmppc_book3s_hv_init);
1439 module_exit(kvmppc_book3s_hv_exit);
This page took 0.061325 seconds and 5 git commands to generate.