Merge tag 'for-linus-v4.8' of git://github.com/martinbrandenburg/linux
[deliverable/linux.git] / arch / powerpc / kvm / book3s_pr.c
1 /*
2 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
3 *
4 * Authors:
5 * Alexander Graf <agraf@suse.de>
6 * Kevin Wolf <mail@kevin-wolf.de>
7 * Paul Mackerras <paulus@samba.org>
8 *
9 * Description:
10 * Functions relating to running KVM on Book 3S processors where
11 * we don't have access to hypervisor mode, and we run the guest
12 * in problem state (user mode).
13 *
14 * This file is derived from arch/powerpc/kvm/44x.c,
15 * by Hollis Blanchard <hollisb@us.ibm.com>.
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License, version 2, as
19 * published by the Free Software Foundation.
20 */
21
22 #include <linux/kvm_host.h>
23 #include <linux/export.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26
27 #include <asm/reg.h>
28 #include <asm/cputable.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlbflush.h>
31 #include <asm/uaccess.h>
32 #include <asm/io.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu_context.h>
36 #include <asm/switch_to.h>
37 #include <asm/firmware.h>
38 #include <asm/setup.h>
39 #include <linux/gfp.h>
40 #include <linux/sched.h>
41 #include <linux/vmalloc.h>
42 #include <linux/highmem.h>
43 #include <linux/module.h>
44 #include <linux/miscdevice.h>
45
46 #include "book3s.h"
47
48 #define CREATE_TRACE_POINTS
49 #include "trace_pr.h"
50
51 /* #define EXIT_DEBUG */
52 /* #define DEBUG_EXT */
53
54 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
55 ulong msr);
56 static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57
58 /* Some compatibility defines */
59 #ifdef CONFIG_PPC_BOOK3S_32
60 #define MSR_USER32 MSR_USER
61 #define MSR_USER64 MSR_USER
62 #define HW_PAGE_SIZE PAGE_SIZE
63 #endif
64
65 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
66 {
67 ulong msr = kvmppc_get_msr(vcpu);
68 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
69 }
70
71 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
72 {
73 ulong msr = kvmppc_get_msr(vcpu);
74 ulong pc = kvmppc_get_pc(vcpu);
75
76 /* We are in DR only split real mode */
77 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
78 return;
79
80 /* We have not fixed up the guest already */
81 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
82 return;
83
84 /* The code is in fixupable address space */
85 if (pc & SPLIT_HACK_MASK)
86 return;
87
88 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
89 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
90 }
91
92 void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
93
94 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
95 {
96 #ifdef CONFIG_PPC_BOOK3S_64
97 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
98 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
99 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
100 svcpu->in_use = 0;
101 svcpu_put(svcpu);
102 #endif
103
104 /* Disable AIL if supported */
105 if (cpu_has_feature(CPU_FTR_HVMODE) &&
106 cpu_has_feature(CPU_FTR_ARCH_207S))
107 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
108
109 vcpu->cpu = smp_processor_id();
110 #ifdef CONFIG_PPC_BOOK3S_32
111 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
112 #endif
113
114 if (kvmppc_is_split_real(vcpu))
115 kvmppc_fixup_split_real(vcpu);
116 }
117
118 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
119 {
120 #ifdef CONFIG_PPC_BOOK3S_64
121 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
122 if (svcpu->in_use) {
123 kvmppc_copy_from_svcpu(vcpu, svcpu);
124 }
125 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
126 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
127 svcpu_put(svcpu);
128 #endif
129
130 if (kvmppc_is_split_real(vcpu))
131 kvmppc_unfixup_split_real(vcpu);
132
133 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
134 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
135
136 /* Enable AIL if supported */
137 if (cpu_has_feature(CPU_FTR_HVMODE) &&
138 cpu_has_feature(CPU_FTR_ARCH_207S))
139 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
140
141 vcpu->cpu = -1;
142 }
143
144 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
145 void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
146 struct kvm_vcpu *vcpu)
147 {
148 svcpu->gpr[0] = vcpu->arch.gpr[0];
149 svcpu->gpr[1] = vcpu->arch.gpr[1];
150 svcpu->gpr[2] = vcpu->arch.gpr[2];
151 svcpu->gpr[3] = vcpu->arch.gpr[3];
152 svcpu->gpr[4] = vcpu->arch.gpr[4];
153 svcpu->gpr[5] = vcpu->arch.gpr[5];
154 svcpu->gpr[6] = vcpu->arch.gpr[6];
155 svcpu->gpr[7] = vcpu->arch.gpr[7];
156 svcpu->gpr[8] = vcpu->arch.gpr[8];
157 svcpu->gpr[9] = vcpu->arch.gpr[9];
158 svcpu->gpr[10] = vcpu->arch.gpr[10];
159 svcpu->gpr[11] = vcpu->arch.gpr[11];
160 svcpu->gpr[12] = vcpu->arch.gpr[12];
161 svcpu->gpr[13] = vcpu->arch.gpr[13];
162 svcpu->cr = vcpu->arch.cr;
163 svcpu->xer = vcpu->arch.xer;
164 svcpu->ctr = vcpu->arch.ctr;
165 svcpu->lr = vcpu->arch.lr;
166 svcpu->pc = vcpu->arch.pc;
167 #ifdef CONFIG_PPC_BOOK3S_64
168 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
169 #endif
170 /*
171 * Now also save the current time base value. We use this
172 * to find the guest purr and spurr value.
173 */
174 vcpu->arch.entry_tb = get_tb();
175 vcpu->arch.entry_vtb = get_vtb();
176 if (cpu_has_feature(CPU_FTR_ARCH_207S))
177 vcpu->arch.entry_ic = mfspr(SPRN_IC);
178 svcpu->in_use = true;
179 }
180
181 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
182 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
183 struct kvmppc_book3s_shadow_vcpu *svcpu)
184 {
185 /*
186 * vcpu_put would just call us again because in_use hasn't
187 * been updated yet.
188 */
189 preempt_disable();
190
191 /*
192 * Maybe we were already preempted and synced the svcpu from
193 * our preempt notifiers. Don't bother touching this svcpu then.
194 */
195 if (!svcpu->in_use)
196 goto out;
197
198 vcpu->arch.gpr[0] = svcpu->gpr[0];
199 vcpu->arch.gpr[1] = svcpu->gpr[1];
200 vcpu->arch.gpr[2] = svcpu->gpr[2];
201 vcpu->arch.gpr[3] = svcpu->gpr[3];
202 vcpu->arch.gpr[4] = svcpu->gpr[4];
203 vcpu->arch.gpr[5] = svcpu->gpr[5];
204 vcpu->arch.gpr[6] = svcpu->gpr[6];
205 vcpu->arch.gpr[7] = svcpu->gpr[7];
206 vcpu->arch.gpr[8] = svcpu->gpr[8];
207 vcpu->arch.gpr[9] = svcpu->gpr[9];
208 vcpu->arch.gpr[10] = svcpu->gpr[10];
209 vcpu->arch.gpr[11] = svcpu->gpr[11];
210 vcpu->arch.gpr[12] = svcpu->gpr[12];
211 vcpu->arch.gpr[13] = svcpu->gpr[13];
212 vcpu->arch.cr = svcpu->cr;
213 vcpu->arch.xer = svcpu->xer;
214 vcpu->arch.ctr = svcpu->ctr;
215 vcpu->arch.lr = svcpu->lr;
216 vcpu->arch.pc = svcpu->pc;
217 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
218 vcpu->arch.fault_dar = svcpu->fault_dar;
219 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
220 vcpu->arch.last_inst = svcpu->last_inst;
221 #ifdef CONFIG_PPC_BOOK3S_64
222 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
223 #endif
224 /*
225 * Update purr and spurr using time base on exit.
226 */
227 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
228 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
229 vcpu->arch.vtb += get_vtb() - vcpu->arch.entry_vtb;
230 if (cpu_has_feature(CPU_FTR_ARCH_207S))
231 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
232 svcpu->in_use = false;
233
234 out:
235 preempt_enable();
236 }
237
238 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
239 {
240 int r = 1; /* Indicate we want to get back into the guest */
241
242 /* We misuse TLB_FLUSH to indicate that we want to clear
243 all shadow cache entries */
244 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
245 kvmppc_mmu_pte_flush(vcpu, 0, 0);
246
247 return r;
248 }
249
250 /************* MMU Notifiers *************/
251 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
252 unsigned long end)
253 {
254 long i;
255 struct kvm_vcpu *vcpu;
256 struct kvm_memslots *slots;
257 struct kvm_memory_slot *memslot;
258
259 slots = kvm_memslots(kvm);
260 kvm_for_each_memslot(memslot, slots) {
261 unsigned long hva_start, hva_end;
262 gfn_t gfn, gfn_end;
263
264 hva_start = max(start, memslot->userspace_addr);
265 hva_end = min(end, memslot->userspace_addr +
266 (memslot->npages << PAGE_SHIFT));
267 if (hva_start >= hva_end)
268 continue;
269 /*
270 * {gfn(page) | page intersects with [hva_start, hva_end)} =
271 * {gfn, gfn+1, ..., gfn_end-1}.
272 */
273 gfn = hva_to_gfn_memslot(hva_start, memslot);
274 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
275 kvm_for_each_vcpu(i, vcpu, kvm)
276 kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
277 gfn_end << PAGE_SHIFT);
278 }
279 }
280
281 static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
282 {
283 trace_kvm_unmap_hva(hva);
284
285 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
286
287 return 0;
288 }
289
290 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
291 unsigned long end)
292 {
293 do_kvm_unmap_hva(kvm, start, end);
294
295 return 0;
296 }
297
298 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
299 unsigned long end)
300 {
301 /* XXX could be more clever ;) */
302 return 0;
303 }
304
305 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
306 {
307 /* XXX could be more clever ;) */
308 return 0;
309 }
310
311 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
312 {
313 /* The page will get remapped properly on its next fault */
314 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
315 }
316
317 /*****************************************/
318
319 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
320 {
321 ulong guest_msr = kvmppc_get_msr(vcpu);
322 ulong smsr = guest_msr;
323
324 /* Guest MSR values */
325 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
326 /* Process MSR values */
327 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
328 /* External providers the guest reserved */
329 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
330 /* 64-bit Process MSR values */
331 #ifdef CONFIG_PPC_BOOK3S_64
332 smsr |= MSR_ISF | MSR_HV;
333 #endif
334 vcpu->arch.shadow_msr = smsr;
335 }
336
337 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
338 {
339 ulong old_msr = kvmppc_get_msr(vcpu);
340
341 #ifdef EXIT_DEBUG
342 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
343 #endif
344
345 msr &= to_book3s(vcpu)->msr_mask;
346 kvmppc_set_msr_fast(vcpu, msr);
347 kvmppc_recalc_shadow_msr(vcpu);
348
349 if (msr & MSR_POW) {
350 if (!vcpu->arch.pending_exceptions) {
351 kvm_vcpu_block(vcpu);
352 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
353 vcpu->stat.halt_wakeup++;
354
355 /* Unset POW bit after we woke up */
356 msr &= ~MSR_POW;
357 kvmppc_set_msr_fast(vcpu, msr);
358 }
359 }
360
361 if (kvmppc_is_split_real(vcpu))
362 kvmppc_fixup_split_real(vcpu);
363 else
364 kvmppc_unfixup_split_real(vcpu);
365
366 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
367 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
368 kvmppc_mmu_flush_segments(vcpu);
369 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
370
371 /* Preload magic page segment when in kernel mode */
372 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
373 struct kvm_vcpu_arch *a = &vcpu->arch;
374
375 if (msr & MSR_DR)
376 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
377 else
378 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
379 }
380 }
381
382 /*
383 * When switching from 32 to 64-bit, we may have a stale 32-bit
384 * magic page around, we need to flush it. Typically 32-bit magic
385 * page will be instanciated when calling into RTAS. Note: We
386 * assume that such transition only happens while in kernel mode,
387 * ie, we never transition from user 32-bit to kernel 64-bit with
388 * a 32-bit magic page around.
389 */
390 if (vcpu->arch.magic_page_pa &&
391 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
392 /* going from RTAS to normal kernel code */
393 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
394 ~0xFFFUL);
395 }
396
397 /* Preload FPU if it's enabled */
398 if (kvmppc_get_msr(vcpu) & MSR_FP)
399 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
400 }
401
402 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
403 {
404 u32 host_pvr;
405
406 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
407 vcpu->arch.pvr = pvr;
408 #ifdef CONFIG_PPC_BOOK3S_64
409 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
410 kvmppc_mmu_book3s_64_init(vcpu);
411 if (!to_book3s(vcpu)->hior_explicit)
412 to_book3s(vcpu)->hior = 0xfff00000;
413 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
414 vcpu->arch.cpu_type = KVM_CPU_3S_64;
415 } else
416 #endif
417 {
418 kvmppc_mmu_book3s_32_init(vcpu);
419 if (!to_book3s(vcpu)->hior_explicit)
420 to_book3s(vcpu)->hior = 0;
421 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
422 vcpu->arch.cpu_type = KVM_CPU_3S_32;
423 }
424
425 kvmppc_sanity_check(vcpu);
426
427 /* If we are in hypervisor level on 970, we can tell the CPU to
428 * treat DCBZ as 32 bytes store */
429 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
430 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
431 !strcmp(cur_cpu_spec->platform, "ppc970"))
432 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
433
434 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
435 really needs them in a VM on Cell and force disable them. */
436 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
437 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
438
439 /*
440 * If they're asking for POWER6 or later, set the flag
441 * indicating that we can do multiple large page sizes
442 * and 1TB segments.
443 * Also set the flag that indicates that tlbie has the large
444 * page bit in the RB operand instead of the instruction.
445 */
446 switch (PVR_VER(pvr)) {
447 case PVR_POWER6:
448 case PVR_POWER7:
449 case PVR_POWER7p:
450 case PVR_POWER8:
451 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
452 BOOK3S_HFLAG_NEW_TLBIE;
453 break;
454 }
455
456 #ifdef CONFIG_PPC_BOOK3S_32
457 /* 32 bit Book3S always has 32 byte dcbz */
458 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
459 #endif
460
461 /* On some CPUs we can execute paired single operations natively */
462 asm ( "mfpvr %0" : "=r"(host_pvr));
463 switch (host_pvr) {
464 case 0x00080200: /* lonestar 2.0 */
465 case 0x00088202: /* lonestar 2.2 */
466 case 0x70000100: /* gekko 1.0 */
467 case 0x00080100: /* gekko 2.0 */
468 case 0x00083203: /* gekko 2.3a */
469 case 0x00083213: /* gekko 2.3b */
470 case 0x00083204: /* gekko 2.4 */
471 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
472 case 0x00087200: /* broadway */
473 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
474 /* Enable HID2.PSE - in case we need it later */
475 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
476 }
477 }
478
479 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
480 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
481 * emulate 32 bytes dcbz length.
482 *
483 * The Book3s_64 inventors also realized this case and implemented a special bit
484 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
485 *
486 * My approach here is to patch the dcbz instruction on executing pages.
487 */
488 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
489 {
490 struct page *hpage;
491 u64 hpage_offset;
492 u32 *page;
493 int i;
494
495 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
496 if (is_error_page(hpage))
497 return;
498
499 hpage_offset = pte->raddr & ~PAGE_MASK;
500 hpage_offset &= ~0xFFFULL;
501 hpage_offset /= 4;
502
503 get_page(hpage);
504 page = kmap_atomic(hpage);
505
506 /* patch dcbz into reserved instruction, so we trap */
507 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
508 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
509 page[i] &= cpu_to_be32(0xfffffff7);
510
511 kunmap_atomic(page);
512 put_page(hpage);
513 }
514
515 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
516 {
517 ulong mp_pa = vcpu->arch.magic_page_pa;
518
519 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
520 mp_pa = (uint32_t)mp_pa;
521
522 gpa &= ~0xFFFULL;
523 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
524 return true;
525 }
526
527 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
528 }
529
530 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
531 ulong eaddr, int vec)
532 {
533 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
534 bool iswrite = false;
535 int r = RESUME_GUEST;
536 int relocated;
537 int page_found = 0;
538 struct kvmppc_pte pte;
539 bool is_mmio = false;
540 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
541 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
542 u64 vsid;
543
544 relocated = data ? dr : ir;
545 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
546 iswrite = true;
547
548 /* Resolve real address if translation turned on */
549 if (relocated) {
550 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
551 } else {
552 pte.may_execute = true;
553 pte.may_read = true;
554 pte.may_write = true;
555 pte.raddr = eaddr & KVM_PAM;
556 pte.eaddr = eaddr;
557 pte.vpage = eaddr >> 12;
558 pte.page_size = MMU_PAGE_64K;
559 }
560
561 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
562 case 0:
563 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
564 break;
565 case MSR_DR:
566 if (!data &&
567 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
568 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
569 pte.raddr &= ~SPLIT_HACK_MASK;
570 /* fall through */
571 case MSR_IR:
572 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
573
574 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
575 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
576 else
577 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
578 pte.vpage |= vsid;
579
580 if (vsid == -1)
581 page_found = -EINVAL;
582 break;
583 }
584
585 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
586 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
587 /*
588 * If we do the dcbz hack, we have to NX on every execution,
589 * so we can patch the executing code. This renders our guest
590 * NX-less.
591 */
592 pte.may_execute = !data;
593 }
594
595 if (page_found == -ENOENT) {
596 /* Page not found in guest PTE entries */
597 u64 ssrr1 = vcpu->arch.shadow_srr1;
598 u64 msr = kvmppc_get_msr(vcpu);
599 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
600 kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
601 kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
602 kvmppc_book3s_queue_irqprio(vcpu, vec);
603 } else if (page_found == -EPERM) {
604 /* Storage protection */
605 u32 dsisr = vcpu->arch.fault_dsisr;
606 u64 ssrr1 = vcpu->arch.shadow_srr1;
607 u64 msr = kvmppc_get_msr(vcpu);
608 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
609 dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
610 kvmppc_set_dsisr(vcpu, dsisr);
611 kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
612 kvmppc_book3s_queue_irqprio(vcpu, vec);
613 } else if (page_found == -EINVAL) {
614 /* Page not found in guest SLB */
615 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
616 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
617 } else if (!is_mmio &&
618 kvmppc_visible_gpa(vcpu, pte.raddr)) {
619 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
620 /*
621 * There is already a host HPTE there, presumably
622 * a read-only one for a page the guest thinks
623 * is writable, so get rid of it first.
624 */
625 kvmppc_mmu_unmap_page(vcpu, &pte);
626 }
627 /* The guest's PTE is not mapped yet. Map on the host */
628 kvmppc_mmu_map_page(vcpu, &pte, iswrite);
629 if (data)
630 vcpu->stat.sp_storage++;
631 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
632 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
633 kvmppc_patch_dcbz(vcpu, &pte);
634 } else {
635 /* MMIO */
636 vcpu->stat.mmio_exits++;
637 vcpu->arch.paddr_accessed = pte.raddr;
638 vcpu->arch.vaddr_accessed = pte.eaddr;
639 r = kvmppc_emulate_mmio(run, vcpu);
640 if ( r == RESUME_HOST_NV )
641 r = RESUME_HOST;
642 }
643
644 return r;
645 }
646
647 /* Give up external provider (FPU, Altivec, VSX) */
648 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
649 {
650 struct thread_struct *t = &current->thread;
651
652 /*
653 * VSX instructions can access FP and vector registers, so if
654 * we are giving up VSX, make sure we give up FP and VMX as well.
655 */
656 if (msr & MSR_VSX)
657 msr |= MSR_FP | MSR_VEC;
658
659 msr &= vcpu->arch.guest_owned_ext;
660 if (!msr)
661 return;
662
663 #ifdef DEBUG_EXT
664 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
665 #endif
666
667 if (msr & MSR_FP) {
668 /*
669 * Note that on CPUs with VSX, giveup_fpu stores
670 * both the traditional FP registers and the added VSX
671 * registers into thread.fp_state.fpr[].
672 */
673 if (t->regs->msr & MSR_FP)
674 giveup_fpu(current);
675 t->fp_save_area = NULL;
676 }
677
678 #ifdef CONFIG_ALTIVEC
679 if (msr & MSR_VEC) {
680 if (current->thread.regs->msr & MSR_VEC)
681 giveup_altivec(current);
682 t->vr_save_area = NULL;
683 }
684 #endif
685
686 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
687 kvmppc_recalc_shadow_msr(vcpu);
688 }
689
690 /* Give up facility (TAR / EBB / DSCR) */
691 static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
692 {
693 #ifdef CONFIG_PPC_BOOK3S_64
694 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
695 /* Facility not available to the guest, ignore giveup request*/
696 return;
697 }
698
699 switch (fac) {
700 case FSCR_TAR_LG:
701 vcpu->arch.tar = mfspr(SPRN_TAR);
702 mtspr(SPRN_TAR, current->thread.tar);
703 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
704 break;
705 }
706 #endif
707 }
708
709 /* Handle external providers (FPU, Altivec, VSX) */
710 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
711 ulong msr)
712 {
713 struct thread_struct *t = &current->thread;
714
715 /* When we have paired singles, we emulate in software */
716 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
717 return RESUME_GUEST;
718
719 if (!(kvmppc_get_msr(vcpu) & msr)) {
720 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
721 return RESUME_GUEST;
722 }
723
724 if (msr == MSR_VSX) {
725 /* No VSX? Give an illegal instruction interrupt */
726 #ifdef CONFIG_VSX
727 if (!cpu_has_feature(CPU_FTR_VSX))
728 #endif
729 {
730 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
731 return RESUME_GUEST;
732 }
733
734 /*
735 * We have to load up all the FP and VMX registers before
736 * we can let the guest use VSX instructions.
737 */
738 msr = MSR_FP | MSR_VEC | MSR_VSX;
739 }
740
741 /* See if we already own all the ext(s) needed */
742 msr &= ~vcpu->arch.guest_owned_ext;
743 if (!msr)
744 return RESUME_GUEST;
745
746 #ifdef DEBUG_EXT
747 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
748 #endif
749
750 if (msr & MSR_FP) {
751 preempt_disable();
752 enable_kernel_fp();
753 load_fp_state(&vcpu->arch.fp);
754 disable_kernel_fp();
755 t->fp_save_area = &vcpu->arch.fp;
756 preempt_enable();
757 }
758
759 if (msr & MSR_VEC) {
760 #ifdef CONFIG_ALTIVEC
761 preempt_disable();
762 enable_kernel_altivec();
763 load_vr_state(&vcpu->arch.vr);
764 disable_kernel_altivec();
765 t->vr_save_area = &vcpu->arch.vr;
766 preempt_enable();
767 #endif
768 }
769
770 t->regs->msr |= msr;
771 vcpu->arch.guest_owned_ext |= msr;
772 kvmppc_recalc_shadow_msr(vcpu);
773
774 return RESUME_GUEST;
775 }
776
777 /*
778 * Kernel code using FP or VMX could have flushed guest state to
779 * the thread_struct; if so, get it back now.
780 */
781 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
782 {
783 unsigned long lost_ext;
784
785 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
786 if (!lost_ext)
787 return;
788
789 if (lost_ext & MSR_FP) {
790 preempt_disable();
791 enable_kernel_fp();
792 load_fp_state(&vcpu->arch.fp);
793 disable_kernel_fp();
794 preempt_enable();
795 }
796 #ifdef CONFIG_ALTIVEC
797 if (lost_ext & MSR_VEC) {
798 preempt_disable();
799 enable_kernel_altivec();
800 load_vr_state(&vcpu->arch.vr);
801 disable_kernel_altivec();
802 preempt_enable();
803 }
804 #endif
805 current->thread.regs->msr |= lost_ext;
806 }
807
808 #ifdef CONFIG_PPC_BOOK3S_64
809
810 static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
811 {
812 /* Inject the Interrupt Cause field and trigger a guest interrupt */
813 vcpu->arch.fscr &= ~(0xffULL << 56);
814 vcpu->arch.fscr |= (fac << 56);
815 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
816 }
817
818 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
819 {
820 enum emulation_result er = EMULATE_FAIL;
821
822 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
823 er = kvmppc_emulate_instruction(vcpu->run, vcpu);
824
825 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
826 /* Couldn't emulate, trigger interrupt in guest */
827 kvmppc_trigger_fac_interrupt(vcpu, fac);
828 }
829 }
830
831 /* Enable facilities (TAR, EBB, DSCR) for the guest */
832 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
833 {
834 bool guest_fac_enabled;
835 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
836
837 /*
838 * Not every facility is enabled by FSCR bits, check whether the
839 * guest has this facility enabled at all.
840 */
841 switch (fac) {
842 case FSCR_TAR_LG:
843 case FSCR_EBB_LG:
844 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
845 break;
846 case FSCR_TM_LG:
847 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
848 break;
849 default:
850 guest_fac_enabled = false;
851 break;
852 }
853
854 if (!guest_fac_enabled) {
855 /* Facility not enabled by the guest */
856 kvmppc_trigger_fac_interrupt(vcpu, fac);
857 return RESUME_GUEST;
858 }
859
860 switch (fac) {
861 case FSCR_TAR_LG:
862 /* TAR switching isn't lazy in Linux yet */
863 current->thread.tar = mfspr(SPRN_TAR);
864 mtspr(SPRN_TAR, vcpu->arch.tar);
865 vcpu->arch.shadow_fscr |= FSCR_TAR;
866 break;
867 default:
868 kvmppc_emulate_fac(vcpu, fac);
869 break;
870 }
871
872 return RESUME_GUEST;
873 }
874
875 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
876 {
877 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
878 /* TAR got dropped, drop it in shadow too */
879 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
880 }
881 vcpu->arch.fscr = fscr;
882 }
883 #endif
884
885 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
886 {
887 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
888 u64 msr = kvmppc_get_msr(vcpu);
889
890 kvmppc_set_msr(vcpu, msr | MSR_SE);
891 }
892 }
893
894 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
895 {
896 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
897 u64 msr = kvmppc_get_msr(vcpu);
898
899 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
900 }
901 }
902
903 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
904 unsigned int exit_nr)
905 {
906 int r = RESUME_HOST;
907 int s;
908
909 vcpu->stat.sum_exits++;
910
911 run->exit_reason = KVM_EXIT_UNKNOWN;
912 run->ready_for_interrupt_injection = 1;
913
914 /* We get here with MSR.EE=1 */
915
916 trace_kvm_exit(exit_nr, vcpu);
917 guest_exit();
918
919 switch (exit_nr) {
920 case BOOK3S_INTERRUPT_INST_STORAGE:
921 {
922 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
923 vcpu->stat.pf_instruc++;
924
925 if (kvmppc_is_split_real(vcpu))
926 kvmppc_fixup_split_real(vcpu);
927
928 #ifdef CONFIG_PPC_BOOK3S_32
929 /* We set segments as unused segments when invalidating them. So
930 * treat the respective fault as segment fault. */
931 {
932 struct kvmppc_book3s_shadow_vcpu *svcpu;
933 u32 sr;
934
935 svcpu = svcpu_get(vcpu);
936 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
937 svcpu_put(svcpu);
938 if (sr == SR_INVALID) {
939 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
940 r = RESUME_GUEST;
941 break;
942 }
943 }
944 #endif
945
946 /* only care about PTEG not found errors, but leave NX alone */
947 if (shadow_srr1 & 0x40000000) {
948 int idx = srcu_read_lock(&vcpu->kvm->srcu);
949 r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
950 srcu_read_unlock(&vcpu->kvm->srcu, idx);
951 vcpu->stat.sp_instruc++;
952 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
953 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
954 /*
955 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
956 * so we can't use the NX bit inside the guest. Let's cross our fingers,
957 * that no guest that needs the dcbz hack does NX.
958 */
959 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
960 r = RESUME_GUEST;
961 } else {
962 u64 msr = kvmppc_get_msr(vcpu);
963 msr |= shadow_srr1 & 0x58000000;
964 kvmppc_set_msr_fast(vcpu, msr);
965 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
966 r = RESUME_GUEST;
967 }
968 break;
969 }
970 case BOOK3S_INTERRUPT_DATA_STORAGE:
971 {
972 ulong dar = kvmppc_get_fault_dar(vcpu);
973 u32 fault_dsisr = vcpu->arch.fault_dsisr;
974 vcpu->stat.pf_storage++;
975
976 #ifdef CONFIG_PPC_BOOK3S_32
977 /* We set segments as unused segments when invalidating them. So
978 * treat the respective fault as segment fault. */
979 {
980 struct kvmppc_book3s_shadow_vcpu *svcpu;
981 u32 sr;
982
983 svcpu = svcpu_get(vcpu);
984 sr = svcpu->sr[dar >> SID_SHIFT];
985 svcpu_put(svcpu);
986 if (sr == SR_INVALID) {
987 kvmppc_mmu_map_segment(vcpu, dar);
988 r = RESUME_GUEST;
989 break;
990 }
991 }
992 #endif
993
994 /*
995 * We need to handle missing shadow PTEs, and
996 * protection faults due to us mapping a page read-only
997 * when the guest thinks it is writable.
998 */
999 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1000 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1001 r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1002 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1003 } else {
1004 kvmppc_set_dar(vcpu, dar);
1005 kvmppc_set_dsisr(vcpu, fault_dsisr);
1006 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1007 r = RESUME_GUEST;
1008 }
1009 break;
1010 }
1011 case BOOK3S_INTERRUPT_DATA_SEGMENT:
1012 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1013 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1014 kvmppc_book3s_queue_irqprio(vcpu,
1015 BOOK3S_INTERRUPT_DATA_SEGMENT);
1016 }
1017 r = RESUME_GUEST;
1018 break;
1019 case BOOK3S_INTERRUPT_INST_SEGMENT:
1020 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1021 kvmppc_book3s_queue_irqprio(vcpu,
1022 BOOK3S_INTERRUPT_INST_SEGMENT);
1023 }
1024 r = RESUME_GUEST;
1025 break;
1026 /* We're good on these - the host merely wanted to get our attention */
1027 case BOOK3S_INTERRUPT_DECREMENTER:
1028 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1029 case BOOK3S_INTERRUPT_DOORBELL:
1030 case BOOK3S_INTERRUPT_H_DOORBELL:
1031 vcpu->stat.dec_exits++;
1032 r = RESUME_GUEST;
1033 break;
1034 case BOOK3S_INTERRUPT_EXTERNAL:
1035 case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
1036 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1037 vcpu->stat.ext_intr_exits++;
1038 r = RESUME_GUEST;
1039 break;
1040 case BOOK3S_INTERRUPT_PERFMON:
1041 r = RESUME_GUEST;
1042 break;
1043 case BOOK3S_INTERRUPT_PROGRAM:
1044 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1045 {
1046 enum emulation_result er;
1047 ulong flags;
1048 u32 last_inst;
1049 int emul;
1050
1051 program_interrupt:
1052 /*
1053 * shadow_srr1 only contains valid flags if we came here via
1054 * a program exception. The other exceptions (emulation assist,
1055 * FP unavailable, etc.) do not provide flags in SRR1, so use
1056 * an illegal-instruction exception when injecting a program
1057 * interrupt into the guest.
1058 */
1059 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1060 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1061 else
1062 flags = SRR1_PROGILL;
1063
1064 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1065 if (emul != EMULATE_DONE) {
1066 r = RESUME_GUEST;
1067 break;
1068 }
1069
1070 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1071 #ifdef EXIT_DEBUG
1072 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1073 kvmppc_get_pc(vcpu), last_inst);
1074 #endif
1075 if ((last_inst & 0xff0007ff) !=
1076 (INS_DCBZ & 0xfffffff7)) {
1077 kvmppc_core_queue_program(vcpu, flags);
1078 r = RESUME_GUEST;
1079 break;
1080 }
1081 }
1082
1083 vcpu->stat.emulated_inst_exits++;
1084 er = kvmppc_emulate_instruction(run, vcpu);
1085 switch (er) {
1086 case EMULATE_DONE:
1087 r = RESUME_GUEST_NV;
1088 break;
1089 case EMULATE_AGAIN:
1090 r = RESUME_GUEST;
1091 break;
1092 case EMULATE_FAIL:
1093 printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
1094 __func__, kvmppc_get_pc(vcpu), last_inst);
1095 kvmppc_core_queue_program(vcpu, flags);
1096 r = RESUME_GUEST;
1097 break;
1098 case EMULATE_DO_MMIO:
1099 run->exit_reason = KVM_EXIT_MMIO;
1100 r = RESUME_HOST_NV;
1101 break;
1102 case EMULATE_EXIT_USER:
1103 r = RESUME_HOST_NV;
1104 break;
1105 default:
1106 BUG();
1107 }
1108 break;
1109 }
1110 case BOOK3S_INTERRUPT_SYSCALL:
1111 {
1112 u32 last_sc;
1113 int emul;
1114
1115 /* Get last sc for papr */
1116 if (vcpu->arch.papr_enabled) {
1117 /* The sc instuction points SRR0 to the next inst */
1118 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1119 if (emul != EMULATE_DONE) {
1120 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1121 r = RESUME_GUEST;
1122 break;
1123 }
1124 }
1125
1126 if (vcpu->arch.papr_enabled &&
1127 (last_sc == 0x44000022) &&
1128 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1129 /* SC 1 papr hypercalls */
1130 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1131 int i;
1132
1133 #ifdef CONFIG_PPC_BOOK3S_64
1134 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1135 r = RESUME_GUEST;
1136 break;
1137 }
1138 #endif
1139
1140 run->papr_hcall.nr = cmd;
1141 for (i = 0; i < 9; ++i) {
1142 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1143 run->papr_hcall.args[i] = gpr;
1144 }
1145 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1146 vcpu->arch.hcall_needed = 1;
1147 r = RESUME_HOST;
1148 } else if (vcpu->arch.osi_enabled &&
1149 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1150 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1151 /* MOL hypercalls */
1152 u64 *gprs = run->osi.gprs;
1153 int i;
1154
1155 run->exit_reason = KVM_EXIT_OSI;
1156 for (i = 0; i < 32; i++)
1157 gprs[i] = kvmppc_get_gpr(vcpu, i);
1158 vcpu->arch.osi_needed = 1;
1159 r = RESUME_HOST_NV;
1160 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1161 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1162 /* KVM PV hypercalls */
1163 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1164 r = RESUME_GUEST;
1165 } else {
1166 /* Guest syscalls */
1167 vcpu->stat.syscall_exits++;
1168 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1169 r = RESUME_GUEST;
1170 }
1171 break;
1172 }
1173 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1174 case BOOK3S_INTERRUPT_ALTIVEC:
1175 case BOOK3S_INTERRUPT_VSX:
1176 {
1177 int ext_msr = 0;
1178 int emul;
1179 u32 last_inst;
1180
1181 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1182 /* Do paired single instruction emulation */
1183 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1184 &last_inst);
1185 if (emul == EMULATE_DONE)
1186 goto program_interrupt;
1187 else
1188 r = RESUME_GUEST;
1189
1190 break;
1191 }
1192
1193 /* Enable external provider */
1194 switch (exit_nr) {
1195 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1196 ext_msr = MSR_FP;
1197 break;
1198
1199 case BOOK3S_INTERRUPT_ALTIVEC:
1200 ext_msr = MSR_VEC;
1201 break;
1202
1203 case BOOK3S_INTERRUPT_VSX:
1204 ext_msr = MSR_VSX;
1205 break;
1206 }
1207
1208 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1209 break;
1210 }
1211 case BOOK3S_INTERRUPT_ALIGNMENT:
1212 {
1213 u32 last_inst;
1214 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1215
1216 if (emul == EMULATE_DONE) {
1217 u32 dsisr;
1218 u64 dar;
1219
1220 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1221 dar = kvmppc_alignment_dar(vcpu, last_inst);
1222
1223 kvmppc_set_dsisr(vcpu, dsisr);
1224 kvmppc_set_dar(vcpu, dar);
1225
1226 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1227 }
1228 r = RESUME_GUEST;
1229 break;
1230 }
1231 #ifdef CONFIG_PPC_BOOK3S_64
1232 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1233 kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1234 r = RESUME_GUEST;
1235 break;
1236 #endif
1237 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1238 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1239 r = RESUME_GUEST;
1240 break;
1241 case BOOK3S_INTERRUPT_TRACE:
1242 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1243 run->exit_reason = KVM_EXIT_DEBUG;
1244 r = RESUME_HOST;
1245 } else {
1246 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1247 r = RESUME_GUEST;
1248 }
1249 break;
1250 default:
1251 {
1252 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1253 /* Ugh - bork here! What did we get? */
1254 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1255 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1256 r = RESUME_HOST;
1257 BUG();
1258 break;
1259 }
1260 }
1261
1262 if (!(r & RESUME_HOST)) {
1263 /* To avoid clobbering exit_reason, only check for signals if
1264 * we aren't already exiting to userspace for some other
1265 * reason. */
1266
1267 /*
1268 * Interrupts could be timers for the guest which we have to
1269 * inject again, so let's postpone them until we're in the guest
1270 * and if we really did time things so badly, then we just exit
1271 * again due to a host external interrupt.
1272 */
1273 s = kvmppc_prepare_to_enter(vcpu);
1274 if (s <= 0)
1275 r = s;
1276 else {
1277 /* interrupts now hard-disabled */
1278 kvmppc_fix_ee_before_entry();
1279 }
1280
1281 kvmppc_handle_lost_ext(vcpu);
1282 }
1283
1284 trace_kvm_book3s_reenter(r, vcpu);
1285
1286 return r;
1287 }
1288
1289 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1290 struct kvm_sregs *sregs)
1291 {
1292 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1293 int i;
1294
1295 sregs->pvr = vcpu->arch.pvr;
1296
1297 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1298 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1299 for (i = 0; i < 64; i++) {
1300 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1301 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1302 }
1303 } else {
1304 for (i = 0; i < 16; i++)
1305 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1306
1307 for (i = 0; i < 8; i++) {
1308 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1309 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1310 }
1311 }
1312
1313 return 0;
1314 }
1315
1316 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1317 struct kvm_sregs *sregs)
1318 {
1319 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1320 int i;
1321
1322 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1323
1324 vcpu3s->sdr1 = sregs->u.s.sdr1;
1325 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1326 for (i = 0; i < 64; i++) {
1327 vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
1328 sregs->u.s.ppc64.slb[i].slbe);
1329 }
1330 } else {
1331 for (i = 0; i < 16; i++) {
1332 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1333 }
1334 for (i = 0; i < 8; i++) {
1335 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1336 (u32)sregs->u.s.ppc32.ibat[i]);
1337 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1338 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1339 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1340 (u32)sregs->u.s.ppc32.dbat[i]);
1341 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1342 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1343 }
1344 }
1345
1346 /* Flush the MMU after messing with the segments */
1347 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1348
1349 return 0;
1350 }
1351
1352 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1353 union kvmppc_one_reg *val)
1354 {
1355 int r = 0;
1356
1357 switch (id) {
1358 case KVM_REG_PPC_DEBUG_INST:
1359 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1360 break;
1361 case KVM_REG_PPC_HIOR:
1362 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1363 break;
1364 case KVM_REG_PPC_LPCR:
1365 case KVM_REG_PPC_LPCR_64:
1366 /*
1367 * We are only interested in the LPCR_ILE bit
1368 */
1369 if (vcpu->arch.intr_msr & MSR_LE)
1370 *val = get_reg_val(id, LPCR_ILE);
1371 else
1372 *val = get_reg_val(id, 0);
1373 break;
1374 default:
1375 r = -EINVAL;
1376 break;
1377 }
1378
1379 return r;
1380 }
1381
1382 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1383 {
1384 if (new_lpcr & LPCR_ILE)
1385 vcpu->arch.intr_msr |= MSR_LE;
1386 else
1387 vcpu->arch.intr_msr &= ~MSR_LE;
1388 }
1389
1390 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1391 union kvmppc_one_reg *val)
1392 {
1393 int r = 0;
1394
1395 switch (id) {
1396 case KVM_REG_PPC_HIOR:
1397 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1398 to_book3s(vcpu)->hior_explicit = true;
1399 break;
1400 case KVM_REG_PPC_LPCR:
1401 case KVM_REG_PPC_LPCR_64:
1402 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1403 break;
1404 default:
1405 r = -EINVAL;
1406 break;
1407 }
1408
1409 return r;
1410 }
1411
1412 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
1413 unsigned int id)
1414 {
1415 struct kvmppc_vcpu_book3s *vcpu_book3s;
1416 struct kvm_vcpu *vcpu;
1417 int err = -ENOMEM;
1418 unsigned long p;
1419
1420 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1421 if (!vcpu)
1422 goto out;
1423
1424 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1425 if (!vcpu_book3s)
1426 goto free_vcpu;
1427 vcpu->arch.book3s = vcpu_book3s;
1428
1429 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1430 vcpu->arch.shadow_vcpu =
1431 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1432 if (!vcpu->arch.shadow_vcpu)
1433 goto free_vcpu3s;
1434 #endif
1435
1436 err = kvm_vcpu_init(vcpu, kvm, id);
1437 if (err)
1438 goto free_shadow_vcpu;
1439
1440 err = -ENOMEM;
1441 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1442 if (!p)
1443 goto uninit_vcpu;
1444 vcpu->arch.shared = (void *)p;
1445 #ifdef CONFIG_PPC_BOOK3S_64
1446 /* Always start the shared struct in native endian mode */
1447 #ifdef __BIG_ENDIAN__
1448 vcpu->arch.shared_big_endian = true;
1449 #else
1450 vcpu->arch.shared_big_endian = false;
1451 #endif
1452
1453 /*
1454 * Default to the same as the host if we're on sufficiently
1455 * recent machine that we have 1TB segments;
1456 * otherwise default to PPC970FX.
1457 */
1458 vcpu->arch.pvr = 0x3C0301;
1459 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1460 vcpu->arch.pvr = mfspr(SPRN_PVR);
1461 vcpu->arch.intr_msr = MSR_SF;
1462 #else
1463 /* default to book3s_32 (750) */
1464 vcpu->arch.pvr = 0x84202;
1465 #endif
1466 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1467 vcpu->arch.slb_nr = 64;
1468
1469 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1470
1471 err = kvmppc_mmu_init(vcpu);
1472 if (err < 0)
1473 goto uninit_vcpu;
1474
1475 return vcpu;
1476
1477 uninit_vcpu:
1478 kvm_vcpu_uninit(vcpu);
1479 free_shadow_vcpu:
1480 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1481 kfree(vcpu->arch.shadow_vcpu);
1482 free_vcpu3s:
1483 #endif
1484 vfree(vcpu_book3s);
1485 free_vcpu:
1486 kmem_cache_free(kvm_vcpu_cache, vcpu);
1487 out:
1488 return ERR_PTR(err);
1489 }
1490
1491 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1492 {
1493 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1494
1495 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1496 kvm_vcpu_uninit(vcpu);
1497 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1498 kfree(vcpu->arch.shadow_vcpu);
1499 #endif
1500 vfree(vcpu_book3s);
1501 kmem_cache_free(kvm_vcpu_cache, vcpu);
1502 }
1503
1504 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1505 {
1506 int ret;
1507 #ifdef CONFIG_ALTIVEC
1508 unsigned long uninitialized_var(vrsave);
1509 #endif
1510
1511 /* Check if we can run the vcpu at all */
1512 if (!vcpu->arch.sane) {
1513 kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1514 ret = -EINVAL;
1515 goto out;
1516 }
1517
1518 kvmppc_setup_debug(vcpu);
1519
1520 /*
1521 * Interrupts could be timers for the guest which we have to inject
1522 * again, so let's postpone them until we're in the guest and if we
1523 * really did time things so badly, then we just exit again due to
1524 * a host external interrupt.
1525 */
1526 ret = kvmppc_prepare_to_enter(vcpu);
1527 if (ret <= 0)
1528 goto out;
1529 /* interrupts now hard-disabled */
1530
1531 /* Save FPU, Altivec and VSX state */
1532 giveup_all(current);
1533
1534 /* Preload FPU if it's enabled */
1535 if (kvmppc_get_msr(vcpu) & MSR_FP)
1536 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1537
1538 kvmppc_fix_ee_before_entry();
1539
1540 ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1541
1542 kvmppc_clear_debug(vcpu);
1543
1544 /* No need for guest_exit. It's done in handle_exit.
1545 We also get here with interrupts enabled. */
1546
1547 /* Make sure we save the guest FPU/Altivec/VSX state */
1548 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1549
1550 /* Make sure we save the guest TAR/EBB/DSCR state */
1551 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1552
1553 out:
1554 vcpu->mode = OUTSIDE_GUEST_MODE;
1555 return ret;
1556 }
1557
1558 /*
1559 * Get (and clear) the dirty memory log for a memory slot.
1560 */
1561 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1562 struct kvm_dirty_log *log)
1563 {
1564 struct kvm_memslots *slots;
1565 struct kvm_memory_slot *memslot;
1566 struct kvm_vcpu *vcpu;
1567 ulong ga, ga_end;
1568 int is_dirty = 0;
1569 int r;
1570 unsigned long n;
1571
1572 mutex_lock(&kvm->slots_lock);
1573
1574 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1575 if (r)
1576 goto out;
1577
1578 /* If nothing is dirty, don't bother messing with page tables. */
1579 if (is_dirty) {
1580 slots = kvm_memslots(kvm);
1581 memslot = id_to_memslot(slots, log->slot);
1582
1583 ga = memslot->base_gfn << PAGE_SHIFT;
1584 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1585
1586 kvm_for_each_vcpu(n, vcpu, kvm)
1587 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1588
1589 n = kvm_dirty_bitmap_bytes(memslot);
1590 memset(memslot->dirty_bitmap, 0, n);
1591 }
1592
1593 r = 0;
1594 out:
1595 mutex_unlock(&kvm->slots_lock);
1596 return r;
1597 }
1598
1599 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1600 struct kvm_memory_slot *memslot)
1601 {
1602 return;
1603 }
1604
1605 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1606 struct kvm_memory_slot *memslot,
1607 const struct kvm_userspace_memory_region *mem)
1608 {
1609 return 0;
1610 }
1611
1612 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1613 const struct kvm_userspace_memory_region *mem,
1614 const struct kvm_memory_slot *old,
1615 const struct kvm_memory_slot *new)
1616 {
1617 return;
1618 }
1619
1620 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
1621 struct kvm_memory_slot *dont)
1622 {
1623 return;
1624 }
1625
1626 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
1627 unsigned long npages)
1628 {
1629 return 0;
1630 }
1631
1632
1633 #ifdef CONFIG_PPC64
1634 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1635 struct kvm_ppc_smmu_info *info)
1636 {
1637 long int i;
1638 struct kvm_vcpu *vcpu;
1639
1640 info->flags = 0;
1641
1642 /* SLB is always 64 entries */
1643 info->slb_size = 64;
1644
1645 /* Standard 4k base page size segment */
1646 info->sps[0].page_shift = 12;
1647 info->sps[0].slb_enc = 0;
1648 info->sps[0].enc[0].page_shift = 12;
1649 info->sps[0].enc[0].pte_enc = 0;
1650
1651 /*
1652 * 64k large page size.
1653 * We only want to put this in if the CPUs we're emulating
1654 * support it, but unfortunately we don't have a vcpu easily
1655 * to hand here to test. Just pick the first vcpu, and if
1656 * that doesn't exist yet, report the minimum capability,
1657 * i.e., no 64k pages.
1658 * 1T segment support goes along with 64k pages.
1659 */
1660 i = 1;
1661 vcpu = kvm_get_vcpu(kvm, 0);
1662 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1663 info->flags = KVM_PPC_1T_SEGMENTS;
1664 info->sps[i].page_shift = 16;
1665 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1666 info->sps[i].enc[0].page_shift = 16;
1667 info->sps[i].enc[0].pte_enc = 1;
1668 ++i;
1669 }
1670
1671 /* Standard 16M large page size segment */
1672 info->sps[i].page_shift = 24;
1673 info->sps[i].slb_enc = SLB_VSID_L;
1674 info->sps[i].enc[0].page_shift = 24;
1675 info->sps[i].enc[0].pte_enc = 0;
1676
1677 return 0;
1678 }
1679 #else
1680 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1681 struct kvm_ppc_smmu_info *info)
1682 {
1683 /* We should not get called */
1684 BUG();
1685 }
1686 #endif /* CONFIG_PPC64 */
1687
1688 static unsigned int kvm_global_user_count = 0;
1689 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1690
1691 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1692 {
1693 mutex_init(&kvm->arch.hpt_mutex);
1694
1695 #ifdef CONFIG_PPC_BOOK3S_64
1696 /* Start out with the default set of hcalls enabled */
1697 kvmppc_pr_init_default_hcalls(kvm);
1698 #endif
1699
1700 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
1701 spin_lock(&kvm_global_user_count_lock);
1702 if (++kvm_global_user_count == 1)
1703 pseries_disable_reloc_on_exc();
1704 spin_unlock(&kvm_global_user_count_lock);
1705 }
1706 return 0;
1707 }
1708
1709 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1710 {
1711 #ifdef CONFIG_PPC64
1712 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1713 #endif
1714
1715 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
1716 spin_lock(&kvm_global_user_count_lock);
1717 BUG_ON(kvm_global_user_count == 0);
1718 if (--kvm_global_user_count == 0)
1719 pseries_enable_reloc_on_exc();
1720 spin_unlock(&kvm_global_user_count_lock);
1721 }
1722 }
1723
1724 static int kvmppc_core_check_processor_compat_pr(void)
1725 {
1726 /*
1727 * Disable KVM for Power9 untill the required bits merged.
1728 */
1729 if (cpu_has_feature(CPU_FTR_ARCH_300))
1730 return -EIO;
1731 return 0;
1732 }
1733
1734 static long kvm_arch_vm_ioctl_pr(struct file *filp,
1735 unsigned int ioctl, unsigned long arg)
1736 {
1737 return -ENOTTY;
1738 }
1739
1740 static struct kvmppc_ops kvm_ops_pr = {
1741 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
1742 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
1743 .get_one_reg = kvmppc_get_one_reg_pr,
1744 .set_one_reg = kvmppc_set_one_reg_pr,
1745 .vcpu_load = kvmppc_core_vcpu_load_pr,
1746 .vcpu_put = kvmppc_core_vcpu_put_pr,
1747 .set_msr = kvmppc_set_msr_pr,
1748 .vcpu_run = kvmppc_vcpu_run_pr,
1749 .vcpu_create = kvmppc_core_vcpu_create_pr,
1750 .vcpu_free = kvmppc_core_vcpu_free_pr,
1751 .check_requests = kvmppc_core_check_requests_pr,
1752 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
1753 .flush_memslot = kvmppc_core_flush_memslot_pr,
1754 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
1755 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
1756 .unmap_hva = kvm_unmap_hva_pr,
1757 .unmap_hva_range = kvm_unmap_hva_range_pr,
1758 .age_hva = kvm_age_hva_pr,
1759 .test_age_hva = kvm_test_age_hva_pr,
1760 .set_spte_hva = kvm_set_spte_hva_pr,
1761 .mmu_destroy = kvmppc_mmu_destroy_pr,
1762 .free_memslot = kvmppc_core_free_memslot_pr,
1763 .create_memslot = kvmppc_core_create_memslot_pr,
1764 .init_vm = kvmppc_core_init_vm_pr,
1765 .destroy_vm = kvmppc_core_destroy_vm_pr,
1766 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
1767 .emulate_op = kvmppc_core_emulate_op_pr,
1768 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
1769 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
1770 .fast_vcpu_kick = kvm_vcpu_kick,
1771 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
1772 #ifdef CONFIG_PPC_BOOK3S_64
1773 .hcall_implemented = kvmppc_hcall_impl_pr,
1774 #endif
1775 };
1776
1777
1778 int kvmppc_book3s_init_pr(void)
1779 {
1780 int r;
1781
1782 r = kvmppc_core_check_processor_compat_pr();
1783 if (r < 0)
1784 return r;
1785
1786 kvm_ops_pr.owner = THIS_MODULE;
1787 kvmppc_pr_ops = &kvm_ops_pr;
1788
1789 r = kvmppc_mmu_hpte_sysinit();
1790 return r;
1791 }
1792
1793 void kvmppc_book3s_exit_pr(void)
1794 {
1795 kvmppc_pr_ops = NULL;
1796 kvmppc_mmu_hpte_sysexit();
1797 }
1798
1799 /*
1800 * We only support separate modules for book3s 64
1801 */
1802 #ifdef CONFIG_PPC_BOOK3S_64
1803
1804 module_init(kvmppc_book3s_init_pr);
1805 module_exit(kvmppc_book3s_exit_pr);
1806
1807 MODULE_LICENSE("GPL");
1808 MODULE_ALIAS_MISCDEV(KVM_MINOR);
1809 MODULE_ALIAS("devname:kvm");
1810 #endif
This page took 0.125614 seconds and 5 git commands to generate.