KVM: PPC: Use kvm_read_guest in kvmppc_ld
[deliverable/linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <asm/cputable.h>
31 #include <asm/uaccess.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cputhreads.h>
35 #include <asm/irqflags.h>
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51 return !!(v->arch.pending_exceptions) ||
52 v->requests;
53 }
54
55 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
56 {
57 return 1;
58 }
59
60 /*
61 * Common checks before entering the guest world. Call with interrupts
62 * disabled.
63 *
64 * returns:
65 *
66 * == 1 if we're ready to go into guest state
67 * <= 0 if we need to go back to the host with return value
68 */
69 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
70 {
71 int r;
72
73 WARN_ON(irqs_disabled());
74 hard_irq_disable();
75
76 while (true) {
77 if (need_resched()) {
78 local_irq_enable();
79 cond_resched();
80 hard_irq_disable();
81 continue;
82 }
83
84 if (signal_pending(current)) {
85 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
86 vcpu->run->exit_reason = KVM_EXIT_INTR;
87 r = -EINTR;
88 break;
89 }
90
91 vcpu->mode = IN_GUEST_MODE;
92
93 /*
94 * Reading vcpu->requests must happen after setting vcpu->mode,
95 * so we don't miss a request because the requester sees
96 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
97 * before next entering the guest (and thus doesn't IPI).
98 */
99 smp_mb();
100
101 if (vcpu->requests) {
102 /* Make sure we process requests preemptable */
103 local_irq_enable();
104 trace_kvm_check_requests(vcpu);
105 r = kvmppc_core_check_requests(vcpu);
106 hard_irq_disable();
107 if (r > 0)
108 continue;
109 break;
110 }
111
112 if (kvmppc_core_prepare_to_enter(vcpu)) {
113 /* interrupts got enabled in between, so we
114 are back at square 1 */
115 continue;
116 }
117
118 kvm_guest_enter();
119 return 1;
120 }
121
122 /* return to host */
123 local_irq_enable();
124 return r;
125 }
126 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
127
128 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
129 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
130 {
131 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
132 int i;
133
134 shared->sprg0 = swab64(shared->sprg0);
135 shared->sprg1 = swab64(shared->sprg1);
136 shared->sprg2 = swab64(shared->sprg2);
137 shared->sprg3 = swab64(shared->sprg3);
138 shared->srr0 = swab64(shared->srr0);
139 shared->srr1 = swab64(shared->srr1);
140 shared->dar = swab64(shared->dar);
141 shared->msr = swab64(shared->msr);
142 shared->dsisr = swab32(shared->dsisr);
143 shared->int_pending = swab32(shared->int_pending);
144 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
145 shared->sr[i] = swab32(shared->sr[i]);
146 }
147 #endif
148
149 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
150 {
151 int nr = kvmppc_get_gpr(vcpu, 11);
152 int r;
153 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
154 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
155 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
156 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
157 unsigned long r2 = 0;
158
159 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
160 /* 32 bit mode */
161 param1 &= 0xffffffff;
162 param2 &= 0xffffffff;
163 param3 &= 0xffffffff;
164 param4 &= 0xffffffff;
165 }
166
167 switch (nr) {
168 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
169 {
170 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
171 /* Book3S can be little endian, find it out here */
172 int shared_big_endian = true;
173 if (vcpu->arch.intr_msr & MSR_LE)
174 shared_big_endian = false;
175 if (shared_big_endian != vcpu->arch.shared_big_endian)
176 kvmppc_swab_shared(vcpu);
177 vcpu->arch.shared_big_endian = shared_big_endian;
178 #endif
179
180 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
181 /*
182 * Older versions of the Linux magic page code had
183 * a bug where they would map their trampoline code
184 * NX. If that's the case, remove !PR NX capability.
185 */
186 vcpu->arch.disable_kernel_nx = true;
187 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
188 }
189
190 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
191 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
192
193 #ifdef CONFIG_PPC_64K_PAGES
194 /*
195 * Make sure our 4k magic page is in the same window of a 64k
196 * page within the guest and within the host's page.
197 */
198 if ((vcpu->arch.magic_page_pa & 0xf000) !=
199 ((ulong)vcpu->arch.shared & 0xf000)) {
200 void *old_shared = vcpu->arch.shared;
201 ulong shared = (ulong)vcpu->arch.shared;
202 void *new_shared;
203
204 shared &= PAGE_MASK;
205 shared |= vcpu->arch.magic_page_pa & 0xf000;
206 new_shared = (void*)shared;
207 memcpy(new_shared, old_shared, 0x1000);
208 vcpu->arch.shared = new_shared;
209 }
210 #endif
211
212 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
213
214 r = EV_SUCCESS;
215 break;
216 }
217 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
218 r = EV_SUCCESS;
219 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
220 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
221 #endif
222
223 /* Second return value is in r4 */
224 break;
225 case EV_HCALL_TOKEN(EV_IDLE):
226 r = EV_SUCCESS;
227 kvm_vcpu_block(vcpu);
228 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
229 break;
230 default:
231 r = EV_UNIMPLEMENTED;
232 break;
233 }
234
235 kvmppc_set_gpr(vcpu, 4, r2);
236
237 return r;
238 }
239 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
240
241 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
242 {
243 int r = false;
244
245 /* We have to know what CPU to virtualize */
246 if (!vcpu->arch.pvr)
247 goto out;
248
249 /* PAPR only works with book3s_64 */
250 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
251 goto out;
252
253 /* HV KVM can only do PAPR mode for now */
254 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
255 goto out;
256
257 #ifdef CONFIG_KVM_BOOKE_HV
258 if (!cpu_has_feature(CPU_FTR_EMB_HV))
259 goto out;
260 #endif
261
262 r = true;
263
264 out:
265 vcpu->arch.sane = r;
266 return r ? 0 : -EINVAL;
267 }
268 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
269
270 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
271 {
272 enum emulation_result er;
273 int r;
274
275 er = kvmppc_emulate_instruction(run, vcpu);
276 switch (er) {
277 case EMULATE_DONE:
278 /* Future optimization: only reload non-volatiles if they were
279 * actually modified. */
280 r = RESUME_GUEST_NV;
281 break;
282 case EMULATE_AGAIN:
283 r = RESUME_GUEST;
284 break;
285 case EMULATE_DO_MMIO:
286 run->exit_reason = KVM_EXIT_MMIO;
287 /* We must reload nonvolatiles because "update" load/store
288 * instructions modify register state. */
289 /* Future optimization: only reload non-volatiles if they were
290 * actually modified. */
291 r = RESUME_HOST_NV;
292 break;
293 case EMULATE_FAIL:
294 {
295 u32 last_inst;
296
297 kvmppc_get_last_inst(vcpu, false, &last_inst);
298 /* XXX Deliver Program interrupt to guest. */
299 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
300 r = RESUME_HOST;
301 break;
302 }
303 default:
304 WARN_ON(1);
305 r = RESUME_GUEST;
306 }
307
308 return r;
309 }
310 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
311
312 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
313 bool data)
314 {
315 struct kvmppc_pte pte;
316 int r;
317
318 vcpu->stat.st++;
319
320 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
321 XLATE_WRITE, &pte);
322 if (r < 0)
323 return r;
324
325 *eaddr = pte.raddr;
326
327 if (!pte.may_write)
328 return -EPERM;
329
330 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
331 return EMULATE_DO_MMIO;
332
333 return EMULATE_DONE;
334 }
335 EXPORT_SYMBOL_GPL(kvmppc_st);
336
337 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
338 bool data)
339 {
340 struct kvmppc_pte pte;
341 int rc;
342
343 vcpu->stat.ld++;
344
345 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
346 XLATE_READ, &pte);
347 if (rc)
348 return rc;
349
350 *eaddr = pte.raddr;
351
352 if (!pte.may_read)
353 return -EPERM;
354
355 if (!data && !pte.may_execute)
356 return -ENOEXEC;
357
358 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
359 return EMULATE_DO_MMIO;
360
361 return EMULATE_DONE;
362 }
363 EXPORT_SYMBOL_GPL(kvmppc_ld);
364
365 int kvm_arch_hardware_enable(void *garbage)
366 {
367 return 0;
368 }
369
370 void kvm_arch_hardware_disable(void *garbage)
371 {
372 }
373
374 int kvm_arch_hardware_setup(void)
375 {
376 return 0;
377 }
378
379 void kvm_arch_hardware_unsetup(void)
380 {
381 }
382
383 void kvm_arch_check_processor_compat(void *rtn)
384 {
385 *(int *)rtn = kvmppc_core_check_processor_compat();
386 }
387
388 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
389 {
390 struct kvmppc_ops *kvm_ops = NULL;
391 /*
392 * if we have both HV and PR enabled, default is HV
393 */
394 if (type == 0) {
395 if (kvmppc_hv_ops)
396 kvm_ops = kvmppc_hv_ops;
397 else
398 kvm_ops = kvmppc_pr_ops;
399 if (!kvm_ops)
400 goto err_out;
401 } else if (type == KVM_VM_PPC_HV) {
402 if (!kvmppc_hv_ops)
403 goto err_out;
404 kvm_ops = kvmppc_hv_ops;
405 } else if (type == KVM_VM_PPC_PR) {
406 if (!kvmppc_pr_ops)
407 goto err_out;
408 kvm_ops = kvmppc_pr_ops;
409 } else
410 goto err_out;
411
412 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
413 return -ENOENT;
414
415 kvm->arch.kvm_ops = kvm_ops;
416 return kvmppc_core_init_vm(kvm);
417 err_out:
418 return -EINVAL;
419 }
420
421 void kvm_arch_destroy_vm(struct kvm *kvm)
422 {
423 unsigned int i;
424 struct kvm_vcpu *vcpu;
425
426 kvm_for_each_vcpu(i, vcpu, kvm)
427 kvm_arch_vcpu_free(vcpu);
428
429 mutex_lock(&kvm->lock);
430 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
431 kvm->vcpus[i] = NULL;
432
433 atomic_set(&kvm->online_vcpus, 0);
434
435 kvmppc_core_destroy_vm(kvm);
436
437 mutex_unlock(&kvm->lock);
438
439 /* drop the module reference */
440 module_put(kvm->arch.kvm_ops->owner);
441 }
442
443 void kvm_arch_sync_events(struct kvm *kvm)
444 {
445 }
446
447 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
448 {
449 int r;
450 /* Assume we're using HV mode when the HV module is loaded */
451 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
452
453 if (kvm) {
454 /*
455 * Hooray - we know which VM type we're running on. Depend on
456 * that rather than the guess above.
457 */
458 hv_enabled = is_kvmppc_hv_enabled(kvm);
459 }
460
461 switch (ext) {
462 #ifdef CONFIG_BOOKE
463 case KVM_CAP_PPC_BOOKE_SREGS:
464 case KVM_CAP_PPC_BOOKE_WATCHDOG:
465 case KVM_CAP_PPC_EPR:
466 #else
467 case KVM_CAP_PPC_SEGSTATE:
468 case KVM_CAP_PPC_HIOR:
469 case KVM_CAP_PPC_PAPR:
470 #endif
471 case KVM_CAP_PPC_UNSET_IRQ:
472 case KVM_CAP_PPC_IRQ_LEVEL:
473 case KVM_CAP_ENABLE_CAP:
474 case KVM_CAP_ENABLE_CAP_VM:
475 case KVM_CAP_ONE_REG:
476 case KVM_CAP_IOEVENTFD:
477 case KVM_CAP_DEVICE_CTRL:
478 r = 1;
479 break;
480 case KVM_CAP_PPC_PAIRED_SINGLES:
481 case KVM_CAP_PPC_OSI:
482 case KVM_CAP_PPC_GET_PVINFO:
483 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
484 case KVM_CAP_SW_TLB:
485 #endif
486 /* We support this only for PR */
487 r = !hv_enabled;
488 break;
489 #ifdef CONFIG_KVM_MMIO
490 case KVM_CAP_COALESCED_MMIO:
491 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
492 break;
493 #endif
494 #ifdef CONFIG_KVM_MPIC
495 case KVM_CAP_IRQ_MPIC:
496 r = 1;
497 break;
498 #endif
499
500 #ifdef CONFIG_PPC_BOOK3S_64
501 case KVM_CAP_SPAPR_TCE:
502 case KVM_CAP_PPC_ALLOC_HTAB:
503 case KVM_CAP_PPC_RTAS:
504 case KVM_CAP_PPC_FIXUP_HCALL:
505 case KVM_CAP_PPC_ENABLE_HCALL:
506 #ifdef CONFIG_KVM_XICS
507 case KVM_CAP_IRQ_XICS:
508 #endif
509 r = 1;
510 break;
511 #endif /* CONFIG_PPC_BOOK3S_64 */
512 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
513 case KVM_CAP_PPC_SMT:
514 if (hv_enabled)
515 r = threads_per_subcore;
516 else
517 r = 0;
518 break;
519 case KVM_CAP_PPC_RMA:
520 r = hv_enabled;
521 /* PPC970 requires an RMA */
522 if (r && cpu_has_feature(CPU_FTR_ARCH_201))
523 r = 2;
524 break;
525 #endif
526 case KVM_CAP_SYNC_MMU:
527 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
528 if (hv_enabled)
529 r = cpu_has_feature(CPU_FTR_ARCH_206) ? 1 : 0;
530 else
531 r = 0;
532 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
533 r = 1;
534 #else
535 r = 0;
536 #endif
537 break;
538 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
539 case KVM_CAP_PPC_HTAB_FD:
540 r = hv_enabled;
541 break;
542 #endif
543 case KVM_CAP_NR_VCPUS:
544 /*
545 * Recommending a number of CPUs is somewhat arbitrary; we
546 * return the number of present CPUs for -HV (since a host
547 * will have secondary threads "offline"), and for other KVM
548 * implementations just count online CPUs.
549 */
550 if (hv_enabled)
551 r = num_present_cpus();
552 else
553 r = num_online_cpus();
554 break;
555 case KVM_CAP_MAX_VCPUS:
556 r = KVM_MAX_VCPUS;
557 break;
558 #ifdef CONFIG_PPC_BOOK3S_64
559 case KVM_CAP_PPC_GET_SMMU_INFO:
560 r = 1;
561 break;
562 #endif
563 default:
564 r = 0;
565 break;
566 }
567 return r;
568
569 }
570
571 long kvm_arch_dev_ioctl(struct file *filp,
572 unsigned int ioctl, unsigned long arg)
573 {
574 return -EINVAL;
575 }
576
577 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
578 struct kvm_memory_slot *dont)
579 {
580 kvmppc_core_free_memslot(kvm, free, dont);
581 }
582
583 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
584 unsigned long npages)
585 {
586 return kvmppc_core_create_memslot(kvm, slot, npages);
587 }
588
589 void kvm_arch_memslots_updated(struct kvm *kvm)
590 {
591 }
592
593 int kvm_arch_prepare_memory_region(struct kvm *kvm,
594 struct kvm_memory_slot *memslot,
595 struct kvm_userspace_memory_region *mem,
596 enum kvm_mr_change change)
597 {
598 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
599 }
600
601 void kvm_arch_commit_memory_region(struct kvm *kvm,
602 struct kvm_userspace_memory_region *mem,
603 const struct kvm_memory_slot *old,
604 enum kvm_mr_change change)
605 {
606 kvmppc_core_commit_memory_region(kvm, mem, old);
607 }
608
609 void kvm_arch_flush_shadow_all(struct kvm *kvm)
610 {
611 }
612
613 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
614 struct kvm_memory_slot *slot)
615 {
616 kvmppc_core_flush_memslot(kvm, slot);
617 }
618
619 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
620 {
621 struct kvm_vcpu *vcpu;
622 vcpu = kvmppc_core_vcpu_create(kvm, id);
623 if (!IS_ERR(vcpu)) {
624 vcpu->arch.wqp = &vcpu->wq;
625 kvmppc_create_vcpu_debugfs(vcpu, id);
626 }
627 return vcpu;
628 }
629
630 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
631 {
632 return 0;
633 }
634
635 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
636 {
637 /* Make sure we're not using the vcpu anymore */
638 hrtimer_cancel(&vcpu->arch.dec_timer);
639 tasklet_kill(&vcpu->arch.tasklet);
640
641 kvmppc_remove_vcpu_debugfs(vcpu);
642
643 switch (vcpu->arch.irq_type) {
644 case KVMPPC_IRQ_MPIC:
645 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
646 break;
647 case KVMPPC_IRQ_XICS:
648 kvmppc_xics_free_icp(vcpu);
649 break;
650 }
651
652 kvmppc_core_vcpu_free(vcpu);
653 }
654
655 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
656 {
657 kvm_arch_vcpu_free(vcpu);
658 }
659
660 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
661 {
662 return kvmppc_core_pending_dec(vcpu);
663 }
664
665 /*
666 * low level hrtimer wake routine. Because this runs in hardirq context
667 * we schedule a tasklet to do the real work.
668 */
669 enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
670 {
671 struct kvm_vcpu *vcpu;
672
673 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
674 tasklet_schedule(&vcpu->arch.tasklet);
675
676 return HRTIMER_NORESTART;
677 }
678
679 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
680 {
681 int ret;
682
683 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
684 tasklet_init(&vcpu->arch.tasklet, kvmppc_decrementer_func, (ulong)vcpu);
685 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
686 vcpu->arch.dec_expires = ~(u64)0;
687
688 #ifdef CONFIG_KVM_EXIT_TIMING
689 mutex_init(&vcpu->arch.exit_timing_lock);
690 #endif
691 ret = kvmppc_subarch_vcpu_init(vcpu);
692 return ret;
693 }
694
695 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
696 {
697 kvmppc_mmu_destroy(vcpu);
698 kvmppc_subarch_vcpu_uninit(vcpu);
699 }
700
701 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
702 {
703 #ifdef CONFIG_BOOKE
704 /*
705 * vrsave (formerly usprg0) isn't used by Linux, but may
706 * be used by the guest.
707 *
708 * On non-booke this is associated with Altivec and
709 * is handled by code in book3s.c.
710 */
711 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
712 #endif
713 kvmppc_core_vcpu_load(vcpu, cpu);
714 }
715
716 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
717 {
718 kvmppc_core_vcpu_put(vcpu);
719 #ifdef CONFIG_BOOKE
720 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
721 #endif
722 }
723
724 static void kvmppc_complete_dcr_load(struct kvm_vcpu *vcpu,
725 struct kvm_run *run)
726 {
727 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, run->dcr.data);
728 }
729
730 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
731 struct kvm_run *run)
732 {
733 u64 uninitialized_var(gpr);
734
735 if (run->mmio.len > sizeof(gpr)) {
736 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
737 return;
738 }
739
740 if (vcpu->arch.mmio_is_bigendian) {
741 switch (run->mmio.len) {
742 case 8: gpr = *(u64 *)run->mmio.data; break;
743 case 4: gpr = *(u32 *)run->mmio.data; break;
744 case 2: gpr = *(u16 *)run->mmio.data; break;
745 case 1: gpr = *(u8 *)run->mmio.data; break;
746 }
747 } else {
748 /* Convert BE data from userland back to LE. */
749 switch (run->mmio.len) {
750 case 4: gpr = ld_le32((u32 *)run->mmio.data); break;
751 case 2: gpr = ld_le16((u16 *)run->mmio.data); break;
752 case 1: gpr = *(u8 *)run->mmio.data; break;
753 }
754 }
755
756 if (vcpu->arch.mmio_sign_extend) {
757 switch (run->mmio.len) {
758 #ifdef CONFIG_PPC64
759 case 4:
760 gpr = (s64)(s32)gpr;
761 break;
762 #endif
763 case 2:
764 gpr = (s64)(s16)gpr;
765 break;
766 case 1:
767 gpr = (s64)(s8)gpr;
768 break;
769 }
770 }
771
772 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
773
774 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
775 case KVM_MMIO_REG_GPR:
776 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
777 break;
778 case KVM_MMIO_REG_FPR:
779 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
780 break;
781 #ifdef CONFIG_PPC_BOOK3S
782 case KVM_MMIO_REG_QPR:
783 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
784 break;
785 case KVM_MMIO_REG_FQPR:
786 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
787 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
788 break;
789 #endif
790 default:
791 BUG();
792 }
793 }
794
795 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
796 unsigned int rt, unsigned int bytes,
797 int is_default_endian)
798 {
799 int idx, ret;
800 int is_bigendian;
801
802 if (kvmppc_need_byteswap(vcpu)) {
803 /* Default endianness is "little endian". */
804 is_bigendian = !is_default_endian;
805 } else {
806 /* Default endianness is "big endian". */
807 is_bigendian = is_default_endian;
808 }
809
810 if (bytes > sizeof(run->mmio.data)) {
811 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
812 run->mmio.len);
813 }
814
815 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
816 run->mmio.len = bytes;
817 run->mmio.is_write = 0;
818
819 vcpu->arch.io_gpr = rt;
820 vcpu->arch.mmio_is_bigendian = is_bigendian;
821 vcpu->mmio_needed = 1;
822 vcpu->mmio_is_write = 0;
823 vcpu->arch.mmio_sign_extend = 0;
824
825 idx = srcu_read_lock(&vcpu->kvm->srcu);
826
827 ret = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, run->mmio.phys_addr,
828 bytes, &run->mmio.data);
829
830 srcu_read_unlock(&vcpu->kvm->srcu, idx);
831
832 if (!ret) {
833 kvmppc_complete_mmio_load(vcpu, run);
834 vcpu->mmio_needed = 0;
835 return EMULATE_DONE;
836 }
837
838 return EMULATE_DO_MMIO;
839 }
840 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
841
842 /* Same as above, but sign extends */
843 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
844 unsigned int rt, unsigned int bytes,
845 int is_default_endian)
846 {
847 int r;
848
849 vcpu->arch.mmio_sign_extend = 1;
850 r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian);
851
852 return r;
853 }
854
855 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
856 u64 val, unsigned int bytes, int is_default_endian)
857 {
858 void *data = run->mmio.data;
859 int idx, ret;
860 int is_bigendian;
861
862 if (kvmppc_need_byteswap(vcpu)) {
863 /* Default endianness is "little endian". */
864 is_bigendian = !is_default_endian;
865 } else {
866 /* Default endianness is "big endian". */
867 is_bigendian = is_default_endian;
868 }
869
870 if (bytes > sizeof(run->mmio.data)) {
871 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
872 run->mmio.len);
873 }
874
875 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
876 run->mmio.len = bytes;
877 run->mmio.is_write = 1;
878 vcpu->mmio_needed = 1;
879 vcpu->mmio_is_write = 1;
880
881 /* Store the value at the lowest bytes in 'data'. */
882 if (is_bigendian) {
883 switch (bytes) {
884 case 8: *(u64 *)data = val; break;
885 case 4: *(u32 *)data = val; break;
886 case 2: *(u16 *)data = val; break;
887 case 1: *(u8 *)data = val; break;
888 }
889 } else {
890 /* Store LE value into 'data'. */
891 switch (bytes) {
892 case 4: st_le32(data, val); break;
893 case 2: st_le16(data, val); break;
894 case 1: *(u8 *)data = val; break;
895 }
896 }
897
898 idx = srcu_read_lock(&vcpu->kvm->srcu);
899
900 ret = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, run->mmio.phys_addr,
901 bytes, &run->mmio.data);
902
903 srcu_read_unlock(&vcpu->kvm->srcu, idx);
904
905 if (!ret) {
906 vcpu->mmio_needed = 0;
907 return EMULATE_DONE;
908 }
909
910 return EMULATE_DO_MMIO;
911 }
912 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
913
914 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
915 {
916 int r;
917 sigset_t sigsaved;
918
919 if (vcpu->sigset_active)
920 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
921
922 if (vcpu->mmio_needed) {
923 if (!vcpu->mmio_is_write)
924 kvmppc_complete_mmio_load(vcpu, run);
925 vcpu->mmio_needed = 0;
926 } else if (vcpu->arch.dcr_needed) {
927 if (!vcpu->arch.dcr_is_write)
928 kvmppc_complete_dcr_load(vcpu, run);
929 vcpu->arch.dcr_needed = 0;
930 } else if (vcpu->arch.osi_needed) {
931 u64 *gprs = run->osi.gprs;
932 int i;
933
934 for (i = 0; i < 32; i++)
935 kvmppc_set_gpr(vcpu, i, gprs[i]);
936 vcpu->arch.osi_needed = 0;
937 } else if (vcpu->arch.hcall_needed) {
938 int i;
939
940 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
941 for (i = 0; i < 9; ++i)
942 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
943 vcpu->arch.hcall_needed = 0;
944 #ifdef CONFIG_BOOKE
945 } else if (vcpu->arch.epr_needed) {
946 kvmppc_set_epr(vcpu, run->epr.epr);
947 vcpu->arch.epr_needed = 0;
948 #endif
949 }
950
951 r = kvmppc_vcpu_run(run, vcpu);
952
953 if (vcpu->sigset_active)
954 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
955
956 return r;
957 }
958
959 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
960 {
961 if (irq->irq == KVM_INTERRUPT_UNSET) {
962 kvmppc_core_dequeue_external(vcpu);
963 return 0;
964 }
965
966 kvmppc_core_queue_external(vcpu, irq);
967
968 kvm_vcpu_kick(vcpu);
969
970 return 0;
971 }
972
973 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
974 struct kvm_enable_cap *cap)
975 {
976 int r;
977
978 if (cap->flags)
979 return -EINVAL;
980
981 switch (cap->cap) {
982 case KVM_CAP_PPC_OSI:
983 r = 0;
984 vcpu->arch.osi_enabled = true;
985 break;
986 case KVM_CAP_PPC_PAPR:
987 r = 0;
988 vcpu->arch.papr_enabled = true;
989 break;
990 case KVM_CAP_PPC_EPR:
991 r = 0;
992 if (cap->args[0])
993 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
994 else
995 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
996 break;
997 #ifdef CONFIG_BOOKE
998 case KVM_CAP_PPC_BOOKE_WATCHDOG:
999 r = 0;
1000 vcpu->arch.watchdog_enabled = true;
1001 break;
1002 #endif
1003 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1004 case KVM_CAP_SW_TLB: {
1005 struct kvm_config_tlb cfg;
1006 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1007
1008 r = -EFAULT;
1009 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1010 break;
1011
1012 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1013 break;
1014 }
1015 #endif
1016 #ifdef CONFIG_KVM_MPIC
1017 case KVM_CAP_IRQ_MPIC: {
1018 struct fd f;
1019 struct kvm_device *dev;
1020
1021 r = -EBADF;
1022 f = fdget(cap->args[0]);
1023 if (!f.file)
1024 break;
1025
1026 r = -EPERM;
1027 dev = kvm_device_from_filp(f.file);
1028 if (dev)
1029 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1030
1031 fdput(f);
1032 break;
1033 }
1034 #endif
1035 #ifdef CONFIG_KVM_XICS
1036 case KVM_CAP_IRQ_XICS: {
1037 struct fd f;
1038 struct kvm_device *dev;
1039
1040 r = -EBADF;
1041 f = fdget(cap->args[0]);
1042 if (!f.file)
1043 break;
1044
1045 r = -EPERM;
1046 dev = kvm_device_from_filp(f.file);
1047 if (dev)
1048 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1049
1050 fdput(f);
1051 break;
1052 }
1053 #endif /* CONFIG_KVM_XICS */
1054 default:
1055 r = -EINVAL;
1056 break;
1057 }
1058
1059 if (!r)
1060 r = kvmppc_sanity_check(vcpu);
1061
1062 return r;
1063 }
1064
1065 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1066 struct kvm_mp_state *mp_state)
1067 {
1068 return -EINVAL;
1069 }
1070
1071 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1072 struct kvm_mp_state *mp_state)
1073 {
1074 return -EINVAL;
1075 }
1076
1077 long kvm_arch_vcpu_ioctl(struct file *filp,
1078 unsigned int ioctl, unsigned long arg)
1079 {
1080 struct kvm_vcpu *vcpu = filp->private_data;
1081 void __user *argp = (void __user *)arg;
1082 long r;
1083
1084 switch (ioctl) {
1085 case KVM_INTERRUPT: {
1086 struct kvm_interrupt irq;
1087 r = -EFAULT;
1088 if (copy_from_user(&irq, argp, sizeof(irq)))
1089 goto out;
1090 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1091 goto out;
1092 }
1093
1094 case KVM_ENABLE_CAP:
1095 {
1096 struct kvm_enable_cap cap;
1097 r = -EFAULT;
1098 if (copy_from_user(&cap, argp, sizeof(cap)))
1099 goto out;
1100 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1101 break;
1102 }
1103
1104 case KVM_SET_ONE_REG:
1105 case KVM_GET_ONE_REG:
1106 {
1107 struct kvm_one_reg reg;
1108 r = -EFAULT;
1109 if (copy_from_user(&reg, argp, sizeof(reg)))
1110 goto out;
1111 if (ioctl == KVM_SET_ONE_REG)
1112 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1113 else
1114 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1115 break;
1116 }
1117
1118 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1119 case KVM_DIRTY_TLB: {
1120 struct kvm_dirty_tlb dirty;
1121 r = -EFAULT;
1122 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1123 goto out;
1124 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1125 break;
1126 }
1127 #endif
1128 default:
1129 r = -EINVAL;
1130 }
1131
1132 out:
1133 return r;
1134 }
1135
1136 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1137 {
1138 return VM_FAULT_SIGBUS;
1139 }
1140
1141 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1142 {
1143 u32 inst_nop = 0x60000000;
1144 #ifdef CONFIG_KVM_BOOKE_HV
1145 u32 inst_sc1 = 0x44000022;
1146 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1147 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1148 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1149 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1150 #else
1151 u32 inst_lis = 0x3c000000;
1152 u32 inst_ori = 0x60000000;
1153 u32 inst_sc = 0x44000002;
1154 u32 inst_imm_mask = 0xffff;
1155
1156 /*
1157 * The hypercall to get into KVM from within guest context is as
1158 * follows:
1159 *
1160 * lis r0, r0, KVM_SC_MAGIC_R0@h
1161 * ori r0, KVM_SC_MAGIC_R0@l
1162 * sc
1163 * nop
1164 */
1165 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1166 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1167 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1168 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1169 #endif
1170
1171 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1172
1173 return 0;
1174 }
1175
1176 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1177 bool line_status)
1178 {
1179 if (!irqchip_in_kernel(kvm))
1180 return -ENXIO;
1181
1182 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1183 irq_event->irq, irq_event->level,
1184 line_status);
1185 return 0;
1186 }
1187
1188
1189 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1190 struct kvm_enable_cap *cap)
1191 {
1192 int r;
1193
1194 if (cap->flags)
1195 return -EINVAL;
1196
1197 switch (cap->cap) {
1198 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1199 case KVM_CAP_PPC_ENABLE_HCALL: {
1200 unsigned long hcall = cap->args[0];
1201
1202 r = -EINVAL;
1203 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1204 cap->args[1] > 1)
1205 break;
1206 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1207 break;
1208 if (cap->args[1])
1209 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1210 else
1211 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1212 r = 0;
1213 break;
1214 }
1215 #endif
1216 default:
1217 r = -EINVAL;
1218 break;
1219 }
1220
1221 return r;
1222 }
1223
1224 long kvm_arch_vm_ioctl(struct file *filp,
1225 unsigned int ioctl, unsigned long arg)
1226 {
1227 struct kvm *kvm __maybe_unused = filp->private_data;
1228 void __user *argp = (void __user *)arg;
1229 long r;
1230
1231 switch (ioctl) {
1232 case KVM_PPC_GET_PVINFO: {
1233 struct kvm_ppc_pvinfo pvinfo;
1234 memset(&pvinfo, 0, sizeof(pvinfo));
1235 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1236 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1237 r = -EFAULT;
1238 goto out;
1239 }
1240
1241 break;
1242 }
1243 case KVM_ENABLE_CAP:
1244 {
1245 struct kvm_enable_cap cap;
1246 r = -EFAULT;
1247 if (copy_from_user(&cap, argp, sizeof(cap)))
1248 goto out;
1249 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1250 break;
1251 }
1252 #ifdef CONFIG_PPC_BOOK3S_64
1253 case KVM_CREATE_SPAPR_TCE: {
1254 struct kvm_create_spapr_tce create_tce;
1255
1256 r = -EFAULT;
1257 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1258 goto out;
1259 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce);
1260 goto out;
1261 }
1262 case KVM_PPC_GET_SMMU_INFO: {
1263 struct kvm_ppc_smmu_info info;
1264 struct kvm *kvm = filp->private_data;
1265
1266 memset(&info, 0, sizeof(info));
1267 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1268 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1269 r = -EFAULT;
1270 break;
1271 }
1272 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1273 struct kvm *kvm = filp->private_data;
1274
1275 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1276 break;
1277 }
1278 default: {
1279 struct kvm *kvm = filp->private_data;
1280 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1281 }
1282 #else /* CONFIG_PPC_BOOK3S_64 */
1283 default:
1284 r = -ENOTTY;
1285 #endif
1286 }
1287 out:
1288 return r;
1289 }
1290
1291 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1292 static unsigned long nr_lpids;
1293
1294 long kvmppc_alloc_lpid(void)
1295 {
1296 long lpid;
1297
1298 do {
1299 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1300 if (lpid >= nr_lpids) {
1301 pr_err("%s: No LPIDs free\n", __func__);
1302 return -ENOMEM;
1303 }
1304 } while (test_and_set_bit(lpid, lpid_inuse));
1305
1306 return lpid;
1307 }
1308 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1309
1310 void kvmppc_claim_lpid(long lpid)
1311 {
1312 set_bit(lpid, lpid_inuse);
1313 }
1314 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1315
1316 void kvmppc_free_lpid(long lpid)
1317 {
1318 clear_bit(lpid, lpid_inuse);
1319 }
1320 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1321
1322 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1323 {
1324 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1325 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1326 }
1327 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1328
1329 int kvm_arch_init(void *opaque)
1330 {
1331 return 0;
1332 }
1333
1334 void kvm_arch_exit(void)
1335 {
1336
1337 }
This page took 0.076188 seconds and 6 git commands to generate.