Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
4 *
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6 *
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
11 *
12 * Description:
13 * PowerPC Hashed Page Table functions
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37 #include <linux/libfdt.h>
38
39 #include <asm/processor.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/page.h>
44 #include <asm/types.h>
45 #include <asm/uaccess.h>
46 #include <asm/machdep.h>
47 #include <asm/prom.h>
48 #include <asm/tlbflush.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63
64 #ifdef DEBUG
65 #define DBG(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
69
70 #ifdef DEBUG_LOW
71 #define DBG_LOW(fmt...) udbg_printf(fmt)
72 #else
73 #define DBG_LOW(fmt...)
74 #endif
75
76 #define KB (1024)
77 #define MB (1024*KB)
78 #define GB (1024L*MB)
79
80 /*
81 * Note: pte --> Linux PTE
82 * HPTE --> PowerPC Hashed Page Table Entry
83 *
84 * Execution context:
85 * htab_initialize is called with the MMU off (of course), but
86 * the kernel has been copied down to zero so it can directly
87 * reference global data. At this point it is very difficult
88 * to print debug info.
89 *
90 */
91
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
94 EXPORT_SYMBOL_GPL(mmu_psize_defs);
95
96 struct hash_pte *htab_address;
97 unsigned long htab_size_bytes;
98 unsigned long htab_hash_mask;
99 EXPORT_SYMBOL_GPL(htab_hash_mask);
100 int mmu_linear_psize = MMU_PAGE_4K;
101 EXPORT_SYMBOL_GPL(mmu_linear_psize);
102 int mmu_virtual_psize = MMU_PAGE_4K;
103 int mmu_vmalloc_psize = MMU_PAGE_4K;
104 #ifdef CONFIG_SPARSEMEM_VMEMMAP
105 int mmu_vmemmap_psize = MMU_PAGE_4K;
106 #endif
107 int mmu_io_psize = MMU_PAGE_4K;
108 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
109 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
110 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
111 u16 mmu_slb_size = 64;
112 EXPORT_SYMBOL_GPL(mmu_slb_size);
113 #ifdef CONFIG_PPC_64K_PAGES
114 int mmu_ci_restrictions;
115 #endif
116 #ifdef CONFIG_DEBUG_PAGEALLOC
117 static u8 *linear_map_hash_slots;
118 static unsigned long linear_map_hash_count;
119 static DEFINE_SPINLOCK(linear_map_hash_lock);
120 #endif /* CONFIG_DEBUG_PAGEALLOC */
121 struct mmu_hash_ops mmu_hash_ops;
122 EXPORT_SYMBOL(mmu_hash_ops);
123
124 /* There are definitions of page sizes arrays to be used when none
125 * is provided by the firmware.
126 */
127
128 /* Pre-POWER4 CPUs (4k pages only)
129 */
130 static struct mmu_psize_def mmu_psize_defaults_old[] = {
131 [MMU_PAGE_4K] = {
132 .shift = 12,
133 .sllp = 0,
134 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
135 .avpnm = 0,
136 .tlbiel = 0,
137 },
138 };
139
140 /* POWER4, GPUL, POWER5
141 *
142 * Support for 16Mb large pages
143 */
144 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
145 [MMU_PAGE_4K] = {
146 .shift = 12,
147 .sllp = 0,
148 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
149 .avpnm = 0,
150 .tlbiel = 1,
151 },
152 [MMU_PAGE_16M] = {
153 .shift = 24,
154 .sllp = SLB_VSID_L,
155 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
156 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
157 .avpnm = 0x1UL,
158 .tlbiel = 0,
159 },
160 };
161
162 /*
163 * 'R' and 'C' update notes:
164 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
165 * create writeable HPTEs without C set, because the hcall H_PROTECT
166 * that we use in that case will not update C
167 * - The above is however not a problem, because we also don't do that
168 * fancy "no flush" variant of eviction and we use H_REMOVE which will
169 * do the right thing and thus we don't have the race I described earlier
170 *
171 * - Under bare metal, we do have the race, so we need R and C set
172 * - We make sure R is always set and never lost
173 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
174 */
175 unsigned long htab_convert_pte_flags(unsigned long pteflags)
176 {
177 unsigned long rflags = 0;
178
179 /* _PAGE_EXEC -> NOEXEC */
180 if ((pteflags & _PAGE_EXEC) == 0)
181 rflags |= HPTE_R_N;
182 /*
183 * PPP bits:
184 * Linux uses slb key 0 for kernel and 1 for user.
185 * kernel RW areas are mapped with PPP=0b000
186 * User area is mapped with PPP=0b010 for read/write
187 * or PPP=0b011 for read-only (including writeable but clean pages).
188 */
189 if (pteflags & _PAGE_PRIVILEGED) {
190 /*
191 * Kernel read only mapped with ppp bits 0b110
192 */
193 if (!(pteflags & _PAGE_WRITE))
194 rflags |= (HPTE_R_PP0 | 0x2);
195 } else {
196 if (pteflags & _PAGE_RWX)
197 rflags |= 0x2;
198 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
199 rflags |= 0x1;
200 }
201 /*
202 * We can't allow hardware to update hpte bits. Hence always
203 * set 'R' bit and set 'C' if it is a write fault
204 */
205 rflags |= HPTE_R_R;
206
207 if (pteflags & _PAGE_DIRTY)
208 rflags |= HPTE_R_C;
209 /*
210 * Add in WIG bits
211 */
212
213 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
214 rflags |= HPTE_R_I;
215 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
216 rflags |= (HPTE_R_I | HPTE_R_G);
217 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
218 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
219 else
220 /*
221 * Add memory coherence if cache inhibited is not set
222 */
223 rflags |= HPTE_R_M;
224
225 return rflags;
226 }
227
228 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
229 unsigned long pstart, unsigned long prot,
230 int psize, int ssize)
231 {
232 unsigned long vaddr, paddr;
233 unsigned int step, shift;
234 int ret = 0;
235
236 shift = mmu_psize_defs[psize].shift;
237 step = 1 << shift;
238
239 prot = htab_convert_pte_flags(prot);
240
241 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
242 vstart, vend, pstart, prot, psize, ssize);
243
244 for (vaddr = vstart, paddr = pstart; vaddr < vend;
245 vaddr += step, paddr += step) {
246 unsigned long hash, hpteg;
247 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
248 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
249 unsigned long tprot = prot;
250
251 /*
252 * If we hit a bad address return error.
253 */
254 if (!vsid)
255 return -1;
256 /* Make kernel text executable */
257 if (overlaps_kernel_text(vaddr, vaddr + step))
258 tprot &= ~HPTE_R_N;
259
260 /* Make kvm guest trampolines executable */
261 if (overlaps_kvm_tmp(vaddr, vaddr + step))
262 tprot &= ~HPTE_R_N;
263
264 /*
265 * If relocatable, check if it overlaps interrupt vectors that
266 * are copied down to real 0. For relocatable kernel
267 * (e.g. kdump case) we copy interrupt vectors down to real
268 * address 0. Mark that region as executable. This is
269 * because on p8 system with relocation on exception feature
270 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
271 * in order to execute the interrupt handlers in virtual
272 * mode the vector region need to be marked as executable.
273 */
274 if ((PHYSICAL_START > MEMORY_START) &&
275 overlaps_interrupt_vector_text(vaddr, vaddr + step))
276 tprot &= ~HPTE_R_N;
277
278 hash = hpt_hash(vpn, shift, ssize);
279 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
280
281 BUG_ON(!mmu_hash_ops.hpte_insert);
282 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
283 HPTE_V_BOLTED, psize, psize,
284 ssize);
285
286 if (ret < 0)
287 break;
288
289 #ifdef CONFIG_DEBUG_PAGEALLOC
290 if (debug_pagealloc_enabled() &&
291 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
292 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
293 #endif /* CONFIG_DEBUG_PAGEALLOC */
294 }
295 return ret < 0 ? ret : 0;
296 }
297
298 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
299 int psize, int ssize)
300 {
301 unsigned long vaddr;
302 unsigned int step, shift;
303 int rc;
304 int ret = 0;
305
306 shift = mmu_psize_defs[psize].shift;
307 step = 1 << shift;
308
309 if (!mmu_hash_ops.hpte_removebolted)
310 return -ENODEV;
311
312 for (vaddr = vstart; vaddr < vend; vaddr += step) {
313 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
314 if (rc == -ENOENT) {
315 ret = -ENOENT;
316 continue;
317 }
318 if (rc < 0)
319 return rc;
320 }
321
322 return ret;
323 }
324
325 static bool disable_1tb_segments = false;
326
327 static int __init parse_disable_1tb_segments(char *p)
328 {
329 disable_1tb_segments = true;
330 return 0;
331 }
332 early_param("disable_1tb_segments", parse_disable_1tb_segments);
333
334 static int __init htab_dt_scan_seg_sizes(unsigned long node,
335 const char *uname, int depth,
336 void *data)
337 {
338 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
339 const __be32 *prop;
340 int size = 0;
341
342 /* We are scanning "cpu" nodes only */
343 if (type == NULL || strcmp(type, "cpu") != 0)
344 return 0;
345
346 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
347 if (prop == NULL)
348 return 0;
349 for (; size >= 4; size -= 4, ++prop) {
350 if (be32_to_cpu(prop[0]) == 40) {
351 DBG("1T segment support detected\n");
352
353 if (disable_1tb_segments) {
354 DBG("1T segments disabled by command line\n");
355 break;
356 }
357
358 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
359 return 1;
360 }
361 }
362 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
363 return 0;
364 }
365
366 static void __init htab_init_seg_sizes(void)
367 {
368 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
369 }
370
371 static int __init get_idx_from_shift(unsigned int shift)
372 {
373 int idx = -1;
374
375 switch (shift) {
376 case 0xc:
377 idx = MMU_PAGE_4K;
378 break;
379 case 0x10:
380 idx = MMU_PAGE_64K;
381 break;
382 case 0x14:
383 idx = MMU_PAGE_1M;
384 break;
385 case 0x18:
386 idx = MMU_PAGE_16M;
387 break;
388 case 0x22:
389 idx = MMU_PAGE_16G;
390 break;
391 }
392 return idx;
393 }
394
395 static int __init htab_dt_scan_page_sizes(unsigned long node,
396 const char *uname, int depth,
397 void *data)
398 {
399 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
400 const __be32 *prop;
401 int size = 0;
402
403 /* We are scanning "cpu" nodes only */
404 if (type == NULL || strcmp(type, "cpu") != 0)
405 return 0;
406
407 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
408 if (!prop)
409 return 0;
410
411 pr_info("Page sizes from device-tree:\n");
412 size /= 4;
413 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
414 while(size > 0) {
415 unsigned int base_shift = be32_to_cpu(prop[0]);
416 unsigned int slbenc = be32_to_cpu(prop[1]);
417 unsigned int lpnum = be32_to_cpu(prop[2]);
418 struct mmu_psize_def *def;
419 int idx, base_idx;
420
421 size -= 3; prop += 3;
422 base_idx = get_idx_from_shift(base_shift);
423 if (base_idx < 0) {
424 /* skip the pte encoding also */
425 prop += lpnum * 2; size -= lpnum * 2;
426 continue;
427 }
428 def = &mmu_psize_defs[base_idx];
429 if (base_idx == MMU_PAGE_16M)
430 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
431
432 def->shift = base_shift;
433 if (base_shift <= 23)
434 def->avpnm = 0;
435 else
436 def->avpnm = (1 << (base_shift - 23)) - 1;
437 def->sllp = slbenc;
438 /*
439 * We don't know for sure what's up with tlbiel, so
440 * for now we only set it for 4K and 64K pages
441 */
442 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
443 def->tlbiel = 1;
444 else
445 def->tlbiel = 0;
446
447 while (size > 0 && lpnum) {
448 unsigned int shift = be32_to_cpu(prop[0]);
449 int penc = be32_to_cpu(prop[1]);
450
451 prop += 2; size -= 2;
452 lpnum--;
453
454 idx = get_idx_from_shift(shift);
455 if (idx < 0)
456 continue;
457
458 if (penc == -1)
459 pr_err("Invalid penc for base_shift=%d "
460 "shift=%d\n", base_shift, shift);
461
462 def->penc[idx] = penc;
463 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
464 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
465 base_shift, shift, def->sllp,
466 def->avpnm, def->tlbiel, def->penc[idx]);
467 }
468 }
469
470 return 1;
471 }
472
473 #ifdef CONFIG_HUGETLB_PAGE
474 /* Scan for 16G memory blocks that have been set aside for huge pages
475 * and reserve those blocks for 16G huge pages.
476 */
477 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
478 const char *uname, int depth,
479 void *data) {
480 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
481 const __be64 *addr_prop;
482 const __be32 *page_count_prop;
483 unsigned int expected_pages;
484 long unsigned int phys_addr;
485 long unsigned int block_size;
486
487 /* We are scanning "memory" nodes only */
488 if (type == NULL || strcmp(type, "memory") != 0)
489 return 0;
490
491 /* This property is the log base 2 of the number of virtual pages that
492 * will represent this memory block. */
493 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
494 if (page_count_prop == NULL)
495 return 0;
496 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
497 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
498 if (addr_prop == NULL)
499 return 0;
500 phys_addr = be64_to_cpu(addr_prop[0]);
501 block_size = be64_to_cpu(addr_prop[1]);
502 if (block_size != (16 * GB))
503 return 0;
504 printk(KERN_INFO "Huge page(16GB) memory: "
505 "addr = 0x%lX size = 0x%lX pages = %d\n",
506 phys_addr, block_size, expected_pages);
507 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
508 memblock_reserve(phys_addr, block_size * expected_pages);
509 add_gpage(phys_addr, block_size, expected_pages);
510 }
511 return 0;
512 }
513 #endif /* CONFIG_HUGETLB_PAGE */
514
515 static void mmu_psize_set_default_penc(void)
516 {
517 int bpsize, apsize;
518 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
519 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
520 mmu_psize_defs[bpsize].penc[apsize] = -1;
521 }
522
523 #ifdef CONFIG_PPC_64K_PAGES
524
525 static bool might_have_hea(void)
526 {
527 /*
528 * The HEA ethernet adapter requires awareness of the
529 * GX bus. Without that awareness we can easily assume
530 * we will never see an HEA ethernet device.
531 */
532 #ifdef CONFIG_IBMEBUS
533 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
534 !firmware_has_feature(FW_FEATURE_SPLPAR);
535 #else
536 return false;
537 #endif
538 }
539
540 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
541
542 static void __init htab_init_page_sizes(void)
543 {
544 int rc;
545
546 /* se the invalid penc to -1 */
547 mmu_psize_set_default_penc();
548
549 /* Default to 4K pages only */
550 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
551 sizeof(mmu_psize_defaults_old));
552
553 /*
554 * Try to find the available page sizes in the device-tree
555 */
556 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
557 if (rc != 0) /* Found */
558 goto found;
559
560 /*
561 * Not in the device-tree, let's fallback on known size
562 * list for 16M capable GP & GR
563 */
564 if (mmu_has_feature(MMU_FTR_16M_PAGE))
565 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
566 sizeof(mmu_psize_defaults_gp));
567 found:
568 if (!debug_pagealloc_enabled()) {
569 /*
570 * Pick a size for the linear mapping. Currently, we only
571 * support 16M, 1M and 4K which is the default
572 */
573 if (mmu_psize_defs[MMU_PAGE_16M].shift)
574 mmu_linear_psize = MMU_PAGE_16M;
575 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
576 mmu_linear_psize = MMU_PAGE_1M;
577 }
578
579 #ifdef CONFIG_PPC_64K_PAGES
580 /*
581 * Pick a size for the ordinary pages. Default is 4K, we support
582 * 64K for user mappings and vmalloc if supported by the processor.
583 * We only use 64k for ioremap if the processor
584 * (and firmware) support cache-inhibited large pages.
585 * If not, we use 4k and set mmu_ci_restrictions so that
586 * hash_page knows to switch processes that use cache-inhibited
587 * mappings to 4k pages.
588 */
589 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
590 mmu_virtual_psize = MMU_PAGE_64K;
591 mmu_vmalloc_psize = MMU_PAGE_64K;
592 if (mmu_linear_psize == MMU_PAGE_4K)
593 mmu_linear_psize = MMU_PAGE_64K;
594 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
595 /*
596 * When running on pSeries using 64k pages for ioremap
597 * would stop us accessing the HEA ethernet. So if we
598 * have the chance of ever seeing one, stay at 4k.
599 */
600 if (!might_have_hea())
601 mmu_io_psize = MMU_PAGE_64K;
602 } else
603 mmu_ci_restrictions = 1;
604 }
605 #endif /* CONFIG_PPC_64K_PAGES */
606
607 #ifdef CONFIG_SPARSEMEM_VMEMMAP
608 /* We try to use 16M pages for vmemmap if that is supported
609 * and we have at least 1G of RAM at boot
610 */
611 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
612 memblock_phys_mem_size() >= 0x40000000)
613 mmu_vmemmap_psize = MMU_PAGE_16M;
614 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
615 mmu_vmemmap_psize = MMU_PAGE_64K;
616 else
617 mmu_vmemmap_psize = MMU_PAGE_4K;
618 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
619
620 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
621 "virtual = %d, io = %d"
622 #ifdef CONFIG_SPARSEMEM_VMEMMAP
623 ", vmemmap = %d"
624 #endif
625 "\n",
626 mmu_psize_defs[mmu_linear_psize].shift,
627 mmu_psize_defs[mmu_virtual_psize].shift,
628 mmu_psize_defs[mmu_io_psize].shift
629 #ifdef CONFIG_SPARSEMEM_VMEMMAP
630 ,mmu_psize_defs[mmu_vmemmap_psize].shift
631 #endif
632 );
633
634 #ifdef CONFIG_HUGETLB_PAGE
635 /* Reserve 16G huge page memory sections for huge pages */
636 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
637 #endif /* CONFIG_HUGETLB_PAGE */
638 }
639
640 static int __init htab_dt_scan_pftsize(unsigned long node,
641 const char *uname, int depth,
642 void *data)
643 {
644 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
645 const __be32 *prop;
646
647 /* We are scanning "cpu" nodes only */
648 if (type == NULL || strcmp(type, "cpu") != 0)
649 return 0;
650
651 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
652 if (prop != NULL) {
653 /* pft_size[0] is the NUMA CEC cookie */
654 ppc64_pft_size = be32_to_cpu(prop[1]);
655 return 1;
656 }
657 return 0;
658 }
659
660 unsigned htab_shift_for_mem_size(unsigned long mem_size)
661 {
662 unsigned memshift = __ilog2(mem_size);
663 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
664 unsigned pteg_shift;
665
666 /* round mem_size up to next power of 2 */
667 if ((1UL << memshift) < mem_size)
668 memshift += 1;
669
670 /* aim for 2 pages / pteg */
671 pteg_shift = memshift - (pshift + 1);
672
673 /*
674 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
675 * size permitted by the architecture.
676 */
677 return max(pteg_shift + 7, 18U);
678 }
679
680 static unsigned long __init htab_get_table_size(void)
681 {
682 /* If hash size isn't already provided by the platform, we try to
683 * retrieve it from the device-tree. If it's not there neither, we
684 * calculate it now based on the total RAM size
685 */
686 if (ppc64_pft_size == 0)
687 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
688 if (ppc64_pft_size)
689 return 1UL << ppc64_pft_size;
690
691 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
692 }
693
694 #ifdef CONFIG_MEMORY_HOTPLUG
695 int create_section_mapping(unsigned long start, unsigned long end)
696 {
697 int rc = htab_bolt_mapping(start, end, __pa(start),
698 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
699 mmu_kernel_ssize);
700
701 if (rc < 0) {
702 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
703 mmu_kernel_ssize);
704 BUG_ON(rc2 && (rc2 != -ENOENT));
705 }
706 return rc;
707 }
708
709 int remove_section_mapping(unsigned long start, unsigned long end)
710 {
711 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
712 mmu_kernel_ssize);
713 WARN_ON(rc < 0);
714 return rc;
715 }
716 #endif /* CONFIG_MEMORY_HOTPLUG */
717
718 static void __init hash_init_partition_table(phys_addr_t hash_table,
719 unsigned long htab_size)
720 {
721 unsigned long ps_field;
722 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
723
724 /*
725 * slb llp encoding for the page size used in VPM real mode.
726 * We can ignore that for lpid 0
727 */
728 ps_field = 0;
729 htab_size = __ilog2(htab_size) - 18;
730
731 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 24), "Partition table size too large.");
732 partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
733 MEMBLOCK_ALLOC_ANYWHERE));
734
735 /* Initialize the Partition Table with no entries */
736 memset((void *)partition_tb, 0, patb_size);
737 partition_tb->patb0 = cpu_to_be64(ps_field | hash_table | htab_size);
738 /*
739 * FIXME!! This should be done via update_partition table
740 * For now UPRT is 0 for us.
741 */
742 partition_tb->patb1 = 0;
743 pr_info("Partition table %p\n", partition_tb);
744 /*
745 * update partition table control register,
746 * 64 K size.
747 */
748 mtspr(SPRN_PTCR, __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
749
750 }
751
752 static void __init htab_initialize(void)
753 {
754 unsigned long table;
755 unsigned long pteg_count;
756 unsigned long prot;
757 unsigned long base = 0, size = 0;
758 struct memblock_region *reg;
759
760 DBG(" -> htab_initialize()\n");
761
762 /* Initialize segment sizes */
763 htab_init_seg_sizes();
764
765 /* Initialize page sizes */
766 htab_init_page_sizes();
767
768 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
769 mmu_kernel_ssize = MMU_SEGSIZE_1T;
770 mmu_highuser_ssize = MMU_SEGSIZE_1T;
771 printk(KERN_INFO "Using 1TB segments\n");
772 }
773
774 /*
775 * Calculate the required size of the htab. We want the number of
776 * PTEGs to equal one half the number of real pages.
777 */
778 htab_size_bytes = htab_get_table_size();
779 pteg_count = htab_size_bytes >> 7;
780
781 htab_hash_mask = pteg_count - 1;
782
783 if (firmware_has_feature(FW_FEATURE_LPAR) ||
784 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
785 /* Using a hypervisor which owns the htab */
786 htab_address = NULL;
787 _SDR1 = 0;
788 #ifdef CONFIG_FA_DUMP
789 /*
790 * If firmware assisted dump is active firmware preserves
791 * the contents of htab along with entire partition memory.
792 * Clear the htab if firmware assisted dump is active so
793 * that we dont end up using old mappings.
794 */
795 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
796 mmu_hash_ops.hpte_clear_all();
797 #endif
798 } else {
799 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
800
801 #ifdef CONFIG_PPC_CELL
802 /*
803 * Cell may require the hash table down low when using the
804 * Axon IOMMU in order to fit the dynamic region over it, see
805 * comments in cell/iommu.c
806 */
807 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
808 limit = 0x80000000;
809 pr_info("Hash table forced below 2G for Axon IOMMU\n");
810 }
811 #endif /* CONFIG_PPC_CELL */
812
813 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
814 limit);
815
816 DBG("Hash table allocated at %lx, size: %lx\n", table,
817 htab_size_bytes);
818
819 htab_address = __va(table);
820
821 /* htab absolute addr + encoded htabsize */
822 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
823
824 /* Initialize the HPT with no entries */
825 memset((void *)table, 0, htab_size_bytes);
826
827 if (!cpu_has_feature(CPU_FTR_ARCH_300))
828 /* Set SDR1 */
829 mtspr(SPRN_SDR1, _SDR1);
830 else
831 hash_init_partition_table(table, htab_size_bytes);
832 }
833
834 prot = pgprot_val(PAGE_KERNEL);
835
836 #ifdef CONFIG_DEBUG_PAGEALLOC
837 if (debug_pagealloc_enabled()) {
838 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
839 linear_map_hash_slots = __va(memblock_alloc_base(
840 linear_map_hash_count, 1, ppc64_rma_size));
841 memset(linear_map_hash_slots, 0, linear_map_hash_count);
842 }
843 #endif /* CONFIG_DEBUG_PAGEALLOC */
844
845 /* On U3 based machines, we need to reserve the DART area and
846 * _NOT_ map it to avoid cache paradoxes as it's remapped non
847 * cacheable later on
848 */
849
850 /* create bolted the linear mapping in the hash table */
851 for_each_memblock(memory, reg) {
852 base = (unsigned long)__va(reg->base);
853 size = reg->size;
854
855 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
856 base, size, prot);
857
858 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
859 prot, mmu_linear_psize, mmu_kernel_ssize));
860 }
861 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
862
863 /*
864 * If we have a memory_limit and we've allocated TCEs then we need to
865 * explicitly map the TCE area at the top of RAM. We also cope with the
866 * case that the TCEs start below memory_limit.
867 * tce_alloc_start/end are 16MB aligned so the mapping should work
868 * for either 4K or 16MB pages.
869 */
870 if (tce_alloc_start) {
871 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
872 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
873
874 if (base + size >= tce_alloc_start)
875 tce_alloc_start = base + size + 1;
876
877 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
878 __pa(tce_alloc_start), prot,
879 mmu_linear_psize, mmu_kernel_ssize));
880 }
881
882
883 DBG(" <- htab_initialize()\n");
884 }
885 #undef KB
886 #undef MB
887
888 void __init hash__early_init_mmu(void)
889 {
890 /*
891 * initialize page table size
892 */
893 __pte_frag_nr = H_PTE_FRAG_NR;
894 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
895
896 __pte_index_size = H_PTE_INDEX_SIZE;
897 __pmd_index_size = H_PMD_INDEX_SIZE;
898 __pud_index_size = H_PUD_INDEX_SIZE;
899 __pgd_index_size = H_PGD_INDEX_SIZE;
900 __pmd_cache_index = H_PMD_CACHE_INDEX;
901 __pte_table_size = H_PTE_TABLE_SIZE;
902 __pmd_table_size = H_PMD_TABLE_SIZE;
903 __pud_table_size = H_PUD_TABLE_SIZE;
904 __pgd_table_size = H_PGD_TABLE_SIZE;
905 /*
906 * 4k use hugepd format, so for hash set then to
907 * zero
908 */
909 __pmd_val_bits = 0;
910 __pud_val_bits = 0;
911 __pgd_val_bits = 0;
912
913 __kernel_virt_start = H_KERN_VIRT_START;
914 __kernel_virt_size = H_KERN_VIRT_SIZE;
915 __vmalloc_start = H_VMALLOC_START;
916 __vmalloc_end = H_VMALLOC_END;
917 vmemmap = (struct page *)H_VMEMMAP_BASE;
918 ioremap_bot = IOREMAP_BASE;
919
920 #ifdef CONFIG_PCI
921 pci_io_base = ISA_IO_BASE;
922 #endif
923
924 /* Select appropriate backend */
925 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
926 ps3_early_mm_init();
927 else if (firmware_has_feature(FW_FEATURE_LPAR))
928 hpte_init_pseries();
929 else if (IS_ENABLED(CONFIG_PPC_NATIVE))
930 hpte_init_native();
931
932 if (!mmu_hash_ops.hpte_insert)
933 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
934
935 /* Initialize the MMU Hash table and create the linear mapping
936 * of memory. Has to be done before SLB initialization as this is
937 * currently where the page size encoding is obtained.
938 */
939 htab_initialize();
940
941 pr_info("Initializing hash mmu with SLB\n");
942 /* Initialize SLB management */
943 slb_initialize();
944 }
945
946 #ifdef CONFIG_SMP
947 void hash__early_init_mmu_secondary(void)
948 {
949 /* Initialize hash table for that CPU */
950 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
951 if (!cpu_has_feature(CPU_FTR_ARCH_300))
952 mtspr(SPRN_SDR1, _SDR1);
953 else
954 mtspr(SPRN_PTCR,
955 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
956 }
957 /* Initialize SLB */
958 slb_initialize();
959 }
960 #endif /* CONFIG_SMP */
961
962 /*
963 * Called by asm hashtable.S for doing lazy icache flush
964 */
965 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
966 {
967 struct page *page;
968
969 if (!pfn_valid(pte_pfn(pte)))
970 return pp;
971
972 page = pte_page(pte);
973
974 /* page is dirty */
975 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
976 if (trap == 0x400) {
977 flush_dcache_icache_page(page);
978 set_bit(PG_arch_1, &page->flags);
979 } else
980 pp |= HPTE_R_N;
981 }
982 return pp;
983 }
984
985 #ifdef CONFIG_PPC_MM_SLICES
986 static unsigned int get_paca_psize(unsigned long addr)
987 {
988 u64 lpsizes;
989 unsigned char *hpsizes;
990 unsigned long index, mask_index;
991
992 if (addr < SLICE_LOW_TOP) {
993 lpsizes = get_paca()->mm_ctx_low_slices_psize;
994 index = GET_LOW_SLICE_INDEX(addr);
995 return (lpsizes >> (index * 4)) & 0xF;
996 }
997 hpsizes = get_paca()->mm_ctx_high_slices_psize;
998 index = GET_HIGH_SLICE_INDEX(addr);
999 mask_index = index & 0x1;
1000 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
1001 }
1002
1003 #else
1004 unsigned int get_paca_psize(unsigned long addr)
1005 {
1006 return get_paca()->mm_ctx_user_psize;
1007 }
1008 #endif
1009
1010 /*
1011 * Demote a segment to using 4k pages.
1012 * For now this makes the whole process use 4k pages.
1013 */
1014 #ifdef CONFIG_PPC_64K_PAGES
1015 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1016 {
1017 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1018 return;
1019 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1020 copro_flush_all_slbs(mm);
1021 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1022
1023 copy_mm_to_paca(&mm->context);
1024 slb_flush_and_rebolt();
1025 }
1026 }
1027 #endif /* CONFIG_PPC_64K_PAGES */
1028
1029 #ifdef CONFIG_PPC_SUBPAGE_PROT
1030 /*
1031 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1032 * Userspace sets the subpage permissions using the subpage_prot system call.
1033 *
1034 * Result is 0: full permissions, _PAGE_RW: read-only,
1035 * _PAGE_RWX: no access.
1036 */
1037 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1038 {
1039 struct subpage_prot_table *spt = &mm->context.spt;
1040 u32 spp = 0;
1041 u32 **sbpm, *sbpp;
1042
1043 if (ea >= spt->maxaddr)
1044 return 0;
1045 if (ea < 0x100000000UL) {
1046 /* addresses below 4GB use spt->low_prot */
1047 sbpm = spt->low_prot;
1048 } else {
1049 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1050 if (!sbpm)
1051 return 0;
1052 }
1053 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1054 if (!sbpp)
1055 return 0;
1056 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1057
1058 /* extract 2-bit bitfield for this 4k subpage */
1059 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1060
1061 /*
1062 * 0 -> full premission
1063 * 1 -> Read only
1064 * 2 -> no access.
1065 * We return the flag that need to be cleared.
1066 */
1067 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1068 return spp;
1069 }
1070
1071 #else /* CONFIG_PPC_SUBPAGE_PROT */
1072 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1073 {
1074 return 0;
1075 }
1076 #endif
1077
1078 void hash_failure_debug(unsigned long ea, unsigned long access,
1079 unsigned long vsid, unsigned long trap,
1080 int ssize, int psize, int lpsize, unsigned long pte)
1081 {
1082 if (!printk_ratelimit())
1083 return;
1084 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1085 ea, access, current->comm);
1086 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1087 trap, vsid, ssize, psize, lpsize, pte);
1088 }
1089
1090 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1091 int psize, bool user_region)
1092 {
1093 if (user_region) {
1094 if (psize != get_paca_psize(ea)) {
1095 copy_mm_to_paca(&mm->context);
1096 slb_flush_and_rebolt();
1097 }
1098 } else if (get_paca()->vmalloc_sllp !=
1099 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1100 get_paca()->vmalloc_sllp =
1101 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1102 slb_vmalloc_update();
1103 }
1104 }
1105
1106 /* Result code is:
1107 * 0 - handled
1108 * 1 - normal page fault
1109 * -1 - critical hash insertion error
1110 * -2 - access not permitted by subpage protection mechanism
1111 */
1112 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1113 unsigned long access, unsigned long trap,
1114 unsigned long flags)
1115 {
1116 bool is_thp;
1117 enum ctx_state prev_state = exception_enter();
1118 pgd_t *pgdir;
1119 unsigned long vsid;
1120 pte_t *ptep;
1121 unsigned hugeshift;
1122 const struct cpumask *tmp;
1123 int rc, user_region = 0;
1124 int psize, ssize;
1125
1126 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1127 ea, access, trap);
1128 trace_hash_fault(ea, access, trap);
1129
1130 /* Get region & vsid */
1131 switch (REGION_ID(ea)) {
1132 case USER_REGION_ID:
1133 user_region = 1;
1134 if (! mm) {
1135 DBG_LOW(" user region with no mm !\n");
1136 rc = 1;
1137 goto bail;
1138 }
1139 psize = get_slice_psize(mm, ea);
1140 ssize = user_segment_size(ea);
1141 vsid = get_vsid(mm->context.id, ea, ssize);
1142 break;
1143 case VMALLOC_REGION_ID:
1144 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1145 if (ea < VMALLOC_END)
1146 psize = mmu_vmalloc_psize;
1147 else
1148 psize = mmu_io_psize;
1149 ssize = mmu_kernel_ssize;
1150 break;
1151 default:
1152 /* Not a valid range
1153 * Send the problem up to do_page_fault
1154 */
1155 rc = 1;
1156 goto bail;
1157 }
1158 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1159
1160 /* Bad address. */
1161 if (!vsid) {
1162 DBG_LOW("Bad address!\n");
1163 rc = 1;
1164 goto bail;
1165 }
1166 /* Get pgdir */
1167 pgdir = mm->pgd;
1168 if (pgdir == NULL) {
1169 rc = 1;
1170 goto bail;
1171 }
1172
1173 /* Check CPU locality */
1174 tmp = cpumask_of(smp_processor_id());
1175 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1176 flags |= HPTE_LOCAL_UPDATE;
1177
1178 #ifndef CONFIG_PPC_64K_PAGES
1179 /* If we use 4K pages and our psize is not 4K, then we might
1180 * be hitting a special driver mapping, and need to align the
1181 * address before we fetch the PTE.
1182 *
1183 * It could also be a hugepage mapping, in which case this is
1184 * not necessary, but it's not harmful, either.
1185 */
1186 if (psize != MMU_PAGE_4K)
1187 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1188 #endif /* CONFIG_PPC_64K_PAGES */
1189
1190 /* Get PTE and page size from page tables */
1191 ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift);
1192 if (ptep == NULL || !pte_present(*ptep)) {
1193 DBG_LOW(" no PTE !\n");
1194 rc = 1;
1195 goto bail;
1196 }
1197
1198 /* Add _PAGE_PRESENT to the required access perm */
1199 access |= _PAGE_PRESENT;
1200
1201 /* Pre-check access permissions (will be re-checked atomically
1202 * in __hash_page_XX but this pre-check is a fast path
1203 */
1204 if (!check_pte_access(access, pte_val(*ptep))) {
1205 DBG_LOW(" no access !\n");
1206 rc = 1;
1207 goto bail;
1208 }
1209
1210 if (hugeshift) {
1211 if (is_thp)
1212 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1213 trap, flags, ssize, psize);
1214 #ifdef CONFIG_HUGETLB_PAGE
1215 else
1216 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1217 flags, ssize, hugeshift, psize);
1218 #else
1219 else {
1220 /*
1221 * if we have hugeshift, and is not transhuge with
1222 * hugetlb disabled, something is really wrong.
1223 */
1224 rc = 1;
1225 WARN_ON(1);
1226 }
1227 #endif
1228 if (current->mm == mm)
1229 check_paca_psize(ea, mm, psize, user_region);
1230
1231 goto bail;
1232 }
1233
1234 #ifndef CONFIG_PPC_64K_PAGES
1235 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1236 #else
1237 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1238 pte_val(*(ptep + PTRS_PER_PTE)));
1239 #endif
1240 /* Do actual hashing */
1241 #ifdef CONFIG_PPC_64K_PAGES
1242 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1243 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1244 demote_segment_4k(mm, ea);
1245 psize = MMU_PAGE_4K;
1246 }
1247
1248 /* If this PTE is non-cacheable and we have restrictions on
1249 * using non cacheable large pages, then we switch to 4k
1250 */
1251 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1252 if (user_region) {
1253 demote_segment_4k(mm, ea);
1254 psize = MMU_PAGE_4K;
1255 } else if (ea < VMALLOC_END) {
1256 /*
1257 * some driver did a non-cacheable mapping
1258 * in vmalloc space, so switch vmalloc
1259 * to 4k pages
1260 */
1261 printk(KERN_ALERT "Reducing vmalloc segment "
1262 "to 4kB pages because of "
1263 "non-cacheable mapping\n");
1264 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1265 copro_flush_all_slbs(mm);
1266 }
1267 }
1268
1269 #endif /* CONFIG_PPC_64K_PAGES */
1270
1271 if (current->mm == mm)
1272 check_paca_psize(ea, mm, psize, user_region);
1273
1274 #ifdef CONFIG_PPC_64K_PAGES
1275 if (psize == MMU_PAGE_64K)
1276 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1277 flags, ssize);
1278 else
1279 #endif /* CONFIG_PPC_64K_PAGES */
1280 {
1281 int spp = subpage_protection(mm, ea);
1282 if (access & spp)
1283 rc = -2;
1284 else
1285 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1286 flags, ssize, spp);
1287 }
1288
1289 /* Dump some info in case of hash insertion failure, they should
1290 * never happen so it is really useful to know if/when they do
1291 */
1292 if (rc == -1)
1293 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1294 psize, pte_val(*ptep));
1295 #ifndef CONFIG_PPC_64K_PAGES
1296 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1297 #else
1298 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1299 pte_val(*(ptep + PTRS_PER_PTE)));
1300 #endif
1301 DBG_LOW(" -> rc=%d\n", rc);
1302
1303 bail:
1304 exception_exit(prev_state);
1305 return rc;
1306 }
1307 EXPORT_SYMBOL_GPL(hash_page_mm);
1308
1309 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1310 unsigned long dsisr)
1311 {
1312 unsigned long flags = 0;
1313 struct mm_struct *mm = current->mm;
1314
1315 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1316 mm = &init_mm;
1317
1318 if (dsisr & DSISR_NOHPTE)
1319 flags |= HPTE_NOHPTE_UPDATE;
1320
1321 return hash_page_mm(mm, ea, access, trap, flags);
1322 }
1323 EXPORT_SYMBOL_GPL(hash_page);
1324
1325 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1326 unsigned long dsisr)
1327 {
1328 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1329 unsigned long flags = 0;
1330 struct mm_struct *mm = current->mm;
1331
1332 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1333 mm = &init_mm;
1334
1335 if (dsisr & DSISR_NOHPTE)
1336 flags |= HPTE_NOHPTE_UPDATE;
1337
1338 if (dsisr & DSISR_ISSTORE)
1339 access |= _PAGE_WRITE;
1340 /*
1341 * We set _PAGE_PRIVILEGED only when
1342 * kernel mode access kernel space.
1343 *
1344 * _PAGE_PRIVILEGED is NOT set
1345 * 1) when kernel mode access user space
1346 * 2) user space access kernel space.
1347 */
1348 access |= _PAGE_PRIVILEGED;
1349 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1350 access &= ~_PAGE_PRIVILEGED;
1351
1352 if (trap == 0x400)
1353 access |= _PAGE_EXEC;
1354
1355 return hash_page_mm(mm, ea, access, trap, flags);
1356 }
1357
1358 #ifdef CONFIG_PPC_MM_SLICES
1359 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1360 {
1361 int psize = get_slice_psize(mm, ea);
1362
1363 /* We only prefault standard pages for now */
1364 if (unlikely(psize != mm->context.user_psize))
1365 return false;
1366
1367 /*
1368 * Don't prefault if subpage protection is enabled for the EA.
1369 */
1370 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1371 return false;
1372
1373 return true;
1374 }
1375 #else
1376 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1377 {
1378 return true;
1379 }
1380 #endif
1381
1382 void hash_preload(struct mm_struct *mm, unsigned long ea,
1383 unsigned long access, unsigned long trap)
1384 {
1385 int hugepage_shift;
1386 unsigned long vsid;
1387 pgd_t *pgdir;
1388 pte_t *ptep;
1389 unsigned long flags;
1390 int rc, ssize, update_flags = 0;
1391
1392 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1393
1394 if (!should_hash_preload(mm, ea))
1395 return;
1396
1397 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1398 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1399
1400 /* Get Linux PTE if available */
1401 pgdir = mm->pgd;
1402 if (pgdir == NULL)
1403 return;
1404
1405 /* Get VSID */
1406 ssize = user_segment_size(ea);
1407 vsid = get_vsid(mm->context.id, ea, ssize);
1408 if (!vsid)
1409 return;
1410 /*
1411 * Hash doesn't like irqs. Walking linux page table with irq disabled
1412 * saves us from holding multiple locks.
1413 */
1414 local_irq_save(flags);
1415
1416 /*
1417 * THP pages use update_mmu_cache_pmd. We don't do
1418 * hash preload there. Hence can ignore THP here
1419 */
1420 ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift);
1421 if (!ptep)
1422 goto out_exit;
1423
1424 WARN_ON(hugepage_shift);
1425 #ifdef CONFIG_PPC_64K_PAGES
1426 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1427 * a 64K kernel), then we don't preload, hash_page() will take
1428 * care of it once we actually try to access the page.
1429 * That way we don't have to duplicate all of the logic for segment
1430 * page size demotion here
1431 */
1432 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1433 goto out_exit;
1434 #endif /* CONFIG_PPC_64K_PAGES */
1435
1436 /* Is that local to this CPU ? */
1437 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1438 update_flags |= HPTE_LOCAL_UPDATE;
1439
1440 /* Hash it in */
1441 #ifdef CONFIG_PPC_64K_PAGES
1442 if (mm->context.user_psize == MMU_PAGE_64K)
1443 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1444 update_flags, ssize);
1445 else
1446 #endif /* CONFIG_PPC_64K_PAGES */
1447 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1448 ssize, subpage_protection(mm, ea));
1449
1450 /* Dump some info in case of hash insertion failure, they should
1451 * never happen so it is really useful to know if/when they do
1452 */
1453 if (rc == -1)
1454 hash_failure_debug(ea, access, vsid, trap, ssize,
1455 mm->context.user_psize,
1456 mm->context.user_psize,
1457 pte_val(*ptep));
1458 out_exit:
1459 local_irq_restore(flags);
1460 }
1461
1462 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1463 * do not forget to update the assembly call site !
1464 */
1465 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1466 unsigned long flags)
1467 {
1468 unsigned long hash, index, shift, hidx, slot;
1469 int local = flags & HPTE_LOCAL_UPDATE;
1470
1471 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1472 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1473 hash = hpt_hash(vpn, shift, ssize);
1474 hidx = __rpte_to_hidx(pte, index);
1475 if (hidx & _PTEIDX_SECONDARY)
1476 hash = ~hash;
1477 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1478 slot += hidx & _PTEIDX_GROUP_IX;
1479 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1480 /*
1481 * We use same base page size and actual psize, because we don't
1482 * use these functions for hugepage
1483 */
1484 mmu_hash_ops.hpte_invalidate(slot, vpn, psize, psize,
1485 ssize, local);
1486 } pte_iterate_hashed_end();
1487
1488 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1489 /* Transactions are not aborted by tlbiel, only tlbie.
1490 * Without, syncing a page back to a block device w/ PIO could pick up
1491 * transactional data (bad!) so we force an abort here. Before the
1492 * sync the page will be made read-only, which will flush_hash_page.
1493 * BIG ISSUE here: if the kernel uses a page from userspace without
1494 * unmapping it first, it may see the speculated version.
1495 */
1496 if (local && cpu_has_feature(CPU_FTR_TM) &&
1497 current->thread.regs &&
1498 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1499 tm_enable();
1500 tm_abort(TM_CAUSE_TLBI);
1501 }
1502 #endif
1503 }
1504
1505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1506 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1507 pmd_t *pmdp, unsigned int psize, int ssize,
1508 unsigned long flags)
1509 {
1510 int i, max_hpte_count, valid;
1511 unsigned long s_addr;
1512 unsigned char *hpte_slot_array;
1513 unsigned long hidx, shift, vpn, hash, slot;
1514 int local = flags & HPTE_LOCAL_UPDATE;
1515
1516 s_addr = addr & HPAGE_PMD_MASK;
1517 hpte_slot_array = get_hpte_slot_array(pmdp);
1518 /*
1519 * IF we try to do a HUGE PTE update after a withdraw is done.
1520 * we will find the below NULL. This happens when we do
1521 * split_huge_page_pmd
1522 */
1523 if (!hpte_slot_array)
1524 return;
1525
1526 if (mmu_hash_ops.hugepage_invalidate) {
1527 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1528 psize, ssize, local);
1529 goto tm_abort;
1530 }
1531 /*
1532 * No bluk hpte removal support, invalidate each entry
1533 */
1534 shift = mmu_psize_defs[psize].shift;
1535 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1536 for (i = 0; i < max_hpte_count; i++) {
1537 /*
1538 * 8 bits per each hpte entries
1539 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1540 */
1541 valid = hpte_valid(hpte_slot_array, i);
1542 if (!valid)
1543 continue;
1544 hidx = hpte_hash_index(hpte_slot_array, i);
1545
1546 /* get the vpn */
1547 addr = s_addr + (i * (1ul << shift));
1548 vpn = hpt_vpn(addr, vsid, ssize);
1549 hash = hpt_hash(vpn, shift, ssize);
1550 if (hidx & _PTEIDX_SECONDARY)
1551 hash = ~hash;
1552
1553 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1554 slot += hidx & _PTEIDX_GROUP_IX;
1555 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1556 MMU_PAGE_16M, ssize, local);
1557 }
1558 tm_abort:
1559 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1560 /* Transactions are not aborted by tlbiel, only tlbie.
1561 * Without, syncing a page back to a block device w/ PIO could pick up
1562 * transactional data (bad!) so we force an abort here. Before the
1563 * sync the page will be made read-only, which will flush_hash_page.
1564 * BIG ISSUE here: if the kernel uses a page from userspace without
1565 * unmapping it first, it may see the speculated version.
1566 */
1567 if (local && cpu_has_feature(CPU_FTR_TM) &&
1568 current->thread.regs &&
1569 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1570 tm_enable();
1571 tm_abort(TM_CAUSE_TLBI);
1572 }
1573 #endif
1574 return;
1575 }
1576 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1577
1578 void flush_hash_range(unsigned long number, int local)
1579 {
1580 if (mmu_hash_ops.flush_hash_range)
1581 mmu_hash_ops.flush_hash_range(number, local);
1582 else {
1583 int i;
1584 struct ppc64_tlb_batch *batch =
1585 this_cpu_ptr(&ppc64_tlb_batch);
1586
1587 for (i = 0; i < number; i++)
1588 flush_hash_page(batch->vpn[i], batch->pte[i],
1589 batch->psize, batch->ssize, local);
1590 }
1591 }
1592
1593 /*
1594 * low_hash_fault is called when we the low level hash code failed
1595 * to instert a PTE due to an hypervisor error
1596 */
1597 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1598 {
1599 enum ctx_state prev_state = exception_enter();
1600
1601 if (user_mode(regs)) {
1602 #ifdef CONFIG_PPC_SUBPAGE_PROT
1603 if (rc == -2)
1604 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1605 else
1606 #endif
1607 _exception(SIGBUS, regs, BUS_ADRERR, address);
1608 } else
1609 bad_page_fault(regs, address, SIGBUS);
1610
1611 exception_exit(prev_state);
1612 }
1613
1614 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1615 unsigned long pa, unsigned long rflags,
1616 unsigned long vflags, int psize, int ssize)
1617 {
1618 unsigned long hpte_group;
1619 long slot;
1620
1621 repeat:
1622 hpte_group = ((hash & htab_hash_mask) *
1623 HPTES_PER_GROUP) & ~0x7UL;
1624
1625 /* Insert into the hash table, primary slot */
1626 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1627 psize, psize, ssize);
1628
1629 /* Primary is full, try the secondary */
1630 if (unlikely(slot == -1)) {
1631 hpte_group = ((~hash & htab_hash_mask) *
1632 HPTES_PER_GROUP) & ~0x7UL;
1633 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1634 vflags | HPTE_V_SECONDARY,
1635 psize, psize, ssize);
1636 if (slot == -1) {
1637 if (mftb() & 0x1)
1638 hpte_group = ((hash & htab_hash_mask) *
1639 HPTES_PER_GROUP)&~0x7UL;
1640
1641 mmu_hash_ops.hpte_remove(hpte_group);
1642 goto repeat;
1643 }
1644 }
1645
1646 return slot;
1647 }
1648
1649 #ifdef CONFIG_DEBUG_PAGEALLOC
1650 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1651 {
1652 unsigned long hash;
1653 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1654 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1655 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1656 long ret;
1657
1658 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1659
1660 /* Don't create HPTE entries for bad address */
1661 if (!vsid)
1662 return;
1663
1664 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1665 HPTE_V_BOLTED,
1666 mmu_linear_psize, mmu_kernel_ssize);
1667
1668 BUG_ON (ret < 0);
1669 spin_lock(&linear_map_hash_lock);
1670 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1671 linear_map_hash_slots[lmi] = ret | 0x80;
1672 spin_unlock(&linear_map_hash_lock);
1673 }
1674
1675 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1676 {
1677 unsigned long hash, hidx, slot;
1678 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1679 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1680
1681 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1682 spin_lock(&linear_map_hash_lock);
1683 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1684 hidx = linear_map_hash_slots[lmi] & 0x7f;
1685 linear_map_hash_slots[lmi] = 0;
1686 spin_unlock(&linear_map_hash_lock);
1687 if (hidx & _PTEIDX_SECONDARY)
1688 hash = ~hash;
1689 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1690 slot += hidx & _PTEIDX_GROUP_IX;
1691 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1692 mmu_linear_psize,
1693 mmu_kernel_ssize, 0);
1694 }
1695
1696 void __kernel_map_pages(struct page *page, int numpages, int enable)
1697 {
1698 unsigned long flags, vaddr, lmi;
1699 int i;
1700
1701 local_irq_save(flags);
1702 for (i = 0; i < numpages; i++, page++) {
1703 vaddr = (unsigned long)page_address(page);
1704 lmi = __pa(vaddr) >> PAGE_SHIFT;
1705 if (lmi >= linear_map_hash_count)
1706 continue;
1707 if (enable)
1708 kernel_map_linear_page(vaddr, lmi);
1709 else
1710 kernel_unmap_linear_page(vaddr, lmi);
1711 }
1712 local_irq_restore(flags);
1713 }
1714 #endif /* CONFIG_DEBUG_PAGEALLOC */
1715
1716 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1717 phys_addr_t first_memblock_size)
1718 {
1719 /* We don't currently support the first MEMBLOCK not mapping 0
1720 * physical on those processors
1721 */
1722 BUG_ON(first_memblock_base != 0);
1723
1724 /* On LPAR systems, the first entry is our RMA region,
1725 * non-LPAR 64-bit hash MMU systems don't have a limitation
1726 * on real mode access, but using the first entry works well
1727 * enough. We also clamp it to 1G to avoid some funky things
1728 * such as RTAS bugs etc...
1729 */
1730 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1731
1732 /* Finally limit subsequent allocations */
1733 memblock_set_current_limit(ppc64_rma_size);
1734 }
This page took 0.067179 seconds and 5 git commands to generate.