Merge tag 'range-macro' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / arch / powerpc / kvm / e500_mmu_host.c
1 /*
2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
9 *
10 * Description:
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33
34 #include "e500.h"
35 #include "trace.h"
36 #include "timing.h"
37 #include "e500_mmu_host.h"
38
39 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
40
41 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
42
43 static inline unsigned int tlb1_max_shadow_size(void)
44 {
45 /* reserve one entry for magic page */
46 return host_tlb_params[1].entries - tlbcam_index - 1;
47 }
48
49 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
50 {
51 /* Mask off reserved bits. */
52 mas3 &= MAS3_ATTRIB_MASK;
53
54 #ifndef CONFIG_KVM_BOOKE_HV
55 if (!usermode) {
56 /* Guest is in supervisor mode,
57 * so we need to translate guest
58 * supervisor permissions into user permissions. */
59 mas3 &= ~E500_TLB_USER_PERM_MASK;
60 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
61 }
62 mas3 |= E500_TLB_SUPER_PERM_MASK;
63 #endif
64 return mas3;
65 }
66
67 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
68 {
69 #ifdef CONFIG_SMP
70 return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
71 #else
72 return mas2 & MAS2_ATTRIB_MASK;
73 #endif
74 }
75
76 /*
77 * writing shadow tlb entry to host TLB
78 */
79 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
80 uint32_t mas0)
81 {
82 unsigned long flags;
83
84 local_irq_save(flags);
85 mtspr(SPRN_MAS0, mas0);
86 mtspr(SPRN_MAS1, stlbe->mas1);
87 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
88 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
89 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
90 #ifdef CONFIG_KVM_BOOKE_HV
91 mtspr(SPRN_MAS8, stlbe->mas8);
92 #endif
93 asm volatile("isync; tlbwe" : : : "memory");
94
95 #ifdef CONFIG_KVM_BOOKE_HV
96 /* Must clear mas8 for other host tlbwe's */
97 mtspr(SPRN_MAS8, 0);
98 isync();
99 #endif
100 local_irq_restore(flags);
101
102 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
103 stlbe->mas2, stlbe->mas7_3);
104 }
105
106 /*
107 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
108 *
109 * We don't care about the address we're searching for, other than that it's
110 * in the right set and is not present in the TLB. Using a zero PID and a
111 * userspace address means we don't have to set and then restore MAS5, or
112 * calculate a proper MAS6 value.
113 */
114 static u32 get_host_mas0(unsigned long eaddr)
115 {
116 unsigned long flags;
117 u32 mas0;
118
119 local_irq_save(flags);
120 mtspr(SPRN_MAS6, 0);
121 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
122 mas0 = mfspr(SPRN_MAS0);
123 local_irq_restore(flags);
124
125 return mas0;
126 }
127
128 /* sesel is for tlb1 only */
129 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
130 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
131 {
132 u32 mas0;
133
134 if (tlbsel == 0) {
135 mas0 = get_host_mas0(stlbe->mas2);
136 __write_host_tlbe(stlbe, mas0);
137 } else {
138 __write_host_tlbe(stlbe,
139 MAS0_TLBSEL(1) |
140 MAS0_ESEL(to_htlb1_esel(sesel)));
141 }
142 }
143
144 /* sesel is for tlb1 only */
145 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
146 struct kvm_book3e_206_tlb_entry *gtlbe,
147 struct kvm_book3e_206_tlb_entry *stlbe,
148 int stlbsel, int sesel)
149 {
150 int stid;
151
152 preempt_disable();
153 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
154
155 stlbe->mas1 |= MAS1_TID(stid);
156 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
157 preempt_enable();
158 }
159
160 #ifdef CONFIG_KVM_E500V2
161 /* XXX should be a hook in the gva2hpa translation */
162 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
163 {
164 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
165 struct kvm_book3e_206_tlb_entry magic;
166 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
167 unsigned int stid;
168 pfn_t pfn;
169
170 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
171 get_page(pfn_to_page(pfn));
172
173 preempt_disable();
174 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
175
176 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
177 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
178 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
179 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
180 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
181 magic.mas8 = 0;
182
183 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
184 preempt_enable();
185 }
186 #endif
187
188 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
189 int esel)
190 {
191 struct kvm_book3e_206_tlb_entry *gtlbe =
192 get_entry(vcpu_e500, tlbsel, esel);
193 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
194
195 /* Don't bother with unmapped entries */
196 if (!(ref->flags & E500_TLB_VALID)) {
197 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
198 "%s: flags %x\n", __func__, ref->flags);
199 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
200 }
201
202 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
203 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
204 int hw_tlb_indx;
205 unsigned long flags;
206
207 local_irq_save(flags);
208 while (tmp) {
209 hw_tlb_indx = __ilog2_u64(tmp & -tmp);
210 mtspr(SPRN_MAS0,
211 MAS0_TLBSEL(1) |
212 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
213 mtspr(SPRN_MAS1, 0);
214 asm volatile("tlbwe");
215 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
216 tmp &= tmp - 1;
217 }
218 mb();
219 vcpu_e500->g2h_tlb1_map[esel] = 0;
220 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
221 local_irq_restore(flags);
222 }
223
224 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
225 /*
226 * TLB1 entry is backed by 4k pages. This should happen
227 * rarely and is not worth optimizing. Invalidate everything.
228 */
229 kvmppc_e500_tlbil_all(vcpu_e500);
230 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
231 }
232
233 /* Already invalidated in between */
234 if (!(ref->flags & E500_TLB_VALID))
235 return;
236
237 /* Guest tlbe is backed by at most one host tlbe per shadow pid. */
238 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
239
240 /* Mark the TLB as not backed by the host anymore */
241 ref->flags &= ~E500_TLB_VALID;
242 }
243
244 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
245 {
246 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
247 }
248
249 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
250 struct kvm_book3e_206_tlb_entry *gtlbe,
251 pfn_t pfn)
252 {
253 ref->pfn = pfn;
254 ref->flags |= E500_TLB_VALID;
255
256 if (tlbe_is_writable(gtlbe))
257 kvm_set_pfn_dirty(pfn);
258 }
259
260 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
261 {
262 if (ref->flags & E500_TLB_VALID) {
263 /* FIXME: don't log bogus pfn for TLB1 */
264 trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
265 ref->flags = 0;
266 }
267 }
268
269 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
270 {
271 if (vcpu_e500->g2h_tlb1_map)
272 memset(vcpu_e500->g2h_tlb1_map, 0,
273 sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
274 if (vcpu_e500->h2g_tlb1_rmap)
275 memset(vcpu_e500->h2g_tlb1_rmap, 0,
276 sizeof(unsigned int) * host_tlb_params[1].entries);
277 }
278
279 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
280 {
281 int tlbsel;
282 int i;
283
284 for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
285 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
286 struct tlbe_ref *ref =
287 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
288 kvmppc_e500_ref_release(ref);
289 }
290 }
291 }
292
293 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
294 {
295 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
296 kvmppc_e500_tlbil_all(vcpu_e500);
297 clear_tlb_privs(vcpu_e500);
298 clear_tlb1_bitmap(vcpu_e500);
299 }
300
301 /* TID must be supplied by the caller */
302 static void kvmppc_e500_setup_stlbe(
303 struct kvm_vcpu *vcpu,
304 struct kvm_book3e_206_tlb_entry *gtlbe,
305 int tsize, struct tlbe_ref *ref, u64 gvaddr,
306 struct kvm_book3e_206_tlb_entry *stlbe)
307 {
308 pfn_t pfn = ref->pfn;
309 u32 pr = vcpu->arch.shared->msr & MSR_PR;
310
311 BUG_ON(!(ref->flags & E500_TLB_VALID));
312
313 /* Force IPROT=0 for all guest mappings. */
314 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
315 stlbe->mas2 = (gvaddr & MAS2_EPN) |
316 e500_shadow_mas2_attrib(gtlbe->mas2, pr);
317 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
318 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
319
320 #ifdef CONFIG_KVM_BOOKE_HV
321 stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
322 #endif
323 }
324
325 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
326 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
327 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
328 struct tlbe_ref *ref)
329 {
330 struct kvm_memory_slot *slot;
331 unsigned long pfn = 0; /* silence GCC warning */
332 unsigned long hva;
333 int pfnmap = 0;
334 int tsize = BOOK3E_PAGESZ_4K;
335 int ret = 0;
336 unsigned long mmu_seq;
337 struct kvm *kvm = vcpu_e500->vcpu.kvm;
338
339 /* used to check for invalidations in progress */
340 mmu_seq = kvm->mmu_notifier_seq;
341 smp_rmb();
342
343 /*
344 * Translate guest physical to true physical, acquiring
345 * a page reference if it is normal, non-reserved memory.
346 *
347 * gfn_to_memslot() must succeed because otherwise we wouldn't
348 * have gotten this far. Eventually we should just pass the slot
349 * pointer through from the first lookup.
350 */
351 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
352 hva = gfn_to_hva_memslot(slot, gfn);
353
354 if (tlbsel == 1) {
355 struct vm_area_struct *vma;
356 down_read(&current->mm->mmap_sem);
357
358 vma = find_vma(current->mm, hva);
359 if (vma && hva >= vma->vm_start &&
360 (vma->vm_flags & VM_PFNMAP)) {
361 /*
362 * This VMA is a physically contiguous region (e.g.
363 * /dev/mem) that bypasses normal Linux page
364 * management. Find the overlap between the
365 * vma and the memslot.
366 */
367
368 unsigned long start, end;
369 unsigned long slot_start, slot_end;
370
371 pfnmap = 1;
372
373 start = vma->vm_pgoff;
374 end = start +
375 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
376
377 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
378
379 slot_start = pfn - (gfn - slot->base_gfn);
380 slot_end = slot_start + slot->npages;
381
382 if (start < slot_start)
383 start = slot_start;
384 if (end > slot_end)
385 end = slot_end;
386
387 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
388 MAS1_TSIZE_SHIFT;
389
390 /*
391 * e500 doesn't implement the lowest tsize bit,
392 * or 1K pages.
393 */
394 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
395
396 /*
397 * Now find the largest tsize (up to what the guest
398 * requested) that will cover gfn, stay within the
399 * range, and for which gfn and pfn are mutually
400 * aligned.
401 */
402
403 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
404 unsigned long gfn_start, gfn_end, tsize_pages;
405 tsize_pages = 1 << (tsize - 2);
406
407 gfn_start = gfn & ~(tsize_pages - 1);
408 gfn_end = gfn_start + tsize_pages;
409
410 if (gfn_start + pfn - gfn < start)
411 continue;
412 if (gfn_end + pfn - gfn > end)
413 continue;
414 if ((gfn & (tsize_pages - 1)) !=
415 (pfn & (tsize_pages - 1)))
416 continue;
417
418 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
419 pfn &= ~(tsize_pages - 1);
420 break;
421 }
422 } else if (vma && hva >= vma->vm_start &&
423 (vma->vm_flags & VM_HUGETLB)) {
424 unsigned long psize = vma_kernel_pagesize(vma);
425
426 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
427 MAS1_TSIZE_SHIFT;
428
429 /*
430 * Take the largest page size that satisfies both host
431 * and guest mapping
432 */
433 tsize = min(__ilog2(psize) - 10, tsize);
434
435 /*
436 * e500 doesn't implement the lowest tsize bit,
437 * or 1K pages.
438 */
439 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
440 }
441
442 up_read(&current->mm->mmap_sem);
443 }
444
445 if (likely(!pfnmap)) {
446 unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
447 pfn = gfn_to_pfn_memslot(slot, gfn);
448 if (is_error_noslot_pfn(pfn)) {
449 printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
450 (long)gfn);
451 return -EINVAL;
452 }
453
454 /* Align guest and physical address to page map boundaries */
455 pfn &= ~(tsize_pages - 1);
456 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
457 }
458
459 spin_lock(&kvm->mmu_lock);
460 if (mmu_notifier_retry(kvm, mmu_seq)) {
461 ret = -EAGAIN;
462 goto out;
463 }
464
465 kvmppc_e500_ref_setup(ref, gtlbe, pfn);
466
467 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
468 ref, gvaddr, stlbe);
469
470 /* Clear i-cache for new pages */
471 kvmppc_mmu_flush_icache(pfn);
472
473 out:
474 spin_unlock(&kvm->mmu_lock);
475
476 /* Drop refcount on page, so that mmu notifiers can clear it */
477 kvm_release_pfn_clean(pfn);
478
479 return ret;
480 }
481
482 /* XXX only map the one-one case, for now use TLB0 */
483 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
484 struct kvm_book3e_206_tlb_entry *stlbe)
485 {
486 struct kvm_book3e_206_tlb_entry *gtlbe;
487 struct tlbe_ref *ref;
488 int stlbsel = 0;
489 int sesel = 0;
490 int r;
491
492 gtlbe = get_entry(vcpu_e500, 0, esel);
493 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
494
495 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
496 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
497 gtlbe, 0, stlbe, ref);
498 if (r)
499 return r;
500
501 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
502
503 return 0;
504 }
505
506 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
507 struct tlbe_ref *ref,
508 int esel)
509 {
510 unsigned int sesel = vcpu_e500->host_tlb1_nv++;
511
512 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
513 vcpu_e500->host_tlb1_nv = 0;
514
515 if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
516 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
517 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
518 }
519
520 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
521 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
522 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
523 WARN_ON(!(ref->flags & E500_TLB_VALID));
524
525 return sesel;
526 }
527
528 /* Caller must ensure that the specified guest TLB entry is safe to insert into
529 * the shadow TLB. */
530 /* For both one-one and one-to-many */
531 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
532 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
533 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
534 {
535 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
536 int sesel;
537 int r;
538
539 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
540 ref);
541 if (r)
542 return r;
543
544 /* Use TLB0 when we can only map a page with 4k */
545 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
546 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
547 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
548 return 0;
549 }
550
551 /* Otherwise map into TLB1 */
552 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
553 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
554
555 return 0;
556 }
557
558 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
559 unsigned int index)
560 {
561 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
562 struct tlbe_priv *priv;
563 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
564 int tlbsel = tlbsel_of(index);
565 int esel = esel_of(index);
566
567 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
568
569 switch (tlbsel) {
570 case 0:
571 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
572
573 /* Triggers after clear_tlb_privs or on initial mapping */
574 if (!(priv->ref.flags & E500_TLB_VALID)) {
575 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
576 } else {
577 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
578 &priv->ref, eaddr, &stlbe);
579 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
580 }
581 break;
582
583 case 1: {
584 gfn_t gfn = gpaddr >> PAGE_SHIFT;
585 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
586 esel);
587 break;
588 }
589
590 default:
591 BUG();
592 break;
593 }
594 }
595
596 /************* MMU Notifiers *************/
597
598 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
599 {
600 trace_kvm_unmap_hva(hva);
601
602 /*
603 * Flush all shadow tlb entries everywhere. This is slow, but
604 * we are 100% sure that we catch the to be unmapped page
605 */
606 kvm_flush_remote_tlbs(kvm);
607
608 return 0;
609 }
610
611 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
612 {
613 /* kvm_unmap_hva flushes everything anyways */
614 kvm_unmap_hva(kvm, start);
615
616 return 0;
617 }
618
619 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
620 {
621 /* XXX could be more clever ;) */
622 return 0;
623 }
624
625 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
626 {
627 /* XXX could be more clever ;) */
628 return 0;
629 }
630
631 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
632 {
633 /* The page will get remapped properly on its next fault */
634 kvm_unmap_hva(kvm, hva);
635 }
636
637 /*****************************************/
638
639 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
640 {
641 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
642 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
643
644 /*
645 * This should never happen on real e500 hardware, but is
646 * architecturally possible -- e.g. in some weird nested
647 * virtualization case.
648 */
649 if (host_tlb_params[0].entries == 0 ||
650 host_tlb_params[1].entries == 0) {
651 pr_err("%s: need to know host tlb size\n", __func__);
652 return -ENODEV;
653 }
654
655 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
656 TLBnCFG_ASSOC_SHIFT;
657 host_tlb_params[1].ways = host_tlb_params[1].entries;
658
659 if (!is_power_of_2(host_tlb_params[0].entries) ||
660 !is_power_of_2(host_tlb_params[0].ways) ||
661 host_tlb_params[0].entries < host_tlb_params[0].ways ||
662 host_tlb_params[0].ways == 0) {
663 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
664 __func__, host_tlb_params[0].entries,
665 host_tlb_params[0].ways);
666 return -ENODEV;
667 }
668
669 host_tlb_params[0].sets =
670 host_tlb_params[0].entries / host_tlb_params[0].ways;
671 host_tlb_params[1].sets = 1;
672
673 vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
674 host_tlb_params[1].entries,
675 GFP_KERNEL);
676 if (!vcpu_e500->h2g_tlb1_rmap)
677 return -EINVAL;
678
679 return 0;
680 }
681
682 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
683 {
684 kfree(vcpu_e500->h2g_tlb1_rmap);
685 }
This page took 0.061387 seconds and 5 git commands to generate.