de6881259aef3bd552c53ea77751093336e2e5be
[deliverable/linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
4 *
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6 *
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
11 *
12 * Description:
13 * PowerPC Hashed Page Table functions
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60
61 #ifdef DEBUG
62 #define DBG(fmt...) udbg_printf(fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66
67 #ifdef DEBUG_LOW
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG_LOW(fmt...)
71 #endif
72
73 #define KB (1024)
74 #define MB (1024*KB)
75 #define GB (1024L*MB)
76
77 /*
78 * Note: pte --> Linux PTE
79 * HPTE --> PowerPC Hashed Page Table Entry
80 *
81 * Execution context:
82 * htab_initialize is called with the MMU off (of course), but
83 * the kernel has been copied down to zero so it can directly
84 * reference global data. At this point it is very difficult
85 * to print debug info.
86 *
87 */
88
89 #ifdef CONFIG_U3_DART
90 extern unsigned long dart_tablebase;
91 #endif /* CONFIG_U3_DART */
92
93 static unsigned long _SDR1;
94 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
95
96 struct hash_pte *htab_address;
97 unsigned long htab_size_bytes;
98 unsigned long htab_hash_mask;
99 EXPORT_SYMBOL_GPL(htab_hash_mask);
100 int mmu_linear_psize = MMU_PAGE_4K;
101 int mmu_virtual_psize = MMU_PAGE_4K;
102 int mmu_vmalloc_psize = MMU_PAGE_4K;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize = MMU_PAGE_4K;
105 #endif
106 int mmu_io_psize = MMU_PAGE_4K;
107 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
108 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
109 u16 mmu_slb_size = 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions;
113 #endif
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8 *linear_map_hash_slots;
116 static unsigned long linear_map_hash_count;
117 static DEFINE_SPINLOCK(linear_map_hash_lock);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
119
120 /* There are definitions of page sizes arrays to be used when none
121 * is provided by the firmware.
122 */
123
124 /* Pre-POWER4 CPUs (4k pages only)
125 */
126 static struct mmu_psize_def mmu_psize_defaults_old[] = {
127 [MMU_PAGE_4K] = {
128 .shift = 12,
129 .sllp = 0,
130 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
131 .avpnm = 0,
132 .tlbiel = 0,
133 },
134 };
135
136 /* POWER4, GPUL, POWER5
137 *
138 * Support for 16Mb large pages
139 */
140 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
141 [MMU_PAGE_4K] = {
142 .shift = 12,
143 .sllp = 0,
144 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145 .avpnm = 0,
146 .tlbiel = 1,
147 },
148 [MMU_PAGE_16M] = {
149 .shift = 24,
150 .sllp = SLB_VSID_L,
151 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
152 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
153 .avpnm = 0x1UL,
154 .tlbiel = 0,
155 },
156 };
157
158 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
159 {
160 unsigned long rflags = pteflags & 0x1fa;
161
162 /* _PAGE_EXEC -> NOEXEC */
163 if ((pteflags & _PAGE_EXEC) == 0)
164 rflags |= HPTE_R_N;
165
166 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
167 * need to add in 0x1 if it's a read-only user page
168 */
169 if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
170 (pteflags & _PAGE_DIRTY)))
171 rflags |= 1;
172 /*
173 * Always add "C" bit for perf. Memory coherence is always enabled
174 */
175 return rflags | HPTE_R_C | HPTE_R_M;
176 }
177
178 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
179 unsigned long pstart, unsigned long prot,
180 int psize, int ssize)
181 {
182 unsigned long vaddr, paddr;
183 unsigned int step, shift;
184 int ret = 0;
185
186 shift = mmu_psize_defs[psize].shift;
187 step = 1 << shift;
188
189 prot = htab_convert_pte_flags(prot);
190
191 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
192 vstart, vend, pstart, prot, psize, ssize);
193
194 for (vaddr = vstart, paddr = pstart; vaddr < vend;
195 vaddr += step, paddr += step) {
196 unsigned long hash, hpteg;
197 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
198 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
199 unsigned long tprot = prot;
200
201 /*
202 * If we hit a bad address return error.
203 */
204 if (!vsid)
205 return -1;
206 /* Make kernel text executable */
207 if (overlaps_kernel_text(vaddr, vaddr + step))
208 tprot &= ~HPTE_R_N;
209
210 hash = hpt_hash(vpn, shift, ssize);
211 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
212
213 BUG_ON(!ppc_md.hpte_insert);
214 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
215 HPTE_V_BOLTED, psize, psize, ssize);
216
217 if (ret < 0)
218 break;
219 #ifdef CONFIG_DEBUG_PAGEALLOC
220 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
221 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
222 #endif /* CONFIG_DEBUG_PAGEALLOC */
223 }
224 return ret < 0 ? ret : 0;
225 }
226
227 #ifdef CONFIG_MEMORY_HOTPLUG
228 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
229 int psize, int ssize)
230 {
231 unsigned long vaddr;
232 unsigned int step, shift;
233
234 shift = mmu_psize_defs[psize].shift;
235 step = 1 << shift;
236
237 if (!ppc_md.hpte_removebolted) {
238 printk(KERN_WARNING "Platform doesn't implement "
239 "hpte_removebolted\n");
240 return -EINVAL;
241 }
242
243 for (vaddr = vstart; vaddr < vend; vaddr += step)
244 ppc_md.hpte_removebolted(vaddr, psize, ssize);
245
246 return 0;
247 }
248 #endif /* CONFIG_MEMORY_HOTPLUG */
249
250 static int __init htab_dt_scan_seg_sizes(unsigned long node,
251 const char *uname, int depth,
252 void *data)
253 {
254 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
255 __be32 *prop;
256 unsigned long size = 0;
257
258 /* We are scanning "cpu" nodes only */
259 if (type == NULL || strcmp(type, "cpu") != 0)
260 return 0;
261
262 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
263 if (prop == NULL)
264 return 0;
265 for (; size >= 4; size -= 4, ++prop) {
266 if (be32_to_cpu(prop[0]) == 40) {
267 DBG("1T segment support detected\n");
268 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
269 return 1;
270 }
271 }
272 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
273 return 0;
274 }
275
276 static void __init htab_init_seg_sizes(void)
277 {
278 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
279 }
280
281 static int __init get_idx_from_shift(unsigned int shift)
282 {
283 int idx = -1;
284
285 switch (shift) {
286 case 0xc:
287 idx = MMU_PAGE_4K;
288 break;
289 case 0x10:
290 idx = MMU_PAGE_64K;
291 break;
292 case 0x14:
293 idx = MMU_PAGE_1M;
294 break;
295 case 0x18:
296 idx = MMU_PAGE_16M;
297 break;
298 case 0x22:
299 idx = MMU_PAGE_16G;
300 break;
301 }
302 return idx;
303 }
304
305 static int __init htab_dt_scan_page_sizes(unsigned long node,
306 const char *uname, int depth,
307 void *data)
308 {
309 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
310 __be32 *prop;
311 unsigned long size = 0;
312
313 /* We are scanning "cpu" nodes only */
314 if (type == NULL || strcmp(type, "cpu") != 0)
315 return 0;
316
317 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
318 if (prop != NULL) {
319 pr_info("Page sizes from device-tree:\n");
320 size /= 4;
321 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
322 while(size > 0) {
323 unsigned int base_shift = be32_to_cpu(prop[0]);
324 unsigned int slbenc = be32_to_cpu(prop[1]);
325 unsigned int lpnum = be32_to_cpu(prop[2]);
326 struct mmu_psize_def *def;
327 int idx, base_idx;
328
329 size -= 3; prop += 3;
330 base_idx = get_idx_from_shift(base_shift);
331 if (base_idx < 0) {
332 /*
333 * skip the pte encoding also
334 */
335 prop += lpnum * 2; size -= lpnum * 2;
336 continue;
337 }
338 def = &mmu_psize_defs[base_idx];
339 if (base_idx == MMU_PAGE_16M)
340 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
341
342 def->shift = base_shift;
343 if (base_shift <= 23)
344 def->avpnm = 0;
345 else
346 def->avpnm = (1 << (base_shift - 23)) - 1;
347 def->sllp = slbenc;
348 /*
349 * We don't know for sure what's up with tlbiel, so
350 * for now we only set it for 4K and 64K pages
351 */
352 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
353 def->tlbiel = 1;
354 else
355 def->tlbiel = 0;
356
357 while (size > 0 && lpnum) {
358 unsigned int shift = be32_to_cpu(prop[0]);
359 int penc = be32_to_cpu(prop[1]);
360
361 prop += 2; size -= 2;
362 lpnum--;
363
364 idx = get_idx_from_shift(shift);
365 if (idx < 0)
366 continue;
367
368 if (penc == -1)
369 pr_err("Invalid penc for base_shift=%d "
370 "shift=%d\n", base_shift, shift);
371
372 def->penc[idx] = penc;
373 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
374 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
375 base_shift, shift, def->sllp,
376 def->avpnm, def->tlbiel, def->penc[idx]);
377 }
378 }
379 return 1;
380 }
381 return 0;
382 }
383
384 #ifdef CONFIG_HUGETLB_PAGE
385 /* Scan for 16G memory blocks that have been set aside for huge pages
386 * and reserve those blocks for 16G huge pages.
387 */
388 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
389 const char *uname, int depth,
390 void *data) {
391 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
392 __be64 *addr_prop;
393 __be32 *page_count_prop;
394 unsigned int expected_pages;
395 long unsigned int phys_addr;
396 long unsigned int block_size;
397
398 /* We are scanning "memory" nodes only */
399 if (type == NULL || strcmp(type, "memory") != 0)
400 return 0;
401
402 /* This property is the log base 2 of the number of virtual pages that
403 * will represent this memory block. */
404 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
405 if (page_count_prop == NULL)
406 return 0;
407 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
408 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
409 if (addr_prop == NULL)
410 return 0;
411 phys_addr = be64_to_cpu(addr_prop[0]);
412 block_size = be64_to_cpu(addr_prop[1]);
413 if (block_size != (16 * GB))
414 return 0;
415 printk(KERN_INFO "Huge page(16GB) memory: "
416 "addr = 0x%lX size = 0x%lX pages = %d\n",
417 phys_addr, block_size, expected_pages);
418 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
419 memblock_reserve(phys_addr, block_size * expected_pages);
420 add_gpage(phys_addr, block_size, expected_pages);
421 }
422 return 0;
423 }
424 #endif /* CONFIG_HUGETLB_PAGE */
425
426 static void mmu_psize_set_default_penc(void)
427 {
428 int bpsize, apsize;
429 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
430 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
431 mmu_psize_defs[bpsize].penc[apsize] = -1;
432 }
433
434 static void __init htab_init_page_sizes(void)
435 {
436 int rc;
437
438 /* se the invalid penc to -1 */
439 mmu_psize_set_default_penc();
440
441 /* Default to 4K pages only */
442 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
443 sizeof(mmu_psize_defaults_old));
444
445 /*
446 * Try to find the available page sizes in the device-tree
447 */
448 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
449 if (rc != 0) /* Found */
450 goto found;
451
452 /*
453 * Not in the device-tree, let's fallback on known size
454 * list for 16M capable GP & GR
455 */
456 if (mmu_has_feature(MMU_FTR_16M_PAGE))
457 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
458 sizeof(mmu_psize_defaults_gp));
459 found:
460 #ifndef CONFIG_DEBUG_PAGEALLOC
461 /*
462 * Pick a size for the linear mapping. Currently, we only support
463 * 16M, 1M and 4K which is the default
464 */
465 if (mmu_psize_defs[MMU_PAGE_16M].shift)
466 mmu_linear_psize = MMU_PAGE_16M;
467 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
468 mmu_linear_psize = MMU_PAGE_1M;
469 #endif /* CONFIG_DEBUG_PAGEALLOC */
470
471 #ifdef CONFIG_PPC_64K_PAGES
472 /*
473 * Pick a size for the ordinary pages. Default is 4K, we support
474 * 64K for user mappings and vmalloc if supported by the processor.
475 * We only use 64k for ioremap if the processor
476 * (and firmware) support cache-inhibited large pages.
477 * If not, we use 4k and set mmu_ci_restrictions so that
478 * hash_page knows to switch processes that use cache-inhibited
479 * mappings to 4k pages.
480 */
481 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
482 mmu_virtual_psize = MMU_PAGE_64K;
483 mmu_vmalloc_psize = MMU_PAGE_64K;
484 if (mmu_linear_psize == MMU_PAGE_4K)
485 mmu_linear_psize = MMU_PAGE_64K;
486 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
487 /*
488 * Don't use 64k pages for ioremap on pSeries, since
489 * that would stop us accessing the HEA ethernet.
490 */
491 if (!machine_is(pseries))
492 mmu_io_psize = MMU_PAGE_64K;
493 } else
494 mmu_ci_restrictions = 1;
495 }
496 #endif /* CONFIG_PPC_64K_PAGES */
497
498 #ifdef CONFIG_SPARSEMEM_VMEMMAP
499 /* We try to use 16M pages for vmemmap if that is supported
500 * and we have at least 1G of RAM at boot
501 */
502 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
503 memblock_phys_mem_size() >= 0x40000000)
504 mmu_vmemmap_psize = MMU_PAGE_16M;
505 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
506 mmu_vmemmap_psize = MMU_PAGE_64K;
507 else
508 mmu_vmemmap_psize = MMU_PAGE_4K;
509 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
510
511 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
512 "virtual = %d, io = %d"
513 #ifdef CONFIG_SPARSEMEM_VMEMMAP
514 ", vmemmap = %d"
515 #endif
516 "\n",
517 mmu_psize_defs[mmu_linear_psize].shift,
518 mmu_psize_defs[mmu_virtual_psize].shift,
519 mmu_psize_defs[mmu_io_psize].shift
520 #ifdef CONFIG_SPARSEMEM_VMEMMAP
521 ,mmu_psize_defs[mmu_vmemmap_psize].shift
522 #endif
523 );
524
525 #ifdef CONFIG_HUGETLB_PAGE
526 /* Reserve 16G huge page memory sections for huge pages */
527 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
528 #endif /* CONFIG_HUGETLB_PAGE */
529 }
530
531 static int __init htab_dt_scan_pftsize(unsigned long node,
532 const char *uname, int depth,
533 void *data)
534 {
535 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
536 __be32 *prop;
537
538 /* We are scanning "cpu" nodes only */
539 if (type == NULL || strcmp(type, "cpu") != 0)
540 return 0;
541
542 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
543 if (prop != NULL) {
544 /* pft_size[0] is the NUMA CEC cookie */
545 ppc64_pft_size = be32_to_cpu(prop[1]);
546 return 1;
547 }
548 return 0;
549 }
550
551 static unsigned long __init htab_get_table_size(void)
552 {
553 unsigned long mem_size, rnd_mem_size, pteg_count, psize;
554
555 /* If hash size isn't already provided by the platform, we try to
556 * retrieve it from the device-tree. If it's not there neither, we
557 * calculate it now based on the total RAM size
558 */
559 if (ppc64_pft_size == 0)
560 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
561 if (ppc64_pft_size)
562 return 1UL << ppc64_pft_size;
563
564 /* round mem_size up to next power of 2 */
565 mem_size = memblock_phys_mem_size();
566 rnd_mem_size = 1UL << __ilog2(mem_size);
567 if (rnd_mem_size < mem_size)
568 rnd_mem_size <<= 1;
569
570 /* # pages / 2 */
571 psize = mmu_psize_defs[mmu_virtual_psize].shift;
572 pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
573
574 return pteg_count << 7;
575 }
576
577 #ifdef CONFIG_MEMORY_HOTPLUG
578 int create_section_mapping(unsigned long start, unsigned long end)
579 {
580 return htab_bolt_mapping(start, end, __pa(start),
581 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
582 mmu_kernel_ssize);
583 }
584
585 int remove_section_mapping(unsigned long start, unsigned long end)
586 {
587 return htab_remove_mapping(start, end, mmu_linear_psize,
588 mmu_kernel_ssize);
589 }
590 #endif /* CONFIG_MEMORY_HOTPLUG */
591
592 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
593
594 static void __init htab_finish_init(void)
595 {
596 extern unsigned int *htab_call_hpte_insert1;
597 extern unsigned int *htab_call_hpte_insert2;
598 extern unsigned int *htab_call_hpte_remove;
599 extern unsigned int *htab_call_hpte_updatepp;
600
601 #ifdef CONFIG_PPC_HAS_HASH_64K
602 extern unsigned int *ht64_call_hpte_insert1;
603 extern unsigned int *ht64_call_hpte_insert2;
604 extern unsigned int *ht64_call_hpte_remove;
605 extern unsigned int *ht64_call_hpte_updatepp;
606
607 patch_branch(ht64_call_hpte_insert1,
608 FUNCTION_TEXT(ppc_md.hpte_insert),
609 BRANCH_SET_LINK);
610 patch_branch(ht64_call_hpte_insert2,
611 FUNCTION_TEXT(ppc_md.hpte_insert),
612 BRANCH_SET_LINK);
613 patch_branch(ht64_call_hpte_remove,
614 FUNCTION_TEXT(ppc_md.hpte_remove),
615 BRANCH_SET_LINK);
616 patch_branch(ht64_call_hpte_updatepp,
617 FUNCTION_TEXT(ppc_md.hpte_updatepp),
618 BRANCH_SET_LINK);
619
620 #endif /* CONFIG_PPC_HAS_HASH_64K */
621
622 patch_branch(htab_call_hpte_insert1,
623 FUNCTION_TEXT(ppc_md.hpte_insert),
624 BRANCH_SET_LINK);
625 patch_branch(htab_call_hpte_insert2,
626 FUNCTION_TEXT(ppc_md.hpte_insert),
627 BRANCH_SET_LINK);
628 patch_branch(htab_call_hpte_remove,
629 FUNCTION_TEXT(ppc_md.hpte_remove),
630 BRANCH_SET_LINK);
631 patch_branch(htab_call_hpte_updatepp,
632 FUNCTION_TEXT(ppc_md.hpte_updatepp),
633 BRANCH_SET_LINK);
634 }
635
636 static void __init htab_initialize(void)
637 {
638 unsigned long table;
639 unsigned long pteg_count;
640 unsigned long prot;
641 unsigned long base = 0, size = 0, limit;
642 struct memblock_region *reg;
643
644 DBG(" -> htab_initialize()\n");
645
646 /* Initialize segment sizes */
647 htab_init_seg_sizes();
648
649 /* Initialize page sizes */
650 htab_init_page_sizes();
651
652 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
653 mmu_kernel_ssize = MMU_SEGSIZE_1T;
654 mmu_highuser_ssize = MMU_SEGSIZE_1T;
655 printk(KERN_INFO "Using 1TB segments\n");
656 }
657
658 /*
659 * Calculate the required size of the htab. We want the number of
660 * PTEGs to equal one half the number of real pages.
661 */
662 htab_size_bytes = htab_get_table_size();
663 pteg_count = htab_size_bytes >> 7;
664
665 htab_hash_mask = pteg_count - 1;
666
667 if (firmware_has_feature(FW_FEATURE_LPAR)) {
668 /* Using a hypervisor which owns the htab */
669 htab_address = NULL;
670 _SDR1 = 0;
671 #ifdef CONFIG_FA_DUMP
672 /*
673 * If firmware assisted dump is active firmware preserves
674 * the contents of htab along with entire partition memory.
675 * Clear the htab if firmware assisted dump is active so
676 * that we dont end up using old mappings.
677 */
678 if (is_fadump_active() && ppc_md.hpte_clear_all)
679 ppc_md.hpte_clear_all();
680 #endif
681 } else {
682 /* Find storage for the HPT. Must be contiguous in
683 * the absolute address space. On cell we want it to be
684 * in the first 2 Gig so we can use it for IOMMU hacks.
685 */
686 if (machine_is(cell))
687 limit = 0x80000000;
688 else
689 limit = MEMBLOCK_ALLOC_ANYWHERE;
690
691 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
692
693 DBG("Hash table allocated at %lx, size: %lx\n", table,
694 htab_size_bytes);
695
696 htab_address = __va(table);
697
698 /* htab absolute addr + encoded htabsize */
699 _SDR1 = table + __ilog2(pteg_count) - 11;
700
701 /* Initialize the HPT with no entries */
702 memset((void *)table, 0, htab_size_bytes);
703
704 /* Set SDR1 */
705 mtspr(SPRN_SDR1, _SDR1);
706 }
707
708 prot = pgprot_val(PAGE_KERNEL);
709
710 #ifdef CONFIG_DEBUG_PAGEALLOC
711 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
712 linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
713 1, ppc64_rma_size));
714 memset(linear_map_hash_slots, 0, linear_map_hash_count);
715 #endif /* CONFIG_DEBUG_PAGEALLOC */
716
717 /* On U3 based machines, we need to reserve the DART area and
718 * _NOT_ map it to avoid cache paradoxes as it's remapped non
719 * cacheable later on
720 */
721
722 /* create bolted the linear mapping in the hash table */
723 for_each_memblock(memory, reg) {
724 base = (unsigned long)__va(reg->base);
725 size = reg->size;
726
727 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
728 base, size, prot);
729
730 #ifdef CONFIG_U3_DART
731 /* Do not map the DART space. Fortunately, it will be aligned
732 * in such a way that it will not cross two memblock regions and
733 * will fit within a single 16Mb page.
734 * The DART space is assumed to be a full 16Mb region even if
735 * we only use 2Mb of that space. We will use more of it later
736 * for AGP GART. We have to use a full 16Mb large page.
737 */
738 DBG("DART base: %lx\n", dart_tablebase);
739
740 if (dart_tablebase != 0 && dart_tablebase >= base
741 && dart_tablebase < (base + size)) {
742 unsigned long dart_table_end = dart_tablebase + 16 * MB;
743 if (base != dart_tablebase)
744 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
745 __pa(base), prot,
746 mmu_linear_psize,
747 mmu_kernel_ssize));
748 if ((base + size) > dart_table_end)
749 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
750 base + size,
751 __pa(dart_table_end),
752 prot,
753 mmu_linear_psize,
754 mmu_kernel_ssize));
755 continue;
756 }
757 #endif /* CONFIG_U3_DART */
758 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
759 prot, mmu_linear_psize, mmu_kernel_ssize));
760 }
761 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
762
763 /*
764 * If we have a memory_limit and we've allocated TCEs then we need to
765 * explicitly map the TCE area at the top of RAM. We also cope with the
766 * case that the TCEs start below memory_limit.
767 * tce_alloc_start/end are 16MB aligned so the mapping should work
768 * for either 4K or 16MB pages.
769 */
770 if (tce_alloc_start) {
771 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
772 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
773
774 if (base + size >= tce_alloc_start)
775 tce_alloc_start = base + size + 1;
776
777 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
778 __pa(tce_alloc_start), prot,
779 mmu_linear_psize, mmu_kernel_ssize));
780 }
781
782 htab_finish_init();
783
784 DBG(" <- htab_initialize()\n");
785 }
786 #undef KB
787 #undef MB
788
789 void __init early_init_mmu(void)
790 {
791 /* Setup initial STAB address in the PACA */
792 get_paca()->stab_real = __pa((u64)&initial_stab);
793 get_paca()->stab_addr = (u64)&initial_stab;
794
795 /* Initialize the MMU Hash table and create the linear mapping
796 * of memory. Has to be done before stab/slb initialization as
797 * this is currently where the page size encoding is obtained
798 */
799 htab_initialize();
800
801 /* Initialize stab / SLB management */
802 if (mmu_has_feature(MMU_FTR_SLB))
803 slb_initialize();
804 else
805 stab_initialize(get_paca()->stab_real);
806 }
807
808 #ifdef CONFIG_SMP
809 void early_init_mmu_secondary(void)
810 {
811 /* Initialize hash table for that CPU */
812 if (!firmware_has_feature(FW_FEATURE_LPAR))
813 mtspr(SPRN_SDR1, _SDR1);
814
815 /* Initialize STAB/SLB. We use a virtual address as it works
816 * in real mode on pSeries.
817 */
818 if (mmu_has_feature(MMU_FTR_SLB))
819 slb_initialize();
820 else
821 stab_initialize(get_paca()->stab_addr);
822 }
823 #endif /* CONFIG_SMP */
824
825 /*
826 * Called by asm hashtable.S for doing lazy icache flush
827 */
828 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
829 {
830 struct page *page;
831
832 if (!pfn_valid(pte_pfn(pte)))
833 return pp;
834
835 page = pte_page(pte);
836
837 /* page is dirty */
838 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
839 if (trap == 0x400) {
840 flush_dcache_icache_page(page);
841 set_bit(PG_arch_1, &page->flags);
842 } else
843 pp |= HPTE_R_N;
844 }
845 return pp;
846 }
847
848 #ifdef CONFIG_PPC_MM_SLICES
849 unsigned int get_paca_psize(unsigned long addr)
850 {
851 u64 lpsizes;
852 unsigned char *hpsizes;
853 unsigned long index, mask_index;
854
855 if (addr < SLICE_LOW_TOP) {
856 lpsizes = get_paca()->context.low_slices_psize;
857 index = GET_LOW_SLICE_INDEX(addr);
858 return (lpsizes >> (index * 4)) & 0xF;
859 }
860 hpsizes = get_paca()->context.high_slices_psize;
861 index = GET_HIGH_SLICE_INDEX(addr);
862 mask_index = index & 0x1;
863 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
864 }
865
866 #else
867 unsigned int get_paca_psize(unsigned long addr)
868 {
869 return get_paca()->context.user_psize;
870 }
871 #endif
872
873 /*
874 * Demote a segment to using 4k pages.
875 * For now this makes the whole process use 4k pages.
876 */
877 #ifdef CONFIG_PPC_64K_PAGES
878 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
879 {
880 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
881 return;
882 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
883 #ifdef CONFIG_SPU_BASE
884 spu_flush_all_slbs(mm);
885 #endif
886 if (get_paca_psize(addr) != MMU_PAGE_4K) {
887 get_paca()->context = mm->context;
888 slb_flush_and_rebolt();
889 }
890 }
891 #endif /* CONFIG_PPC_64K_PAGES */
892
893 #ifdef CONFIG_PPC_SUBPAGE_PROT
894 /*
895 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
896 * Userspace sets the subpage permissions using the subpage_prot system call.
897 *
898 * Result is 0: full permissions, _PAGE_RW: read-only,
899 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
900 */
901 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
902 {
903 struct subpage_prot_table *spt = &mm->context.spt;
904 u32 spp = 0;
905 u32 **sbpm, *sbpp;
906
907 if (ea >= spt->maxaddr)
908 return 0;
909 if (ea < 0x100000000UL) {
910 /* addresses below 4GB use spt->low_prot */
911 sbpm = spt->low_prot;
912 } else {
913 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
914 if (!sbpm)
915 return 0;
916 }
917 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
918 if (!sbpp)
919 return 0;
920 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
921
922 /* extract 2-bit bitfield for this 4k subpage */
923 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
924
925 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
926 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
927 return spp;
928 }
929
930 #else /* CONFIG_PPC_SUBPAGE_PROT */
931 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
932 {
933 return 0;
934 }
935 #endif
936
937 void hash_failure_debug(unsigned long ea, unsigned long access,
938 unsigned long vsid, unsigned long trap,
939 int ssize, int psize, int lpsize, unsigned long pte)
940 {
941 if (!printk_ratelimit())
942 return;
943 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
944 ea, access, current->comm);
945 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
946 trap, vsid, ssize, psize, lpsize, pte);
947 }
948
949 /* Result code is:
950 * 0 - handled
951 * 1 - normal page fault
952 * -1 - critical hash insertion error
953 * -2 - access not permitted by subpage protection mechanism
954 */
955 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
956 {
957 enum ctx_state prev_state = exception_enter();
958 pgd_t *pgdir;
959 unsigned long vsid;
960 struct mm_struct *mm;
961 pte_t *ptep;
962 unsigned hugeshift;
963 const struct cpumask *tmp;
964 int rc, user_region = 0, local = 0;
965 int psize, ssize;
966
967 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
968 ea, access, trap);
969
970 /* Get region & vsid */
971 switch (REGION_ID(ea)) {
972 case USER_REGION_ID:
973 user_region = 1;
974 mm = current->mm;
975 if (! mm) {
976 DBG_LOW(" user region with no mm !\n");
977 rc = 1;
978 goto bail;
979 }
980 psize = get_slice_psize(mm, ea);
981 ssize = user_segment_size(ea);
982 vsid = get_vsid(mm->context.id, ea, ssize);
983 break;
984 case VMALLOC_REGION_ID:
985 mm = &init_mm;
986 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
987 if (ea < VMALLOC_END)
988 psize = mmu_vmalloc_psize;
989 else
990 psize = mmu_io_psize;
991 ssize = mmu_kernel_ssize;
992 break;
993 default:
994 /* Not a valid range
995 * Send the problem up to do_page_fault
996 */
997 rc = 1;
998 goto bail;
999 }
1000 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1001
1002 /* Bad address. */
1003 if (!vsid) {
1004 DBG_LOW("Bad address!\n");
1005 rc = 1;
1006 goto bail;
1007 }
1008 /* Get pgdir */
1009 pgdir = mm->pgd;
1010 if (pgdir == NULL) {
1011 rc = 1;
1012 goto bail;
1013 }
1014
1015 /* Check CPU locality */
1016 tmp = cpumask_of(smp_processor_id());
1017 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1018 local = 1;
1019
1020 #ifndef CONFIG_PPC_64K_PAGES
1021 /* If we use 4K pages and our psize is not 4K, then we might
1022 * be hitting a special driver mapping, and need to align the
1023 * address before we fetch the PTE.
1024 *
1025 * It could also be a hugepage mapping, in which case this is
1026 * not necessary, but it's not harmful, either.
1027 */
1028 if (psize != MMU_PAGE_4K)
1029 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1030 #endif /* CONFIG_PPC_64K_PAGES */
1031
1032 /* Get PTE and page size from page tables */
1033 ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
1034 if (ptep == NULL || !pte_present(*ptep)) {
1035 DBG_LOW(" no PTE !\n");
1036 rc = 1;
1037 goto bail;
1038 }
1039
1040 /* Add _PAGE_PRESENT to the required access perm */
1041 access |= _PAGE_PRESENT;
1042
1043 /* Pre-check access permissions (will be re-checked atomically
1044 * in __hash_page_XX but this pre-check is a fast path
1045 */
1046 if (access & ~pte_val(*ptep)) {
1047 DBG_LOW(" no access !\n");
1048 rc = 1;
1049 goto bail;
1050 }
1051
1052 if (hugeshift) {
1053 if (pmd_trans_huge(*(pmd_t *)ptep))
1054 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1055 trap, local, ssize, psize);
1056 #ifdef CONFIG_HUGETLB_PAGE
1057 else
1058 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1059 local, ssize, hugeshift, psize);
1060 #else
1061 else {
1062 /*
1063 * if we have hugeshift, and is not transhuge with
1064 * hugetlb disabled, something is really wrong.
1065 */
1066 rc = 1;
1067 WARN_ON(1);
1068 }
1069 #endif
1070 goto bail;
1071 }
1072
1073 #ifndef CONFIG_PPC_64K_PAGES
1074 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1075 #else
1076 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1077 pte_val(*(ptep + PTRS_PER_PTE)));
1078 #endif
1079 /* Do actual hashing */
1080 #ifdef CONFIG_PPC_64K_PAGES
1081 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1082 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1083 demote_segment_4k(mm, ea);
1084 psize = MMU_PAGE_4K;
1085 }
1086
1087 /* If this PTE is non-cacheable and we have restrictions on
1088 * using non cacheable large pages, then we switch to 4k
1089 */
1090 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1091 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1092 if (user_region) {
1093 demote_segment_4k(mm, ea);
1094 psize = MMU_PAGE_4K;
1095 } else if (ea < VMALLOC_END) {
1096 /*
1097 * some driver did a non-cacheable mapping
1098 * in vmalloc space, so switch vmalloc
1099 * to 4k pages
1100 */
1101 printk(KERN_ALERT "Reducing vmalloc segment "
1102 "to 4kB pages because of "
1103 "non-cacheable mapping\n");
1104 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1105 #ifdef CONFIG_SPU_BASE
1106 spu_flush_all_slbs(mm);
1107 #endif
1108 }
1109 }
1110 if (user_region) {
1111 if (psize != get_paca_psize(ea)) {
1112 get_paca()->context = mm->context;
1113 slb_flush_and_rebolt();
1114 }
1115 } else if (get_paca()->vmalloc_sllp !=
1116 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1117 get_paca()->vmalloc_sllp =
1118 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1119 slb_vmalloc_update();
1120 }
1121 #endif /* CONFIG_PPC_64K_PAGES */
1122
1123 #ifdef CONFIG_PPC_HAS_HASH_64K
1124 if (psize == MMU_PAGE_64K)
1125 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1126 else
1127 #endif /* CONFIG_PPC_HAS_HASH_64K */
1128 {
1129 int spp = subpage_protection(mm, ea);
1130 if (access & spp)
1131 rc = -2;
1132 else
1133 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1134 local, ssize, spp);
1135 }
1136
1137 /* Dump some info in case of hash insertion failure, they should
1138 * never happen so it is really useful to know if/when they do
1139 */
1140 if (rc == -1)
1141 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1142 psize, pte_val(*ptep));
1143 #ifndef CONFIG_PPC_64K_PAGES
1144 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1145 #else
1146 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1147 pte_val(*(ptep + PTRS_PER_PTE)));
1148 #endif
1149 DBG_LOW(" -> rc=%d\n", rc);
1150
1151 bail:
1152 exception_exit(prev_state);
1153 return rc;
1154 }
1155 EXPORT_SYMBOL_GPL(hash_page);
1156
1157 void hash_preload(struct mm_struct *mm, unsigned long ea,
1158 unsigned long access, unsigned long trap)
1159 {
1160 int hugepage_shift;
1161 unsigned long vsid;
1162 pgd_t *pgdir;
1163 pte_t *ptep;
1164 unsigned long flags;
1165 int rc, ssize, local = 0;
1166
1167 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1168
1169 #ifdef CONFIG_PPC_MM_SLICES
1170 /* We only prefault standard pages for now */
1171 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1172 return;
1173 #endif
1174
1175 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1176 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1177
1178 /* Get Linux PTE if available */
1179 pgdir = mm->pgd;
1180 if (pgdir == NULL)
1181 return;
1182
1183 /* Get VSID */
1184 ssize = user_segment_size(ea);
1185 vsid = get_vsid(mm->context.id, ea, ssize);
1186 if (!vsid)
1187 return;
1188 /*
1189 * Hash doesn't like irqs. Walking linux page table with irq disabled
1190 * saves us from holding multiple locks.
1191 */
1192 local_irq_save(flags);
1193
1194 /*
1195 * THP pages use update_mmu_cache_pmd. We don't do
1196 * hash preload there. Hence can ignore THP here
1197 */
1198 ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugepage_shift);
1199 if (!ptep)
1200 goto out_exit;
1201
1202 WARN_ON(hugepage_shift);
1203 #ifdef CONFIG_PPC_64K_PAGES
1204 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1205 * a 64K kernel), then we don't preload, hash_page() will take
1206 * care of it once we actually try to access the page.
1207 * That way we don't have to duplicate all of the logic for segment
1208 * page size demotion here
1209 */
1210 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1211 goto out_exit;
1212 #endif /* CONFIG_PPC_64K_PAGES */
1213
1214 /* Is that local to this CPU ? */
1215 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1216 local = 1;
1217
1218 /* Hash it in */
1219 #ifdef CONFIG_PPC_HAS_HASH_64K
1220 if (mm->context.user_psize == MMU_PAGE_64K)
1221 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1222 else
1223 #endif /* CONFIG_PPC_HAS_HASH_64K */
1224 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1225 subpage_protection(mm, ea));
1226
1227 /* Dump some info in case of hash insertion failure, they should
1228 * never happen so it is really useful to know if/when they do
1229 */
1230 if (rc == -1)
1231 hash_failure_debug(ea, access, vsid, trap, ssize,
1232 mm->context.user_psize,
1233 mm->context.user_psize,
1234 pte_val(*ptep));
1235 out_exit:
1236 local_irq_restore(flags);
1237 }
1238
1239 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1240 * do not forget to update the assembly call site !
1241 */
1242 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1243 int local)
1244 {
1245 unsigned long hash, index, shift, hidx, slot;
1246
1247 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1248 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1249 hash = hpt_hash(vpn, shift, ssize);
1250 hidx = __rpte_to_hidx(pte, index);
1251 if (hidx & _PTEIDX_SECONDARY)
1252 hash = ~hash;
1253 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1254 slot += hidx & _PTEIDX_GROUP_IX;
1255 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1256 /*
1257 * We use same base page size and actual psize, because we don't
1258 * use these functions for hugepage
1259 */
1260 ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
1261 } pte_iterate_hashed_end();
1262
1263 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1264 /* Transactions are not aborted by tlbiel, only tlbie.
1265 * Without, syncing a page back to a block device w/ PIO could pick up
1266 * transactional data (bad!) so we force an abort here. Before the
1267 * sync the page will be made read-only, which will flush_hash_page.
1268 * BIG ISSUE here: if the kernel uses a page from userspace without
1269 * unmapping it first, it may see the speculated version.
1270 */
1271 if (local && cpu_has_feature(CPU_FTR_TM) &&
1272 current->thread.regs &&
1273 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1274 tm_enable();
1275 tm_abort(TM_CAUSE_TLBI);
1276 }
1277 #endif
1278 }
1279
1280 void flush_hash_range(unsigned long number, int local)
1281 {
1282 if (ppc_md.flush_hash_range)
1283 ppc_md.flush_hash_range(number, local);
1284 else {
1285 int i;
1286 struct ppc64_tlb_batch *batch =
1287 &__get_cpu_var(ppc64_tlb_batch);
1288
1289 for (i = 0; i < number; i++)
1290 flush_hash_page(batch->vpn[i], batch->pte[i],
1291 batch->psize, batch->ssize, local);
1292 }
1293 }
1294
1295 /*
1296 * low_hash_fault is called when we the low level hash code failed
1297 * to instert a PTE due to an hypervisor error
1298 */
1299 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1300 {
1301 enum ctx_state prev_state = exception_enter();
1302
1303 if (user_mode(regs)) {
1304 #ifdef CONFIG_PPC_SUBPAGE_PROT
1305 if (rc == -2)
1306 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1307 else
1308 #endif
1309 _exception(SIGBUS, regs, BUS_ADRERR, address);
1310 } else
1311 bad_page_fault(regs, address, SIGBUS);
1312
1313 exception_exit(prev_state);
1314 }
1315
1316 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1317 unsigned long pa, unsigned long rflags,
1318 unsigned long vflags, int psize, int ssize)
1319 {
1320 unsigned long hpte_group;
1321 long slot;
1322
1323 repeat:
1324 hpte_group = ((hash & htab_hash_mask) *
1325 HPTES_PER_GROUP) & ~0x7UL;
1326
1327 /* Insert into the hash table, primary slot */
1328 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1329 psize, psize, ssize);
1330
1331 /* Primary is full, try the secondary */
1332 if (unlikely(slot == -1)) {
1333 hpte_group = ((~hash & htab_hash_mask) *
1334 HPTES_PER_GROUP) & ~0x7UL;
1335 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1336 vflags | HPTE_V_SECONDARY,
1337 psize, psize, ssize);
1338 if (slot == -1) {
1339 if (mftb() & 0x1)
1340 hpte_group = ((hash & htab_hash_mask) *
1341 HPTES_PER_GROUP)&~0x7UL;
1342
1343 ppc_md.hpte_remove(hpte_group);
1344 goto repeat;
1345 }
1346 }
1347
1348 return slot;
1349 }
1350
1351 #ifdef CONFIG_DEBUG_PAGEALLOC
1352 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1353 {
1354 unsigned long hash;
1355 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1356 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1357 unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1358 long ret;
1359
1360 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1361
1362 /* Don't create HPTE entries for bad address */
1363 if (!vsid)
1364 return;
1365
1366 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1367 HPTE_V_BOLTED,
1368 mmu_linear_psize, mmu_kernel_ssize);
1369
1370 BUG_ON (ret < 0);
1371 spin_lock(&linear_map_hash_lock);
1372 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1373 linear_map_hash_slots[lmi] = ret | 0x80;
1374 spin_unlock(&linear_map_hash_lock);
1375 }
1376
1377 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1378 {
1379 unsigned long hash, hidx, slot;
1380 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1381 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1382
1383 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1384 spin_lock(&linear_map_hash_lock);
1385 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1386 hidx = linear_map_hash_slots[lmi] & 0x7f;
1387 linear_map_hash_slots[lmi] = 0;
1388 spin_unlock(&linear_map_hash_lock);
1389 if (hidx & _PTEIDX_SECONDARY)
1390 hash = ~hash;
1391 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1392 slot += hidx & _PTEIDX_GROUP_IX;
1393 ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
1394 mmu_kernel_ssize, 0);
1395 }
1396
1397 void kernel_map_pages(struct page *page, int numpages, int enable)
1398 {
1399 unsigned long flags, vaddr, lmi;
1400 int i;
1401
1402 local_irq_save(flags);
1403 for (i = 0; i < numpages; i++, page++) {
1404 vaddr = (unsigned long)page_address(page);
1405 lmi = __pa(vaddr) >> PAGE_SHIFT;
1406 if (lmi >= linear_map_hash_count)
1407 continue;
1408 if (enable)
1409 kernel_map_linear_page(vaddr, lmi);
1410 else
1411 kernel_unmap_linear_page(vaddr, lmi);
1412 }
1413 local_irq_restore(flags);
1414 }
1415 #endif /* CONFIG_DEBUG_PAGEALLOC */
1416
1417 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1418 phys_addr_t first_memblock_size)
1419 {
1420 /* We don't currently support the first MEMBLOCK not mapping 0
1421 * physical on those processors
1422 */
1423 BUG_ON(first_memblock_base != 0);
1424
1425 /* On LPAR systems, the first entry is our RMA region,
1426 * non-LPAR 64-bit hash MMU systems don't have a limitation
1427 * on real mode access, but using the first entry works well
1428 * enough. We also clamp it to 1G to avoid some funky things
1429 * such as RTAS bugs etc...
1430 */
1431 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1432
1433 /* Finally limit subsequent allocations */
1434 memblock_set_current_limit(ppc64_rma_size);
1435 }
This page took 0.058319 seconds and 4 git commands to generate.