powerpc/pci: Don't keep ISA memory hole resources in the tree
[deliverable/linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
4 *
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6 *
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
11 *
12 * Description:
13 * PowerPC Hashed Page Table functions
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/lmb.h>
35
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/page.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56
57 #ifdef DEBUG
58 #define DBG(fmt...) udbg_printf(fmt)
59 #else
60 #define DBG(fmt...)
61 #endif
62
63 #ifdef DEBUG_LOW
64 #define DBG_LOW(fmt...) udbg_printf(fmt)
65 #else
66 #define DBG_LOW(fmt...)
67 #endif
68
69 #define KB (1024)
70 #define MB (1024*KB)
71 #define GB (1024L*MB)
72
73 /*
74 * Note: pte --> Linux PTE
75 * HPTE --> PowerPC Hashed Page Table Entry
76 *
77 * Execution context:
78 * htab_initialize is called with the MMU off (of course), but
79 * the kernel has been copied down to zero so it can directly
80 * reference global data. At this point it is very difficult
81 * to print debug info.
82 *
83 */
84
85 #ifdef CONFIG_U3_DART
86 extern unsigned long dart_tablebase;
87 #endif /* CONFIG_U3_DART */
88
89 static unsigned long _SDR1;
90 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
91
92 struct hash_pte *htab_address;
93 unsigned long htab_size_bytes;
94 unsigned long htab_hash_mask;
95 int mmu_linear_psize = MMU_PAGE_4K;
96 int mmu_virtual_psize = MMU_PAGE_4K;
97 int mmu_vmalloc_psize = MMU_PAGE_4K;
98 #ifdef CONFIG_SPARSEMEM_VMEMMAP
99 int mmu_vmemmap_psize = MMU_PAGE_4K;
100 #endif
101 int mmu_io_psize = MMU_PAGE_4K;
102 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
103 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
104 u16 mmu_slb_size = 64;
105 #ifdef CONFIG_HUGETLB_PAGE
106 unsigned int HPAGE_SHIFT;
107 #endif
108 #ifdef CONFIG_PPC_64K_PAGES
109 int mmu_ci_restrictions;
110 #endif
111 #ifdef CONFIG_DEBUG_PAGEALLOC
112 static u8 *linear_map_hash_slots;
113 static unsigned long linear_map_hash_count;
114 static DEFINE_SPINLOCK(linear_map_hash_lock);
115 #endif /* CONFIG_DEBUG_PAGEALLOC */
116
117 /* There are definitions of page sizes arrays to be used when none
118 * is provided by the firmware.
119 */
120
121 /* Pre-POWER4 CPUs (4k pages only)
122 */
123 static struct mmu_psize_def mmu_psize_defaults_old[] = {
124 [MMU_PAGE_4K] = {
125 .shift = 12,
126 .sllp = 0,
127 .penc = 0,
128 .avpnm = 0,
129 .tlbiel = 0,
130 },
131 };
132
133 /* POWER4, GPUL, POWER5
134 *
135 * Support for 16Mb large pages
136 */
137 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
138 [MMU_PAGE_4K] = {
139 .shift = 12,
140 .sllp = 0,
141 .penc = 0,
142 .avpnm = 0,
143 .tlbiel = 1,
144 },
145 [MMU_PAGE_16M] = {
146 .shift = 24,
147 .sllp = SLB_VSID_L,
148 .penc = 0,
149 .avpnm = 0x1UL,
150 .tlbiel = 0,
151 },
152 };
153
154
155 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
156 unsigned long pstart, unsigned long mode,
157 int psize, int ssize)
158 {
159 unsigned long vaddr, paddr;
160 unsigned int step, shift;
161 unsigned long tmp_mode;
162 int ret = 0;
163
164 shift = mmu_psize_defs[psize].shift;
165 step = 1 << shift;
166
167 for (vaddr = vstart, paddr = pstart; vaddr < vend;
168 vaddr += step, paddr += step) {
169 unsigned long hash, hpteg;
170 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
171 unsigned long va = hpt_va(vaddr, vsid, ssize);
172
173 tmp_mode = mode;
174
175 /* Make non-kernel text non-executable */
176 if (!in_kernel_text(vaddr))
177 tmp_mode = mode | HPTE_R_N;
178
179 hash = hpt_hash(va, shift, ssize);
180 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
181
182 DBG("htab_bolt_mapping: calling %p\n", ppc_md.hpte_insert);
183
184 BUG_ON(!ppc_md.hpte_insert);
185 ret = ppc_md.hpte_insert(hpteg, va, paddr,
186 tmp_mode, HPTE_V_BOLTED, psize, ssize);
187
188 if (ret < 0)
189 break;
190 #ifdef CONFIG_DEBUG_PAGEALLOC
191 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
192 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
193 #endif /* CONFIG_DEBUG_PAGEALLOC */
194 }
195 return ret < 0 ? ret : 0;
196 }
197
198 #ifdef CONFIG_MEMORY_HOTPLUG
199 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
200 int psize, int ssize)
201 {
202 unsigned long vaddr;
203 unsigned int step, shift;
204
205 shift = mmu_psize_defs[psize].shift;
206 step = 1 << shift;
207
208 if (!ppc_md.hpte_removebolted) {
209 printk(KERN_WARNING "Platform doesn't implement "
210 "hpte_removebolted\n");
211 return -EINVAL;
212 }
213
214 for (vaddr = vstart; vaddr < vend; vaddr += step)
215 ppc_md.hpte_removebolted(vaddr, psize, ssize);
216
217 return 0;
218 }
219 #endif /* CONFIG_MEMORY_HOTPLUG */
220
221 static int __init htab_dt_scan_seg_sizes(unsigned long node,
222 const char *uname, int depth,
223 void *data)
224 {
225 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
226 u32 *prop;
227 unsigned long size = 0;
228
229 /* We are scanning "cpu" nodes only */
230 if (type == NULL || strcmp(type, "cpu") != 0)
231 return 0;
232
233 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
234 &size);
235 if (prop == NULL)
236 return 0;
237 for (; size >= 4; size -= 4, ++prop) {
238 if (prop[0] == 40) {
239 DBG("1T segment support detected\n");
240 cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
241 return 1;
242 }
243 }
244 cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
245 return 0;
246 }
247
248 static void __init htab_init_seg_sizes(void)
249 {
250 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
251 }
252
253 static int __init htab_dt_scan_page_sizes(unsigned long node,
254 const char *uname, int depth,
255 void *data)
256 {
257 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
258 u32 *prop;
259 unsigned long size = 0;
260
261 /* We are scanning "cpu" nodes only */
262 if (type == NULL || strcmp(type, "cpu") != 0)
263 return 0;
264
265 prop = (u32 *)of_get_flat_dt_prop(node,
266 "ibm,segment-page-sizes", &size);
267 if (prop != NULL) {
268 DBG("Page sizes from device-tree:\n");
269 size /= 4;
270 cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
271 while(size > 0) {
272 unsigned int shift = prop[0];
273 unsigned int slbenc = prop[1];
274 unsigned int lpnum = prop[2];
275 unsigned int lpenc = 0;
276 struct mmu_psize_def *def;
277 int idx = -1;
278
279 size -= 3; prop += 3;
280 while(size > 0 && lpnum) {
281 if (prop[0] == shift)
282 lpenc = prop[1];
283 prop += 2; size -= 2;
284 lpnum--;
285 }
286 switch(shift) {
287 case 0xc:
288 idx = MMU_PAGE_4K;
289 break;
290 case 0x10:
291 idx = MMU_PAGE_64K;
292 break;
293 case 0x14:
294 idx = MMU_PAGE_1M;
295 break;
296 case 0x18:
297 idx = MMU_PAGE_16M;
298 cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
299 break;
300 case 0x22:
301 idx = MMU_PAGE_16G;
302 break;
303 }
304 if (idx < 0)
305 continue;
306 def = &mmu_psize_defs[idx];
307 def->shift = shift;
308 if (shift <= 23)
309 def->avpnm = 0;
310 else
311 def->avpnm = (1 << (shift - 23)) - 1;
312 def->sllp = slbenc;
313 def->penc = lpenc;
314 /* We don't know for sure what's up with tlbiel, so
315 * for now we only set it for 4K and 64K pages
316 */
317 if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
318 def->tlbiel = 1;
319 else
320 def->tlbiel = 0;
321
322 DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
323 "tlbiel=%d, penc=%d\n",
324 idx, shift, def->sllp, def->avpnm, def->tlbiel,
325 def->penc);
326 }
327 return 1;
328 }
329 return 0;
330 }
331
332 /* Scan for 16G memory blocks that have been set aside for huge pages
333 * and reserve those blocks for 16G huge pages.
334 */
335 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
336 const char *uname, int depth,
337 void *data) {
338 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
339 unsigned long *addr_prop;
340 u32 *page_count_prop;
341 unsigned int expected_pages;
342 long unsigned int phys_addr;
343 long unsigned int block_size;
344
345 /* We are scanning "memory" nodes only */
346 if (type == NULL || strcmp(type, "memory") != 0)
347 return 0;
348
349 /* This property is the log base 2 of the number of virtual pages that
350 * will represent this memory block. */
351 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
352 if (page_count_prop == NULL)
353 return 0;
354 expected_pages = (1 << page_count_prop[0]);
355 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
356 if (addr_prop == NULL)
357 return 0;
358 phys_addr = addr_prop[0];
359 block_size = addr_prop[1];
360 if (block_size != (16 * GB))
361 return 0;
362 printk(KERN_INFO "Huge page(16GB) memory: "
363 "addr = 0x%lX size = 0x%lX pages = %d\n",
364 phys_addr, block_size, expected_pages);
365 lmb_reserve(phys_addr, block_size * expected_pages);
366 add_gpage(phys_addr, block_size, expected_pages);
367 return 0;
368 }
369
370 static void __init htab_init_page_sizes(void)
371 {
372 int rc;
373
374 /* Default to 4K pages only */
375 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
376 sizeof(mmu_psize_defaults_old));
377
378 /*
379 * Try to find the available page sizes in the device-tree
380 */
381 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
382 if (rc != 0) /* Found */
383 goto found;
384
385 /*
386 * Not in the device-tree, let's fallback on known size
387 * list for 16M capable GP & GR
388 */
389 if (cpu_has_feature(CPU_FTR_16M_PAGE))
390 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
391 sizeof(mmu_psize_defaults_gp));
392 found:
393 #ifndef CONFIG_DEBUG_PAGEALLOC
394 /*
395 * Pick a size for the linear mapping. Currently, we only support
396 * 16M, 1M and 4K which is the default
397 */
398 if (mmu_psize_defs[MMU_PAGE_16M].shift)
399 mmu_linear_psize = MMU_PAGE_16M;
400 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
401 mmu_linear_psize = MMU_PAGE_1M;
402 #endif /* CONFIG_DEBUG_PAGEALLOC */
403
404 #ifdef CONFIG_PPC_64K_PAGES
405 /*
406 * Pick a size for the ordinary pages. Default is 4K, we support
407 * 64K for user mappings and vmalloc if supported by the processor.
408 * We only use 64k for ioremap if the processor
409 * (and firmware) support cache-inhibited large pages.
410 * If not, we use 4k and set mmu_ci_restrictions so that
411 * hash_page knows to switch processes that use cache-inhibited
412 * mappings to 4k pages.
413 */
414 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
415 mmu_virtual_psize = MMU_PAGE_64K;
416 mmu_vmalloc_psize = MMU_PAGE_64K;
417 if (mmu_linear_psize == MMU_PAGE_4K)
418 mmu_linear_psize = MMU_PAGE_64K;
419 if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) {
420 /*
421 * Don't use 64k pages for ioremap on pSeries, since
422 * that would stop us accessing the HEA ethernet.
423 */
424 if (!machine_is(pseries))
425 mmu_io_psize = MMU_PAGE_64K;
426 } else
427 mmu_ci_restrictions = 1;
428 }
429 #endif /* CONFIG_PPC_64K_PAGES */
430
431 #ifdef CONFIG_SPARSEMEM_VMEMMAP
432 /* We try to use 16M pages for vmemmap if that is supported
433 * and we have at least 1G of RAM at boot
434 */
435 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
436 lmb_phys_mem_size() >= 0x40000000)
437 mmu_vmemmap_psize = MMU_PAGE_16M;
438 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
439 mmu_vmemmap_psize = MMU_PAGE_64K;
440 else
441 mmu_vmemmap_psize = MMU_PAGE_4K;
442 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
443
444 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
445 "virtual = %d, io = %d"
446 #ifdef CONFIG_SPARSEMEM_VMEMMAP
447 ", vmemmap = %d"
448 #endif
449 "\n",
450 mmu_psize_defs[mmu_linear_psize].shift,
451 mmu_psize_defs[mmu_virtual_psize].shift,
452 mmu_psize_defs[mmu_io_psize].shift
453 #ifdef CONFIG_SPARSEMEM_VMEMMAP
454 ,mmu_psize_defs[mmu_vmemmap_psize].shift
455 #endif
456 );
457
458 #ifdef CONFIG_HUGETLB_PAGE
459 /* Reserve 16G huge page memory sections for huge pages */
460 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
461
462 /* Set default large page size. Currently, we pick 16M or 1M depending
463 * on what is available
464 */
465 if (mmu_psize_defs[MMU_PAGE_16M].shift)
466 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
467 /* With 4k/4level pagetables, we can't (for now) cope with a
468 * huge page size < PMD_SIZE */
469 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
470 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
471 #endif /* CONFIG_HUGETLB_PAGE */
472 }
473
474 static int __init htab_dt_scan_pftsize(unsigned long node,
475 const char *uname, int depth,
476 void *data)
477 {
478 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
479 u32 *prop;
480
481 /* We are scanning "cpu" nodes only */
482 if (type == NULL || strcmp(type, "cpu") != 0)
483 return 0;
484
485 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
486 if (prop != NULL) {
487 /* pft_size[0] is the NUMA CEC cookie */
488 ppc64_pft_size = prop[1];
489 return 1;
490 }
491 return 0;
492 }
493
494 static unsigned long __init htab_get_table_size(void)
495 {
496 unsigned long mem_size, rnd_mem_size, pteg_count;
497
498 /* If hash size isn't already provided by the platform, we try to
499 * retrieve it from the device-tree. If it's not there neither, we
500 * calculate it now based on the total RAM size
501 */
502 if (ppc64_pft_size == 0)
503 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
504 if (ppc64_pft_size)
505 return 1UL << ppc64_pft_size;
506
507 /* round mem_size up to next power of 2 */
508 mem_size = lmb_phys_mem_size();
509 rnd_mem_size = 1UL << __ilog2(mem_size);
510 if (rnd_mem_size < mem_size)
511 rnd_mem_size <<= 1;
512
513 /* # pages / 2 */
514 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
515
516 return pteg_count << 7;
517 }
518
519 #ifdef CONFIG_MEMORY_HOTPLUG
520 void create_section_mapping(unsigned long start, unsigned long end)
521 {
522 BUG_ON(htab_bolt_mapping(start, end, __pa(start),
523 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX,
524 mmu_linear_psize, mmu_kernel_ssize));
525 }
526
527 int remove_section_mapping(unsigned long start, unsigned long end)
528 {
529 return htab_remove_mapping(start, end, mmu_linear_psize,
530 mmu_kernel_ssize);
531 }
532 #endif /* CONFIG_MEMORY_HOTPLUG */
533
534 static inline void make_bl(unsigned int *insn_addr, void *func)
535 {
536 unsigned long funcp = *((unsigned long *)func);
537 int offset = funcp - (unsigned long)insn_addr;
538
539 *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
540 flush_icache_range((unsigned long)insn_addr, 4+
541 (unsigned long)insn_addr);
542 }
543
544 static void __init htab_finish_init(void)
545 {
546 extern unsigned int *htab_call_hpte_insert1;
547 extern unsigned int *htab_call_hpte_insert2;
548 extern unsigned int *htab_call_hpte_remove;
549 extern unsigned int *htab_call_hpte_updatepp;
550
551 #ifdef CONFIG_PPC_HAS_HASH_64K
552 extern unsigned int *ht64_call_hpte_insert1;
553 extern unsigned int *ht64_call_hpte_insert2;
554 extern unsigned int *ht64_call_hpte_remove;
555 extern unsigned int *ht64_call_hpte_updatepp;
556
557 make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
558 make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
559 make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
560 make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
561 #endif /* CONFIG_PPC_HAS_HASH_64K */
562
563 make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
564 make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
565 make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
566 make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
567 }
568
569 void __init htab_initialize(void)
570 {
571 unsigned long table;
572 unsigned long pteg_count;
573 unsigned long mode_rw;
574 unsigned long base = 0, size = 0, limit;
575 int i;
576
577 DBG(" -> htab_initialize()\n");
578
579 /* Initialize segment sizes */
580 htab_init_seg_sizes();
581
582 /* Initialize page sizes */
583 htab_init_page_sizes();
584
585 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
586 mmu_kernel_ssize = MMU_SEGSIZE_1T;
587 mmu_highuser_ssize = MMU_SEGSIZE_1T;
588 printk(KERN_INFO "Using 1TB segments\n");
589 }
590
591 /*
592 * Calculate the required size of the htab. We want the number of
593 * PTEGs to equal one half the number of real pages.
594 */
595 htab_size_bytes = htab_get_table_size();
596 pteg_count = htab_size_bytes >> 7;
597
598 htab_hash_mask = pteg_count - 1;
599
600 if (firmware_has_feature(FW_FEATURE_LPAR)) {
601 /* Using a hypervisor which owns the htab */
602 htab_address = NULL;
603 _SDR1 = 0;
604 } else {
605 /* Find storage for the HPT. Must be contiguous in
606 * the absolute address space. On cell we want it to be
607 * in the first 2 Gig so we can use it for IOMMU hacks.
608 */
609 if (machine_is(cell))
610 limit = 0x80000000;
611 else
612 limit = 0;
613
614 table = lmb_alloc_base(htab_size_bytes, htab_size_bytes, limit);
615
616 DBG("Hash table allocated at %lx, size: %lx\n", table,
617 htab_size_bytes);
618
619 htab_address = abs_to_virt(table);
620
621 /* htab absolute addr + encoded htabsize */
622 _SDR1 = table + __ilog2(pteg_count) - 11;
623
624 /* Initialize the HPT with no entries */
625 memset((void *)table, 0, htab_size_bytes);
626
627 /* Set SDR1 */
628 mtspr(SPRN_SDR1, _SDR1);
629 }
630
631 mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX;
632
633 #ifdef CONFIG_DEBUG_PAGEALLOC
634 linear_map_hash_count = lmb_end_of_DRAM() >> PAGE_SHIFT;
635 linear_map_hash_slots = __va(lmb_alloc_base(linear_map_hash_count,
636 1, lmb.rmo_size));
637 memset(linear_map_hash_slots, 0, linear_map_hash_count);
638 #endif /* CONFIG_DEBUG_PAGEALLOC */
639
640 /* On U3 based machines, we need to reserve the DART area and
641 * _NOT_ map it to avoid cache paradoxes as it's remapped non
642 * cacheable later on
643 */
644
645 /* create bolted the linear mapping in the hash table */
646 for (i=0; i < lmb.memory.cnt; i++) {
647 base = (unsigned long)__va(lmb.memory.region[i].base);
648 size = lmb.memory.region[i].size;
649
650 DBG("creating mapping for region: %lx : %lx\n", base, size);
651
652 #ifdef CONFIG_U3_DART
653 /* Do not map the DART space. Fortunately, it will be aligned
654 * in such a way that it will not cross two lmb regions and
655 * will fit within a single 16Mb page.
656 * The DART space is assumed to be a full 16Mb region even if
657 * we only use 2Mb of that space. We will use more of it later
658 * for AGP GART. We have to use a full 16Mb large page.
659 */
660 DBG("DART base: %lx\n", dart_tablebase);
661
662 if (dart_tablebase != 0 && dart_tablebase >= base
663 && dart_tablebase < (base + size)) {
664 unsigned long dart_table_end = dart_tablebase + 16 * MB;
665 if (base != dart_tablebase)
666 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
667 __pa(base), mode_rw,
668 mmu_linear_psize,
669 mmu_kernel_ssize));
670 if ((base + size) > dart_table_end)
671 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
672 base + size,
673 __pa(dart_table_end),
674 mode_rw,
675 mmu_linear_psize,
676 mmu_kernel_ssize));
677 continue;
678 }
679 #endif /* CONFIG_U3_DART */
680 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
681 mode_rw, mmu_linear_psize, mmu_kernel_ssize));
682 }
683
684 /*
685 * If we have a memory_limit and we've allocated TCEs then we need to
686 * explicitly map the TCE area at the top of RAM. We also cope with the
687 * case that the TCEs start below memory_limit.
688 * tce_alloc_start/end are 16MB aligned so the mapping should work
689 * for either 4K or 16MB pages.
690 */
691 if (tce_alloc_start) {
692 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
693 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
694
695 if (base + size >= tce_alloc_start)
696 tce_alloc_start = base + size + 1;
697
698 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
699 __pa(tce_alloc_start), mode_rw,
700 mmu_linear_psize, mmu_kernel_ssize));
701 }
702
703 htab_finish_init();
704
705 DBG(" <- htab_initialize()\n");
706 }
707 #undef KB
708 #undef MB
709
710 void htab_initialize_secondary(void)
711 {
712 if (!firmware_has_feature(FW_FEATURE_LPAR))
713 mtspr(SPRN_SDR1, _SDR1);
714 }
715
716 /*
717 * Called by asm hashtable.S for doing lazy icache flush
718 */
719 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
720 {
721 struct page *page;
722
723 if (!pfn_valid(pte_pfn(pte)))
724 return pp;
725
726 page = pte_page(pte);
727
728 /* page is dirty */
729 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
730 if (trap == 0x400) {
731 __flush_dcache_icache(page_address(page));
732 set_bit(PG_arch_1, &page->flags);
733 } else
734 pp |= HPTE_R_N;
735 }
736 return pp;
737 }
738
739 #ifdef CONFIG_PPC_MM_SLICES
740 unsigned int get_paca_psize(unsigned long addr)
741 {
742 unsigned long index, slices;
743
744 if (addr < SLICE_LOW_TOP) {
745 slices = get_paca()->context.low_slices_psize;
746 index = GET_LOW_SLICE_INDEX(addr);
747 } else {
748 slices = get_paca()->context.high_slices_psize;
749 index = GET_HIGH_SLICE_INDEX(addr);
750 }
751 return (slices >> (index * 4)) & 0xF;
752 }
753
754 #else
755 unsigned int get_paca_psize(unsigned long addr)
756 {
757 return get_paca()->context.user_psize;
758 }
759 #endif
760
761 /*
762 * Demote a segment to using 4k pages.
763 * For now this makes the whole process use 4k pages.
764 */
765 #ifdef CONFIG_PPC_64K_PAGES
766 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
767 {
768 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
769 return;
770 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
771 #ifdef CONFIG_SPU_BASE
772 spu_flush_all_slbs(mm);
773 #endif
774 if (get_paca_psize(addr) != MMU_PAGE_4K) {
775 get_paca()->context = mm->context;
776 slb_flush_and_rebolt();
777 }
778 }
779 #endif /* CONFIG_PPC_64K_PAGES */
780
781 #ifdef CONFIG_PPC_SUBPAGE_PROT
782 /*
783 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
784 * Userspace sets the subpage permissions using the subpage_prot system call.
785 *
786 * Result is 0: full permissions, _PAGE_RW: read-only,
787 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
788 */
789 static int subpage_protection(pgd_t *pgdir, unsigned long ea)
790 {
791 struct subpage_prot_table *spt = pgd_subpage_prot(pgdir);
792 u32 spp = 0;
793 u32 **sbpm, *sbpp;
794
795 if (ea >= spt->maxaddr)
796 return 0;
797 if (ea < 0x100000000) {
798 /* addresses below 4GB use spt->low_prot */
799 sbpm = spt->low_prot;
800 } else {
801 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
802 if (!sbpm)
803 return 0;
804 }
805 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
806 if (!sbpp)
807 return 0;
808 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
809
810 /* extract 2-bit bitfield for this 4k subpage */
811 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
812
813 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
814 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
815 return spp;
816 }
817
818 #else /* CONFIG_PPC_SUBPAGE_PROT */
819 static inline int subpage_protection(pgd_t *pgdir, unsigned long ea)
820 {
821 return 0;
822 }
823 #endif
824
825 /* Result code is:
826 * 0 - handled
827 * 1 - normal page fault
828 * -1 - critical hash insertion error
829 * -2 - access not permitted by subpage protection mechanism
830 */
831 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
832 {
833 void *pgdir;
834 unsigned long vsid;
835 struct mm_struct *mm;
836 pte_t *ptep;
837 cpumask_t tmp;
838 int rc, user_region = 0, local = 0;
839 int psize, ssize;
840
841 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
842 ea, access, trap);
843
844 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
845 DBG_LOW(" out of pgtable range !\n");
846 return 1;
847 }
848
849 /* Get region & vsid */
850 switch (REGION_ID(ea)) {
851 case USER_REGION_ID:
852 user_region = 1;
853 mm = current->mm;
854 if (! mm) {
855 DBG_LOW(" user region with no mm !\n");
856 return 1;
857 }
858 psize = get_slice_psize(mm, ea);
859 ssize = user_segment_size(ea);
860 vsid = get_vsid(mm->context.id, ea, ssize);
861 break;
862 case VMALLOC_REGION_ID:
863 mm = &init_mm;
864 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
865 if (ea < VMALLOC_END)
866 psize = mmu_vmalloc_psize;
867 else
868 psize = mmu_io_psize;
869 ssize = mmu_kernel_ssize;
870 break;
871 default:
872 /* Not a valid range
873 * Send the problem up to do_page_fault
874 */
875 return 1;
876 }
877 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
878
879 /* Get pgdir */
880 pgdir = mm->pgd;
881 if (pgdir == NULL)
882 return 1;
883
884 /* Check CPU locality */
885 tmp = cpumask_of_cpu(smp_processor_id());
886 if (user_region && cpus_equal(mm->cpu_vm_mask, tmp))
887 local = 1;
888
889 #ifdef CONFIG_HUGETLB_PAGE
890 /* Handle hugepage regions */
891 if (HPAGE_SHIFT && mmu_huge_psizes[psize]) {
892 DBG_LOW(" -> huge page !\n");
893 return hash_huge_page(mm, access, ea, vsid, local, trap);
894 }
895 #endif /* CONFIG_HUGETLB_PAGE */
896
897 #ifndef CONFIG_PPC_64K_PAGES
898 /* If we use 4K pages and our psize is not 4K, then we are hitting
899 * a special driver mapping, we need to align the address before
900 * we fetch the PTE
901 */
902 if (psize != MMU_PAGE_4K)
903 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
904 #endif /* CONFIG_PPC_64K_PAGES */
905
906 /* Get PTE and page size from page tables */
907 ptep = find_linux_pte(pgdir, ea);
908 if (ptep == NULL || !pte_present(*ptep)) {
909 DBG_LOW(" no PTE !\n");
910 return 1;
911 }
912
913 #ifndef CONFIG_PPC_64K_PAGES
914 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
915 #else
916 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
917 pte_val(*(ptep + PTRS_PER_PTE)));
918 #endif
919 /* Pre-check access permissions (will be re-checked atomically
920 * in __hash_page_XX but this pre-check is a fast path
921 */
922 if (access & ~pte_val(*ptep)) {
923 DBG_LOW(" no access !\n");
924 return 1;
925 }
926
927 /* Do actual hashing */
928 #ifdef CONFIG_PPC_64K_PAGES
929 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
930 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
931 demote_segment_4k(mm, ea);
932 psize = MMU_PAGE_4K;
933 }
934
935 /* If this PTE is non-cacheable and we have restrictions on
936 * using non cacheable large pages, then we switch to 4k
937 */
938 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
939 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
940 if (user_region) {
941 demote_segment_4k(mm, ea);
942 psize = MMU_PAGE_4K;
943 } else if (ea < VMALLOC_END) {
944 /*
945 * some driver did a non-cacheable mapping
946 * in vmalloc space, so switch vmalloc
947 * to 4k pages
948 */
949 printk(KERN_ALERT "Reducing vmalloc segment "
950 "to 4kB pages because of "
951 "non-cacheable mapping\n");
952 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
953 #ifdef CONFIG_SPU_BASE
954 spu_flush_all_slbs(mm);
955 #endif
956 }
957 }
958 if (user_region) {
959 if (psize != get_paca_psize(ea)) {
960 get_paca()->context = mm->context;
961 slb_flush_and_rebolt();
962 }
963 } else if (get_paca()->vmalloc_sllp !=
964 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
965 get_paca()->vmalloc_sllp =
966 mmu_psize_defs[mmu_vmalloc_psize].sllp;
967 slb_vmalloc_update();
968 }
969 #endif /* CONFIG_PPC_64K_PAGES */
970
971 #ifdef CONFIG_PPC_HAS_HASH_64K
972 if (psize == MMU_PAGE_64K)
973 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
974 else
975 #endif /* CONFIG_PPC_HAS_HASH_64K */
976 {
977 int spp = subpage_protection(pgdir, ea);
978 if (access & spp)
979 rc = -2;
980 else
981 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
982 local, ssize, spp);
983 }
984
985 #ifndef CONFIG_PPC_64K_PAGES
986 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
987 #else
988 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
989 pte_val(*(ptep + PTRS_PER_PTE)));
990 #endif
991 DBG_LOW(" -> rc=%d\n", rc);
992 return rc;
993 }
994 EXPORT_SYMBOL_GPL(hash_page);
995
996 void hash_preload(struct mm_struct *mm, unsigned long ea,
997 unsigned long access, unsigned long trap)
998 {
999 unsigned long vsid;
1000 void *pgdir;
1001 pte_t *ptep;
1002 cpumask_t mask;
1003 unsigned long flags;
1004 int local = 0;
1005 int ssize;
1006
1007 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1008
1009 #ifdef CONFIG_PPC_MM_SLICES
1010 /* We only prefault standard pages for now */
1011 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1012 return;
1013 #endif
1014
1015 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1016 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1017
1018 /* Get Linux PTE if available */
1019 pgdir = mm->pgd;
1020 if (pgdir == NULL)
1021 return;
1022 ptep = find_linux_pte(pgdir, ea);
1023 if (!ptep)
1024 return;
1025
1026 #ifdef CONFIG_PPC_64K_PAGES
1027 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1028 * a 64K kernel), then we don't preload, hash_page() will take
1029 * care of it once we actually try to access the page.
1030 * That way we don't have to duplicate all of the logic for segment
1031 * page size demotion here
1032 */
1033 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1034 return;
1035 #endif /* CONFIG_PPC_64K_PAGES */
1036
1037 /* Get VSID */
1038 ssize = user_segment_size(ea);
1039 vsid = get_vsid(mm->context.id, ea, ssize);
1040
1041 /* Hash doesn't like irqs */
1042 local_irq_save(flags);
1043
1044 /* Is that local to this CPU ? */
1045 mask = cpumask_of_cpu(smp_processor_id());
1046 if (cpus_equal(mm->cpu_vm_mask, mask))
1047 local = 1;
1048
1049 /* Hash it in */
1050 #ifdef CONFIG_PPC_HAS_HASH_64K
1051 if (mm->context.user_psize == MMU_PAGE_64K)
1052 __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1053 else
1054 #endif /* CONFIG_PPC_HAS_HASH_64K */
1055 __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1056 subpage_protection(pgdir, ea));
1057
1058 local_irq_restore(flags);
1059 }
1060
1061 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1062 * do not forget to update the assembly call site !
1063 */
1064 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1065 int local)
1066 {
1067 unsigned long hash, index, shift, hidx, slot;
1068
1069 DBG_LOW("flush_hash_page(va=%016x)\n", va);
1070 pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1071 hash = hpt_hash(va, shift, ssize);
1072 hidx = __rpte_to_hidx(pte, index);
1073 if (hidx & _PTEIDX_SECONDARY)
1074 hash = ~hash;
1075 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1076 slot += hidx & _PTEIDX_GROUP_IX;
1077 DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx);
1078 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1079 } pte_iterate_hashed_end();
1080 }
1081
1082 void flush_hash_range(unsigned long number, int local)
1083 {
1084 if (ppc_md.flush_hash_range)
1085 ppc_md.flush_hash_range(number, local);
1086 else {
1087 int i;
1088 struct ppc64_tlb_batch *batch =
1089 &__get_cpu_var(ppc64_tlb_batch);
1090
1091 for (i = 0; i < number; i++)
1092 flush_hash_page(batch->vaddr[i], batch->pte[i],
1093 batch->psize, batch->ssize, local);
1094 }
1095 }
1096
1097 /*
1098 * low_hash_fault is called when we the low level hash code failed
1099 * to instert a PTE due to an hypervisor error
1100 */
1101 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1102 {
1103 if (user_mode(regs)) {
1104 #ifdef CONFIG_PPC_SUBPAGE_PROT
1105 if (rc == -2)
1106 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1107 else
1108 #endif
1109 _exception(SIGBUS, regs, BUS_ADRERR, address);
1110 } else
1111 bad_page_fault(regs, address, SIGBUS);
1112 }
1113
1114 #ifdef CONFIG_DEBUG_PAGEALLOC
1115 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1116 {
1117 unsigned long hash, hpteg;
1118 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1119 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1120 unsigned long mode = _PAGE_ACCESSED | _PAGE_DIRTY |
1121 _PAGE_COHERENT | PP_RWXX | HPTE_R_N;
1122 int ret;
1123
1124 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1125 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1126
1127 ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1128 mode, HPTE_V_BOLTED,
1129 mmu_linear_psize, mmu_kernel_ssize);
1130 BUG_ON (ret < 0);
1131 spin_lock(&linear_map_hash_lock);
1132 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1133 linear_map_hash_slots[lmi] = ret | 0x80;
1134 spin_unlock(&linear_map_hash_lock);
1135 }
1136
1137 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1138 {
1139 unsigned long hash, hidx, slot;
1140 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1141 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1142
1143 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1144 spin_lock(&linear_map_hash_lock);
1145 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1146 hidx = linear_map_hash_slots[lmi] & 0x7f;
1147 linear_map_hash_slots[lmi] = 0;
1148 spin_unlock(&linear_map_hash_lock);
1149 if (hidx & _PTEIDX_SECONDARY)
1150 hash = ~hash;
1151 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1152 slot += hidx & _PTEIDX_GROUP_IX;
1153 ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1154 }
1155
1156 void kernel_map_pages(struct page *page, int numpages, int enable)
1157 {
1158 unsigned long flags, vaddr, lmi;
1159 int i;
1160
1161 local_irq_save(flags);
1162 for (i = 0; i < numpages; i++, page++) {
1163 vaddr = (unsigned long)page_address(page);
1164 lmi = __pa(vaddr) >> PAGE_SHIFT;
1165 if (lmi >= linear_map_hash_count)
1166 continue;
1167 if (enable)
1168 kernel_map_linear_page(vaddr, lmi);
1169 else
1170 kernel_unmap_linear_page(vaddr, lmi);
1171 }
1172 local_irq_restore(flags);
1173 }
1174 #endif /* CONFIG_DEBUG_PAGEALLOC */
This page took 0.179869 seconds and 5 git commands to generate.