KVM: PPC: e500: refactor core-specific TLB code
[deliverable/linux.git] / arch / powerpc / kvm / e500_tlb.c
1 /*
2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, yu.liu@freescale.com
5 *
6 * Description:
7 * This file is based on arch/powerpc/kvm/44x_tlb.c,
8 * by Hollis Blanchard <hollisb@us.ibm.com>.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_host.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/hugetlb.h>
28 #include <asm/kvm_ppc.h>
29
30 #include "e500.h"
31 #include "trace.h"
32 #include "timing.h"
33
34 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
35
36 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
37
38 static inline unsigned int gtlb0_get_next_victim(
39 struct kvmppc_vcpu_e500 *vcpu_e500)
40 {
41 unsigned int victim;
42
43 victim = vcpu_e500->gtlb_nv[0]++;
44 if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
45 vcpu_e500->gtlb_nv[0] = 0;
46
47 return victim;
48 }
49
50 static inline unsigned int tlb1_max_shadow_size(void)
51 {
52 /* reserve one entry for magic page */
53 return host_tlb_params[1].entries - tlbcam_index - 1;
54 }
55
56 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
57 {
58 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
59 }
60
61 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
62 {
63 /* Mask off reserved bits. */
64 mas3 &= MAS3_ATTRIB_MASK;
65
66 if (!usermode) {
67 /* Guest is in supervisor mode,
68 * so we need to translate guest
69 * supervisor permissions into user permissions. */
70 mas3 &= ~E500_TLB_USER_PERM_MASK;
71 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
72 }
73
74 return mas3 | E500_TLB_SUPER_PERM_MASK;
75 }
76
77 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
78 {
79 #ifdef CONFIG_SMP
80 return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
81 #else
82 return mas2 & MAS2_ATTRIB_MASK;
83 #endif
84 }
85
86 /*
87 * writing shadow tlb entry to host TLB
88 */
89 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
90 uint32_t mas0)
91 {
92 unsigned long flags;
93
94 local_irq_save(flags);
95 mtspr(SPRN_MAS0, mas0);
96 mtspr(SPRN_MAS1, stlbe->mas1);
97 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
98 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
99 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
100 asm volatile("isync; tlbwe" : : : "memory");
101 local_irq_restore(flags);
102
103 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
104 stlbe->mas2, stlbe->mas7_3);
105 }
106
107 /*
108 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
109 *
110 * We don't care about the address we're searching for, other than that it's
111 * in the right set and is not present in the TLB. Using a zero PID and a
112 * userspace address means we don't have to set and then restore MAS5, or
113 * calculate a proper MAS6 value.
114 */
115 static u32 get_host_mas0(unsigned long eaddr)
116 {
117 unsigned long flags;
118 u32 mas0;
119
120 local_irq_save(flags);
121 mtspr(SPRN_MAS6, 0);
122 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
123 mas0 = mfspr(SPRN_MAS0);
124 local_irq_restore(flags);
125
126 return mas0;
127 }
128
129 /* sesel is for tlb1 only */
130 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
131 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
132 {
133 u32 mas0;
134
135 if (tlbsel == 0) {
136 mas0 = get_host_mas0(stlbe->mas2);
137 __write_host_tlbe(stlbe, mas0);
138 } else {
139 __write_host_tlbe(stlbe,
140 MAS0_TLBSEL(1) |
141 MAS0_ESEL(to_htlb1_esel(sesel)));
142 }
143 }
144
145 #ifdef CONFIG_KVM_E500
146 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
147 {
148 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
149 struct kvm_book3e_206_tlb_entry magic;
150 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
151 unsigned int stid;
152 pfn_t pfn;
153
154 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
155 get_page(pfn_to_page(pfn));
156
157 preempt_disable();
158 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
159
160 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
161 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
162 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
163 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
164 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
165 magic.mas8 = 0;
166
167 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
168 preempt_enable();
169 }
170 #endif
171
172 static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
173 int tlbsel, int esel)
174 {
175 struct kvm_book3e_206_tlb_entry *gtlbe =
176 get_entry(vcpu_e500, tlbsel, esel);
177
178 if (tlbsel == 1) {
179 kvmppc_e500_tlbil_all(vcpu_e500);
180 return;
181 }
182
183 /* Guest tlbe is backed by at most one host tlbe per shadow pid. */
184 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
185 }
186
187 static int tlb0_set_base(gva_t addr, int sets, int ways)
188 {
189 int set_base;
190
191 set_base = (addr >> PAGE_SHIFT) & (sets - 1);
192 set_base *= ways;
193
194 return set_base;
195 }
196
197 static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
198 {
199 return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
200 vcpu_e500->gtlb_params[0].ways);
201 }
202
203 static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
204 {
205 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
206 int esel = get_tlb_esel_bit(vcpu);
207
208 if (tlbsel == 0) {
209 esel &= vcpu_e500->gtlb_params[0].ways - 1;
210 esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
211 } else {
212 esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
213 }
214
215 return esel;
216 }
217
218 /* Search the guest TLB for a matching entry. */
219 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
220 gva_t eaddr, int tlbsel, unsigned int pid, int as)
221 {
222 int size = vcpu_e500->gtlb_params[tlbsel].entries;
223 unsigned int set_base, offset;
224 int i;
225
226 if (tlbsel == 0) {
227 set_base = gtlb0_set_base(vcpu_e500, eaddr);
228 size = vcpu_e500->gtlb_params[0].ways;
229 } else {
230 set_base = 0;
231 }
232
233 offset = vcpu_e500->gtlb_offset[tlbsel];
234
235 for (i = 0; i < size; i++) {
236 struct kvm_book3e_206_tlb_entry *tlbe =
237 &vcpu_e500->gtlb_arch[offset + set_base + i];
238 unsigned int tid;
239
240 if (eaddr < get_tlb_eaddr(tlbe))
241 continue;
242
243 if (eaddr > get_tlb_end(tlbe))
244 continue;
245
246 tid = get_tlb_tid(tlbe);
247 if (tid && (tid != pid))
248 continue;
249
250 if (!get_tlb_v(tlbe))
251 continue;
252
253 if (get_tlb_ts(tlbe) != as && as != -1)
254 continue;
255
256 return set_base + i;
257 }
258
259 return -1;
260 }
261
262 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
263 struct kvm_book3e_206_tlb_entry *gtlbe,
264 pfn_t pfn)
265 {
266 ref->pfn = pfn;
267 ref->flags = E500_TLB_VALID;
268
269 if (tlbe_is_writable(gtlbe))
270 ref->flags |= E500_TLB_DIRTY;
271 }
272
273 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
274 {
275 if (ref->flags & E500_TLB_VALID) {
276 if (ref->flags & E500_TLB_DIRTY)
277 kvm_release_pfn_dirty(ref->pfn);
278 else
279 kvm_release_pfn_clean(ref->pfn);
280
281 ref->flags = 0;
282 }
283 }
284
285 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
286 {
287 int tlbsel = 0;
288 int i;
289
290 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
291 struct tlbe_ref *ref =
292 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
293 kvmppc_e500_ref_release(ref);
294 }
295 }
296
297 static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
298 {
299 int stlbsel = 1;
300 int i;
301
302 kvmppc_e500_tlbil_all(vcpu_e500);
303
304 for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
305 struct tlbe_ref *ref =
306 &vcpu_e500->tlb_refs[stlbsel][i];
307 kvmppc_e500_ref_release(ref);
308 }
309
310 clear_tlb_privs(vcpu_e500);
311 }
312
313 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
314 unsigned int eaddr, int as)
315 {
316 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
317 unsigned int victim, tsized;
318 int tlbsel;
319
320 /* since we only have two TLBs, only lower bit is used. */
321 tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
322 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
323 tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
324
325 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
326 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
327 vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
328 | MAS1_TID(get_tlbmiss_tid(vcpu))
329 | MAS1_TSIZE(tsized);
330 vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
331 | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
332 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
333 vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
334 | (get_cur_pid(vcpu) << 16)
335 | (as ? MAS6_SAS : 0);
336 }
337
338 /* TID must be supplied by the caller */
339 static inline void kvmppc_e500_setup_stlbe(
340 struct kvm_vcpu *vcpu,
341 struct kvm_book3e_206_tlb_entry *gtlbe,
342 int tsize, struct tlbe_ref *ref, u64 gvaddr,
343 struct kvm_book3e_206_tlb_entry *stlbe)
344 {
345 pfn_t pfn = ref->pfn;
346 u32 pr = vcpu->arch.shared->msr & MSR_PR;
347
348 BUG_ON(!(ref->flags & E500_TLB_VALID));
349
350 /* Force IPROT=0 for all guest mappings. */
351 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
352 stlbe->mas2 = (gvaddr & MAS2_EPN) |
353 e500_shadow_mas2_attrib(gtlbe->mas2, pr);
354 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
355 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
356 }
357
358 static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
359 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
360 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
361 struct tlbe_ref *ref)
362 {
363 struct kvm_memory_slot *slot;
364 unsigned long pfn, hva;
365 int pfnmap = 0;
366 int tsize = BOOK3E_PAGESZ_4K;
367
368 /*
369 * Translate guest physical to true physical, acquiring
370 * a page reference if it is normal, non-reserved memory.
371 *
372 * gfn_to_memslot() must succeed because otherwise we wouldn't
373 * have gotten this far. Eventually we should just pass the slot
374 * pointer through from the first lookup.
375 */
376 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
377 hva = gfn_to_hva_memslot(slot, gfn);
378
379 if (tlbsel == 1) {
380 struct vm_area_struct *vma;
381 down_read(&current->mm->mmap_sem);
382
383 vma = find_vma(current->mm, hva);
384 if (vma && hva >= vma->vm_start &&
385 (vma->vm_flags & VM_PFNMAP)) {
386 /*
387 * This VMA is a physically contiguous region (e.g.
388 * /dev/mem) that bypasses normal Linux page
389 * management. Find the overlap between the
390 * vma and the memslot.
391 */
392
393 unsigned long start, end;
394 unsigned long slot_start, slot_end;
395
396 pfnmap = 1;
397
398 start = vma->vm_pgoff;
399 end = start +
400 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
401
402 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
403
404 slot_start = pfn - (gfn - slot->base_gfn);
405 slot_end = slot_start + slot->npages;
406
407 if (start < slot_start)
408 start = slot_start;
409 if (end > slot_end)
410 end = slot_end;
411
412 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
413 MAS1_TSIZE_SHIFT;
414
415 /*
416 * e500 doesn't implement the lowest tsize bit,
417 * or 1K pages.
418 */
419 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
420
421 /*
422 * Now find the largest tsize (up to what the guest
423 * requested) that will cover gfn, stay within the
424 * range, and for which gfn and pfn are mutually
425 * aligned.
426 */
427
428 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
429 unsigned long gfn_start, gfn_end, tsize_pages;
430 tsize_pages = 1 << (tsize - 2);
431
432 gfn_start = gfn & ~(tsize_pages - 1);
433 gfn_end = gfn_start + tsize_pages;
434
435 if (gfn_start + pfn - gfn < start)
436 continue;
437 if (gfn_end + pfn - gfn > end)
438 continue;
439 if ((gfn & (tsize_pages - 1)) !=
440 (pfn & (tsize_pages - 1)))
441 continue;
442
443 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
444 pfn &= ~(tsize_pages - 1);
445 break;
446 }
447 } else if (vma && hva >= vma->vm_start &&
448 (vma->vm_flags & VM_HUGETLB)) {
449 unsigned long psize = vma_kernel_pagesize(vma);
450
451 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
452 MAS1_TSIZE_SHIFT;
453
454 /*
455 * Take the largest page size that satisfies both host
456 * and guest mapping
457 */
458 tsize = min(__ilog2(psize) - 10, tsize);
459
460 /*
461 * e500 doesn't implement the lowest tsize bit,
462 * or 1K pages.
463 */
464 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
465 }
466
467 up_read(&current->mm->mmap_sem);
468 }
469
470 if (likely(!pfnmap)) {
471 unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
472 pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
473 if (is_error_pfn(pfn)) {
474 printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
475 (long)gfn);
476 kvm_release_pfn_clean(pfn);
477 return;
478 }
479
480 /* Align guest and physical address to page map boundaries */
481 pfn &= ~(tsize_pages - 1);
482 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
483 }
484
485 /* Drop old ref and setup new one. */
486 kvmppc_e500_ref_release(ref);
487 kvmppc_e500_ref_setup(ref, gtlbe, pfn);
488
489 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
490 ref, gvaddr, stlbe);
491 }
492
493 /* XXX only map the one-one case, for now use TLB0 */
494 static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
495 int esel,
496 struct kvm_book3e_206_tlb_entry *stlbe)
497 {
498 struct kvm_book3e_206_tlb_entry *gtlbe;
499 struct tlbe_ref *ref;
500
501 gtlbe = get_entry(vcpu_e500, 0, esel);
502 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
503
504 kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
505 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
506 gtlbe, 0, stlbe, ref);
507 }
508
509 /* Caller must ensure that the specified guest TLB entry is safe to insert into
510 * the shadow TLB. */
511 /* XXX for both one-one and one-to-many , for now use TLB1 */
512 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
513 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
514 struct kvm_book3e_206_tlb_entry *stlbe)
515 {
516 struct tlbe_ref *ref;
517 unsigned int victim;
518
519 victim = vcpu_e500->host_tlb1_nv++;
520
521 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
522 vcpu_e500->host_tlb1_nv = 0;
523
524 ref = &vcpu_e500->tlb_refs[1][victim];
525 kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
526
527 return victim;
528 }
529
530 static inline int kvmppc_e500_gtlbe_invalidate(
531 struct kvmppc_vcpu_e500 *vcpu_e500,
532 int tlbsel, int esel)
533 {
534 struct kvm_book3e_206_tlb_entry *gtlbe =
535 get_entry(vcpu_e500, tlbsel, esel);
536
537 if (unlikely(get_tlb_iprot(gtlbe)))
538 return -1;
539
540 gtlbe->mas1 = 0;
541
542 return 0;
543 }
544
545 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
546 {
547 int esel;
548
549 if (value & MMUCSR0_TLB0FI)
550 for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
551 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
552 if (value & MMUCSR0_TLB1FI)
553 for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
554 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
555
556 /* Invalidate all vcpu id mappings */
557 kvmppc_e500_tlbil_all(vcpu_e500);
558
559 return EMULATE_DONE;
560 }
561
562 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
563 {
564 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
565 unsigned int ia;
566 int esel, tlbsel;
567 gva_t ea;
568
569 ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
570
571 ia = (ea >> 2) & 0x1;
572
573 /* since we only have two TLBs, only lower bit is used. */
574 tlbsel = (ea >> 3) & 0x1;
575
576 if (ia) {
577 /* invalidate all entries */
578 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
579 esel++)
580 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
581 } else {
582 ea &= 0xfffff000;
583 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
584 get_cur_pid(vcpu), -1);
585 if (esel >= 0)
586 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
587 }
588
589 /* Invalidate all vcpu id mappings */
590 kvmppc_e500_tlbil_all(vcpu_e500);
591
592 return EMULATE_DONE;
593 }
594
595 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
596 {
597 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
598 int tlbsel, esel;
599 struct kvm_book3e_206_tlb_entry *gtlbe;
600
601 tlbsel = get_tlb_tlbsel(vcpu);
602 esel = get_tlb_esel(vcpu, tlbsel);
603
604 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
605 vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
606 vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
607 vcpu->arch.shared->mas1 = gtlbe->mas1;
608 vcpu->arch.shared->mas2 = gtlbe->mas2;
609 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
610
611 return EMULATE_DONE;
612 }
613
614 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
615 {
616 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
617 int as = !!get_cur_sas(vcpu);
618 unsigned int pid = get_cur_spid(vcpu);
619 int esel, tlbsel;
620 struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
621 gva_t ea;
622
623 ea = kvmppc_get_gpr(vcpu, rb);
624
625 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
626 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
627 if (esel >= 0) {
628 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
629 break;
630 }
631 }
632
633 if (gtlbe) {
634 esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
635
636 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
637 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
638 vcpu->arch.shared->mas1 = gtlbe->mas1;
639 vcpu->arch.shared->mas2 = gtlbe->mas2;
640 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
641 } else {
642 int victim;
643
644 /* since we only have two TLBs, only lower bit is used. */
645 tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
646 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
647
648 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
649 | MAS0_ESEL(victim)
650 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
651 vcpu->arch.shared->mas1 =
652 (vcpu->arch.shared->mas6 & MAS6_SPID0)
653 | (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
654 | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
655 vcpu->arch.shared->mas2 &= MAS2_EPN;
656 vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
657 MAS2_ATTRIB_MASK;
658 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
659 MAS3_U2 | MAS3_U3;
660 }
661
662 kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
663 return EMULATE_DONE;
664 }
665
666 /* sesel is for tlb1 only */
667 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
668 struct kvm_book3e_206_tlb_entry *gtlbe,
669 struct kvm_book3e_206_tlb_entry *stlbe,
670 int stlbsel, int sesel)
671 {
672 int stid;
673
674 preempt_disable();
675 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
676
677 stlbe->mas1 |= MAS1_TID(stid);
678 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
679 preempt_enable();
680 }
681
682 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
683 {
684 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
685 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
686 int tlbsel, esel, stlbsel, sesel;
687
688 tlbsel = get_tlb_tlbsel(vcpu);
689 esel = get_tlb_esel(vcpu, tlbsel);
690
691 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
692
693 if (get_tlb_v(gtlbe))
694 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
695
696 gtlbe->mas1 = vcpu->arch.shared->mas1;
697 gtlbe->mas2 = vcpu->arch.shared->mas2;
698 gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
699
700 trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
701 gtlbe->mas2, gtlbe->mas7_3);
702
703 /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
704 if (tlbe_is_host_safe(vcpu, gtlbe)) {
705 u64 eaddr;
706 u64 raddr;
707
708 switch (tlbsel) {
709 case 0:
710 /* TLB0 */
711 gtlbe->mas1 &= ~MAS1_TSIZE(~0);
712 gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
713
714 stlbsel = 0;
715 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
716 sesel = 0; /* unused */
717
718 break;
719
720 case 1:
721 /* TLB1 */
722 eaddr = get_tlb_eaddr(gtlbe);
723 raddr = get_tlb_raddr(gtlbe);
724
725 /* Create a 4KB mapping on the host.
726 * If the guest wanted a large page,
727 * only the first 4KB is mapped here and the rest
728 * are mapped on the fly. */
729 stlbsel = 1;
730 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
731 raddr >> PAGE_SHIFT, gtlbe, &stlbe);
732 break;
733
734 default:
735 BUG();
736 }
737
738 write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
739 }
740
741 kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
742 return EMULATE_DONE;
743 }
744
745 static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
746 gva_t eaddr, unsigned int pid, int as)
747 {
748 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
749 int esel, tlbsel;
750
751 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
752 esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
753 if (esel >= 0)
754 return index_of(tlbsel, esel);
755 }
756
757 return -1;
758 }
759
760 /* 'linear_address' is actually an encoding of AS|PID|EADDR . */
761 int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
762 struct kvm_translation *tr)
763 {
764 int index;
765 gva_t eaddr;
766 u8 pid;
767 u8 as;
768
769 eaddr = tr->linear_address;
770 pid = (tr->linear_address >> 32) & 0xff;
771 as = (tr->linear_address >> 40) & 0x1;
772
773 index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
774 if (index < 0) {
775 tr->valid = 0;
776 return 0;
777 }
778
779 tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
780 /* XXX what does "writeable" and "usermode" even mean? */
781 tr->valid = 1;
782
783 return 0;
784 }
785
786
787 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
788 {
789 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
790
791 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
792 }
793
794 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
795 {
796 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
797
798 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
799 }
800
801 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
802 {
803 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
804
805 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
806 }
807
808 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
809 {
810 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
811
812 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
813 }
814
815 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
816 gva_t eaddr)
817 {
818 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
819 struct kvm_book3e_206_tlb_entry *gtlbe;
820 u64 pgmask;
821
822 gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
823 pgmask = get_tlb_bytes(gtlbe) - 1;
824
825 return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
826 }
827
828 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
829 {
830 }
831
832 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
833 unsigned int index)
834 {
835 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
836 struct tlbe_priv *priv;
837 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
838 int tlbsel = tlbsel_of(index);
839 int esel = esel_of(index);
840 int stlbsel, sesel;
841
842 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
843
844 switch (tlbsel) {
845 case 0:
846 stlbsel = 0;
847 sesel = 0; /* unused */
848 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
849
850 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
851 &priv->ref, eaddr, &stlbe);
852 break;
853
854 case 1: {
855 gfn_t gfn = gpaddr >> PAGE_SHIFT;
856
857 stlbsel = 1;
858 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
859 gtlbe, &stlbe);
860 break;
861 }
862
863 default:
864 BUG();
865 break;
866 }
867
868 write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
869 }
870
871 static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
872 {
873 int i;
874
875 clear_tlb_refs(vcpu_e500);
876 kfree(vcpu_e500->gtlb_priv[0]);
877 kfree(vcpu_e500->gtlb_priv[1]);
878
879 if (vcpu_e500->shared_tlb_pages) {
880 vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
881 PAGE_SIZE)));
882
883 for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
884 set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
885 put_page(vcpu_e500->shared_tlb_pages[i]);
886 }
887
888 vcpu_e500->num_shared_tlb_pages = 0;
889 vcpu_e500->shared_tlb_pages = NULL;
890 } else {
891 kfree(vcpu_e500->gtlb_arch);
892 }
893
894 vcpu_e500->gtlb_arch = NULL;
895 }
896
897 void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
898 {
899 sregs->u.e.mas0 = vcpu->arch.shared->mas0;
900 sregs->u.e.mas1 = vcpu->arch.shared->mas1;
901 sregs->u.e.mas2 = vcpu->arch.shared->mas2;
902 sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
903 sregs->u.e.mas4 = vcpu->arch.shared->mas4;
904 sregs->u.e.mas6 = vcpu->arch.shared->mas6;
905
906 sregs->u.e.mmucfg = vcpu->arch.mmucfg;
907 sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
908 sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
909 sregs->u.e.tlbcfg[2] = 0;
910 sregs->u.e.tlbcfg[3] = 0;
911 }
912
913 int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
914 {
915 if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
916 vcpu->arch.shared->mas0 = sregs->u.e.mas0;
917 vcpu->arch.shared->mas1 = sregs->u.e.mas1;
918 vcpu->arch.shared->mas2 = sregs->u.e.mas2;
919 vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
920 vcpu->arch.shared->mas4 = sregs->u.e.mas4;
921 vcpu->arch.shared->mas6 = sregs->u.e.mas6;
922 }
923
924 return 0;
925 }
926
927 int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
928 struct kvm_config_tlb *cfg)
929 {
930 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
931 struct kvm_book3e_206_tlb_params params;
932 char *virt;
933 struct page **pages;
934 struct tlbe_priv *privs[2] = {};
935 size_t array_len;
936 u32 sets;
937 int num_pages, ret, i;
938
939 if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
940 return -EINVAL;
941
942 if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
943 sizeof(params)))
944 return -EFAULT;
945
946 if (params.tlb_sizes[1] > 64)
947 return -EINVAL;
948 if (params.tlb_ways[1] != params.tlb_sizes[1])
949 return -EINVAL;
950 if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
951 return -EINVAL;
952 if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
953 return -EINVAL;
954
955 if (!is_power_of_2(params.tlb_ways[0]))
956 return -EINVAL;
957
958 sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
959 if (!is_power_of_2(sets))
960 return -EINVAL;
961
962 array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
963 array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
964
965 if (cfg->array_len < array_len)
966 return -EINVAL;
967
968 num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
969 cfg->array / PAGE_SIZE;
970 pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
971 if (!pages)
972 return -ENOMEM;
973
974 ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
975 if (ret < 0)
976 goto err_pages;
977
978 if (ret != num_pages) {
979 num_pages = ret;
980 ret = -EFAULT;
981 goto err_put_page;
982 }
983
984 virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
985 if (!virt)
986 goto err_put_page;
987
988 privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
989 GFP_KERNEL);
990 privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
991 GFP_KERNEL);
992
993 if (!privs[0] || !privs[1])
994 goto err_put_page;
995
996 free_gtlb(vcpu_e500);
997
998 vcpu_e500->gtlb_priv[0] = privs[0];
999 vcpu_e500->gtlb_priv[1] = privs[1];
1000
1001 vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
1002 (virt + (cfg->array & (PAGE_SIZE - 1)));
1003
1004 vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
1005 vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
1006
1007 vcpu_e500->gtlb_offset[0] = 0;
1008 vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
1009
1010 vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
1011
1012 vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1013 if (params.tlb_sizes[0] <= 2048)
1014 vcpu->arch.tlbcfg[0] |= params.tlb_sizes[0];
1015 vcpu->arch.tlbcfg[0] |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
1016
1017 vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1018 vcpu->arch.tlbcfg[1] |= params.tlb_sizes[1];
1019 vcpu->arch.tlbcfg[1] |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
1020
1021 vcpu_e500->shared_tlb_pages = pages;
1022 vcpu_e500->num_shared_tlb_pages = num_pages;
1023
1024 vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
1025 vcpu_e500->gtlb_params[0].sets = sets;
1026
1027 vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
1028 vcpu_e500->gtlb_params[1].sets = 1;
1029
1030 return 0;
1031
1032 err_put_page:
1033 kfree(privs[0]);
1034 kfree(privs[1]);
1035
1036 for (i = 0; i < num_pages; i++)
1037 put_page(pages[i]);
1038
1039 err_pages:
1040 kfree(pages);
1041 return ret;
1042 }
1043
1044 int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
1045 struct kvm_dirty_tlb *dirty)
1046 {
1047 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1048
1049 clear_tlb_refs(vcpu_e500);
1050 return 0;
1051 }
1052
1053 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
1054 {
1055 struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
1056 int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
1057 int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
1058
1059 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
1060 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
1061
1062 /*
1063 * This should never happen on real e500 hardware, but is
1064 * architecturally possible -- e.g. in some weird nested
1065 * virtualization case.
1066 */
1067 if (host_tlb_params[0].entries == 0 ||
1068 host_tlb_params[1].entries == 0) {
1069 pr_err("%s: need to know host tlb size\n", __func__);
1070 return -ENODEV;
1071 }
1072
1073 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
1074 TLBnCFG_ASSOC_SHIFT;
1075 host_tlb_params[1].ways = host_tlb_params[1].entries;
1076
1077 if (!is_power_of_2(host_tlb_params[0].entries) ||
1078 !is_power_of_2(host_tlb_params[0].ways) ||
1079 host_tlb_params[0].entries < host_tlb_params[0].ways ||
1080 host_tlb_params[0].ways == 0) {
1081 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
1082 __func__, host_tlb_params[0].entries,
1083 host_tlb_params[0].ways);
1084 return -ENODEV;
1085 }
1086
1087 host_tlb_params[0].sets =
1088 host_tlb_params[0].entries / host_tlb_params[0].ways;
1089 host_tlb_params[1].sets = 1;
1090
1091 vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
1092 vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
1093
1094 vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
1095 vcpu_e500->gtlb_params[0].sets =
1096 KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
1097
1098 vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
1099 vcpu_e500->gtlb_params[1].sets = 1;
1100
1101 vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
1102 if (!vcpu_e500->gtlb_arch)
1103 return -ENOMEM;
1104
1105 vcpu_e500->gtlb_offset[0] = 0;
1106 vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
1107
1108 vcpu_e500->tlb_refs[0] =
1109 kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
1110 GFP_KERNEL);
1111 if (!vcpu_e500->tlb_refs[0])
1112 goto err;
1113
1114 vcpu_e500->tlb_refs[1] =
1115 kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
1116 GFP_KERNEL);
1117 if (!vcpu_e500->tlb_refs[1])
1118 goto err;
1119
1120 vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
1121 vcpu_e500->gtlb_params[0].entries,
1122 GFP_KERNEL);
1123 if (!vcpu_e500->gtlb_priv[0])
1124 goto err;
1125
1126 vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
1127 vcpu_e500->gtlb_params[1].entries,
1128 GFP_KERNEL);
1129 if (!vcpu_e500->gtlb_priv[1])
1130 goto err;
1131
1132 /* Init TLB configuration register */
1133 vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
1134 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1135 vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].entries;
1136 vcpu->arch.tlbcfg[0] |=
1137 vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
1138
1139 vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
1140 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1141 vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[1].entries;
1142 vcpu->arch.tlbcfg[0] |=
1143 vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
1144
1145 return 0;
1146
1147 err:
1148 free_gtlb(vcpu_e500);
1149 kfree(vcpu_e500->tlb_refs[0]);
1150 kfree(vcpu_e500->tlb_refs[1]);
1151 return -1;
1152 }
1153
1154 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
1155 {
1156 free_gtlb(vcpu_e500);
1157 kfree(vcpu_e500->tlb_refs[0]);
1158 kfree(vcpu_e500->tlb_refs[1]);
1159 }
This page took 0.059068 seconds and 5 git commands to generate.