net: bcmgenet: Software reset EPHY after power on
[deliverable/linux.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25
26 #ifdef CONFIG_HUGETLB_PAGE
27
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
31
32 unsigned int HPAGE_SHIFT;
33
34 /*
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
40 */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53
54 #define hugepd_none(hpd) ((hpd).pd == 0)
55
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
60 */
61
62 /*
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65 *
66 * Defined in such a way that we can optimize away code block at build time
67 * if CONFIG_HUGETLB_PAGE=n.
68 */
69 int pmd_huge(pmd_t pmd)
70 {
71 /*
72 * leaf pte for huge page, bottom two bits != 00
73 */
74 return ((pmd_val(pmd) & 0x3) != 0x0);
75 }
76
77 int pud_huge(pud_t pud)
78 {
79 /*
80 * leaf pte for huge page, bottom two bits != 00
81 */
82 return ((pud_val(pud) & 0x3) != 0x0);
83 }
84
85 int pgd_huge(pgd_t pgd)
86 {
87 /*
88 * leaf pte for huge page, bottom two bits != 00
89 */
90 return ((pgd_val(pgd) & 0x3) != 0x0);
91 }
92 #else
93 int pmd_huge(pmd_t pmd)
94 {
95 return 0;
96 }
97
98 int pud_huge(pud_t pud)
99 {
100 return 0;
101 }
102
103 int pgd_huge(pgd_t pgd)
104 {
105 return 0;
106 }
107 #endif
108
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111 /* Only called for hugetlbfs pages, hence can ignore THP */
112 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
113 }
114
115 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
116 unsigned long address, unsigned pdshift, unsigned pshift)
117 {
118 struct kmem_cache *cachep;
119 pte_t *new;
120
121 #ifdef CONFIG_PPC_FSL_BOOK3E
122 int i;
123 int num_hugepd = 1 << (pshift - pdshift);
124 cachep = hugepte_cache;
125 #else
126 cachep = PGT_CACHE(pdshift - pshift);
127 #endif
128
129 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
130
131 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
132 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
133
134 if (! new)
135 return -ENOMEM;
136
137 spin_lock(&mm->page_table_lock);
138 #ifdef CONFIG_PPC_FSL_BOOK3E
139 /*
140 * We have multiple higher-level entries that point to the same
141 * actual pte location. Fill in each as we go and backtrack on error.
142 * We need all of these so the DTLB pgtable walk code can find the
143 * right higher-level entry without knowing if it's a hugepage or not.
144 */
145 for (i = 0; i < num_hugepd; i++, hpdp++) {
146 if (unlikely(!hugepd_none(*hpdp)))
147 break;
148 else
149 /* We use the old format for PPC_FSL_BOOK3E */
150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
151 }
152 /* If we bailed from the for loop early, an error occurred, clean up */
153 if (i < num_hugepd) {
154 for (i = i - 1 ; i >= 0; i--, hpdp--)
155 hpdp->pd = 0;
156 kmem_cache_free(cachep, new);
157 }
158 #else
159 if (!hugepd_none(*hpdp))
160 kmem_cache_free(cachep, new);
161 else {
162 #ifdef CONFIG_PPC_BOOK3S_64
163 hpdp->pd = (unsigned long)new |
164 (shift_to_mmu_psize(pshift) << 2);
165 #else
166 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
167 #endif
168 }
169 #endif
170 spin_unlock(&mm->page_table_lock);
171 return 0;
172 }
173
174 /*
175 * These macros define how to determine which level of the page table holds
176 * the hpdp.
177 */
178 #ifdef CONFIG_PPC_FSL_BOOK3E
179 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
180 #define HUGEPD_PUD_SHIFT PUD_SHIFT
181 #else
182 #define HUGEPD_PGD_SHIFT PUD_SHIFT
183 #define HUGEPD_PUD_SHIFT PMD_SHIFT
184 #endif
185
186 #ifdef CONFIG_PPC_BOOK3S_64
187 /*
188 * At this point we do the placement change only for BOOK3S 64. This would
189 * possibly work on other subarchs.
190 */
191 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
192 {
193 pgd_t *pg;
194 pud_t *pu;
195 pmd_t *pm;
196 hugepd_t *hpdp = NULL;
197 unsigned pshift = __ffs(sz);
198 unsigned pdshift = PGDIR_SHIFT;
199
200 addr &= ~(sz-1);
201 pg = pgd_offset(mm, addr);
202
203 if (pshift == PGDIR_SHIFT)
204 /* 16GB huge page */
205 return (pte_t *) pg;
206 else if (pshift > PUD_SHIFT)
207 /*
208 * We need to use hugepd table
209 */
210 hpdp = (hugepd_t *)pg;
211 else {
212 pdshift = PUD_SHIFT;
213 pu = pud_alloc(mm, pg, addr);
214 if (pshift == PUD_SHIFT)
215 return (pte_t *)pu;
216 else if (pshift > PMD_SHIFT)
217 hpdp = (hugepd_t *)pu;
218 else {
219 pdshift = PMD_SHIFT;
220 pm = pmd_alloc(mm, pu, addr);
221 if (pshift == PMD_SHIFT)
222 /* 16MB hugepage */
223 return (pte_t *)pm;
224 else
225 hpdp = (hugepd_t *)pm;
226 }
227 }
228 if (!hpdp)
229 return NULL;
230
231 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
232
233 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
234 return NULL;
235
236 return hugepte_offset(*hpdp, addr, pdshift);
237 }
238
239 #else
240
241 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
242 {
243 pgd_t *pg;
244 pud_t *pu;
245 pmd_t *pm;
246 hugepd_t *hpdp = NULL;
247 unsigned pshift = __ffs(sz);
248 unsigned pdshift = PGDIR_SHIFT;
249
250 addr &= ~(sz-1);
251
252 pg = pgd_offset(mm, addr);
253
254 if (pshift >= HUGEPD_PGD_SHIFT) {
255 hpdp = (hugepd_t *)pg;
256 } else {
257 pdshift = PUD_SHIFT;
258 pu = pud_alloc(mm, pg, addr);
259 if (pshift >= HUGEPD_PUD_SHIFT) {
260 hpdp = (hugepd_t *)pu;
261 } else {
262 pdshift = PMD_SHIFT;
263 pm = pmd_alloc(mm, pu, addr);
264 hpdp = (hugepd_t *)pm;
265 }
266 }
267
268 if (!hpdp)
269 return NULL;
270
271 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
272
273 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
274 return NULL;
275
276 return hugepte_offset(*hpdp, addr, pdshift);
277 }
278 #endif
279
280 #ifdef CONFIG_PPC_FSL_BOOK3E
281 /* Build list of addresses of gigantic pages. This function is used in early
282 * boot before the buddy allocator is setup.
283 */
284 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
285 {
286 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
287 int i;
288
289 if (addr == 0)
290 return;
291
292 gpage_freearray[idx].nr_gpages = number_of_pages;
293
294 for (i = 0; i < number_of_pages; i++) {
295 gpage_freearray[idx].gpage_list[i] = addr;
296 addr += page_size;
297 }
298 }
299
300 /*
301 * Moves the gigantic page addresses from the temporary list to the
302 * huge_boot_pages list.
303 */
304 int alloc_bootmem_huge_page(struct hstate *hstate)
305 {
306 struct huge_bootmem_page *m;
307 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
308 int nr_gpages = gpage_freearray[idx].nr_gpages;
309
310 if (nr_gpages == 0)
311 return 0;
312
313 #ifdef CONFIG_HIGHMEM
314 /*
315 * If gpages can be in highmem we can't use the trick of storing the
316 * data structure in the page; allocate space for this
317 */
318 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
319 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
320 #else
321 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
322 #endif
323
324 list_add(&m->list, &huge_boot_pages);
325 gpage_freearray[idx].nr_gpages = nr_gpages;
326 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
327 m->hstate = hstate;
328
329 return 1;
330 }
331 /*
332 * Scan the command line hugepagesz= options for gigantic pages; store those in
333 * a list that we use to allocate the memory once all options are parsed.
334 */
335
336 unsigned long gpage_npages[MMU_PAGE_COUNT];
337
338 static int __init do_gpage_early_setup(char *param, char *val,
339 const char *unused, void *arg)
340 {
341 static phys_addr_t size;
342 unsigned long npages;
343
344 /*
345 * The hugepagesz and hugepages cmdline options are interleaved. We
346 * use the size variable to keep track of whether or not this was done
347 * properly and skip over instances where it is incorrect. Other
348 * command-line parsing code will issue warnings, so we don't need to.
349 *
350 */
351 if ((strcmp(param, "default_hugepagesz") == 0) ||
352 (strcmp(param, "hugepagesz") == 0)) {
353 size = memparse(val, NULL);
354 } else if (strcmp(param, "hugepages") == 0) {
355 if (size != 0) {
356 if (sscanf(val, "%lu", &npages) <= 0)
357 npages = 0;
358 if (npages > MAX_NUMBER_GPAGES) {
359 pr_warn("MMU: %lu pages requested for page "
360 "size %llu KB, limiting to "
361 __stringify(MAX_NUMBER_GPAGES) "\n",
362 npages, size / 1024);
363 npages = MAX_NUMBER_GPAGES;
364 }
365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 size = 0;
367 }
368 }
369 return 0;
370 }
371
372
373 /*
374 * This function allocates physical space for pages that are larger than the
375 * buddy allocator can handle. We want to allocate these in highmem because
376 * the amount of lowmem is limited. This means that this function MUST be
377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378 * allocate to grab highmem.
379 */
380 void __init reserve_hugetlb_gpages(void)
381 {
382 static __initdata char cmdline[COMMAND_LINE_SIZE];
383 phys_addr_t size, base;
384 int i;
385
386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 NULL, &do_gpage_early_setup);
389
390 /*
391 * Walk gpage list in reverse, allocating larger page sizes first.
392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 * When we reach the point in the list where pages are no longer
394 * considered gpages, we're done.
395 */
396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 continue;
399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 break;
401
402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 base = memblock_alloc_base(size * gpage_npages[i], size,
404 MEMBLOCK_ALLOC_ANYWHERE);
405 add_gpage(base, size, gpage_npages[i]);
406 }
407 }
408
409 #else /* !PPC_FSL_BOOK3E */
410
411 /* Build list of addresses of gigantic pages. This function is used in early
412 * boot before the buddy allocator is setup.
413 */
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
415 {
416 if (!addr)
417 return;
418 while (number_of_pages > 0) {
419 gpage_freearray[nr_gpages] = addr;
420 nr_gpages++;
421 number_of_pages--;
422 addr += page_size;
423 }
424 }
425
426 /* Moves the gigantic page addresses from the temporary list to the
427 * huge_boot_pages list.
428 */
429 int alloc_bootmem_huge_page(struct hstate *hstate)
430 {
431 struct huge_bootmem_page *m;
432 if (nr_gpages == 0)
433 return 0;
434 m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 gpage_freearray[nr_gpages] = 0;
436 list_add(&m->list, &huge_boot_pages);
437 m->hstate = hstate;
438 return 1;
439 }
440 #endif
441
442 #ifdef CONFIG_PPC_FSL_BOOK3E
443 #define HUGEPD_FREELIST_SIZE \
444 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
445
446 struct hugepd_freelist {
447 struct rcu_head rcu;
448 unsigned int index;
449 void *ptes[0];
450 };
451
452 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
453
454 static void hugepd_free_rcu_callback(struct rcu_head *head)
455 {
456 struct hugepd_freelist *batch =
457 container_of(head, struct hugepd_freelist, rcu);
458 unsigned int i;
459
460 for (i = 0; i < batch->index; i++)
461 kmem_cache_free(hugepte_cache, batch->ptes[i]);
462
463 free_page((unsigned long)batch);
464 }
465
466 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
467 {
468 struct hugepd_freelist **batchp;
469
470 batchp = this_cpu_ptr(&hugepd_freelist_cur);
471
472 if (atomic_read(&tlb->mm->mm_users) < 2 ||
473 cpumask_equal(mm_cpumask(tlb->mm),
474 cpumask_of(smp_processor_id()))) {
475 kmem_cache_free(hugepte_cache, hugepte);
476 put_cpu_var(hugepd_freelist_cur);
477 return;
478 }
479
480 if (*batchp == NULL) {
481 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
482 (*batchp)->index = 0;
483 }
484
485 (*batchp)->ptes[(*batchp)->index++] = hugepte;
486 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
487 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
488 *batchp = NULL;
489 }
490 put_cpu_var(hugepd_freelist_cur);
491 }
492 #endif
493
494 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
495 unsigned long start, unsigned long end,
496 unsigned long floor, unsigned long ceiling)
497 {
498 pte_t *hugepte = hugepd_page(*hpdp);
499 int i;
500
501 unsigned long pdmask = ~((1UL << pdshift) - 1);
502 unsigned int num_hugepd = 1;
503
504 #ifdef CONFIG_PPC_FSL_BOOK3E
505 /* Note: On fsl the hpdp may be the first of several */
506 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
507 #else
508 unsigned int shift = hugepd_shift(*hpdp);
509 #endif
510
511 start &= pdmask;
512 if (start < floor)
513 return;
514 if (ceiling) {
515 ceiling &= pdmask;
516 if (! ceiling)
517 return;
518 }
519 if (end - 1 > ceiling - 1)
520 return;
521
522 for (i = 0; i < num_hugepd; i++, hpdp++)
523 hpdp->pd = 0;
524
525 #ifdef CONFIG_PPC_FSL_BOOK3E
526 hugepd_free(tlb, hugepte);
527 #else
528 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
529 #endif
530 }
531
532 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
533 unsigned long addr, unsigned long end,
534 unsigned long floor, unsigned long ceiling)
535 {
536 pmd_t *pmd;
537 unsigned long next;
538 unsigned long start;
539
540 start = addr;
541 do {
542 pmd = pmd_offset(pud, addr);
543 next = pmd_addr_end(addr, end);
544 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
545 /*
546 * if it is not hugepd pointer, we should already find
547 * it cleared.
548 */
549 WARN_ON(!pmd_none_or_clear_bad(pmd));
550 continue;
551 }
552 #ifdef CONFIG_PPC_FSL_BOOK3E
553 /*
554 * Increment next by the size of the huge mapping since
555 * there may be more than one entry at this level for a
556 * single hugepage, but all of them point to
557 * the same kmem cache that holds the hugepte.
558 */
559 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
560 #endif
561 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
562 addr, next, floor, ceiling);
563 } while (addr = next, addr != end);
564
565 start &= PUD_MASK;
566 if (start < floor)
567 return;
568 if (ceiling) {
569 ceiling &= PUD_MASK;
570 if (!ceiling)
571 return;
572 }
573 if (end - 1 > ceiling - 1)
574 return;
575
576 pmd = pmd_offset(pud, start);
577 pud_clear(pud);
578 pmd_free_tlb(tlb, pmd, start);
579 mm_dec_nr_pmds(tlb->mm);
580 }
581
582 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
583 unsigned long addr, unsigned long end,
584 unsigned long floor, unsigned long ceiling)
585 {
586 pud_t *pud;
587 unsigned long next;
588 unsigned long start;
589
590 start = addr;
591 do {
592 pud = pud_offset(pgd, addr);
593 next = pud_addr_end(addr, end);
594 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
595 if (pud_none_or_clear_bad(pud))
596 continue;
597 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
598 ceiling);
599 } else {
600 #ifdef CONFIG_PPC_FSL_BOOK3E
601 /*
602 * Increment next by the size of the huge mapping since
603 * there may be more than one entry at this level for a
604 * single hugepage, but all of them point to
605 * the same kmem cache that holds the hugepte.
606 */
607 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
608 #endif
609 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
610 addr, next, floor, ceiling);
611 }
612 } while (addr = next, addr != end);
613
614 start &= PGDIR_MASK;
615 if (start < floor)
616 return;
617 if (ceiling) {
618 ceiling &= PGDIR_MASK;
619 if (!ceiling)
620 return;
621 }
622 if (end - 1 > ceiling - 1)
623 return;
624
625 pud = pud_offset(pgd, start);
626 pgd_clear(pgd);
627 pud_free_tlb(tlb, pud, start);
628 }
629
630 /*
631 * This function frees user-level page tables of a process.
632 */
633 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
634 unsigned long addr, unsigned long end,
635 unsigned long floor, unsigned long ceiling)
636 {
637 pgd_t *pgd;
638 unsigned long next;
639
640 /*
641 * Because there are a number of different possible pagetable
642 * layouts for hugepage ranges, we limit knowledge of how
643 * things should be laid out to the allocation path
644 * (huge_pte_alloc(), above). Everything else works out the
645 * structure as it goes from information in the hugepd
646 * pointers. That means that we can't here use the
647 * optimization used in the normal page free_pgd_range(), of
648 * checking whether we're actually covering a large enough
649 * range to have to do anything at the top level of the walk
650 * instead of at the bottom.
651 *
652 * To make sense of this, you should probably go read the big
653 * block comment at the top of the normal free_pgd_range(),
654 * too.
655 */
656
657 do {
658 next = pgd_addr_end(addr, end);
659 pgd = pgd_offset(tlb->mm, addr);
660 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
661 if (pgd_none_or_clear_bad(pgd))
662 continue;
663 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
664 } else {
665 #ifdef CONFIG_PPC_FSL_BOOK3E
666 /*
667 * Increment next by the size of the huge mapping since
668 * there may be more than one entry at the pgd level
669 * for a single hugepage, but all of them point to the
670 * same kmem cache that holds the hugepte.
671 */
672 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
673 #endif
674 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
675 addr, next, floor, ceiling);
676 }
677 } while (addr = next, addr != end);
678 }
679
680 /*
681 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
682 * To prevent hugepage split, disable irq.
683 */
684 struct page *
685 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
686 {
687 pte_t *ptep, pte;
688 unsigned shift;
689 unsigned long mask, flags;
690 struct page *page = ERR_PTR(-EINVAL);
691
692 local_irq_save(flags);
693 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
694 if (!ptep)
695 goto no_page;
696 pte = READ_ONCE(*ptep);
697 /*
698 * Verify it is a huge page else bail.
699 * Transparent hugepages are handled by generic code. We can skip them
700 * here.
701 */
702 if (!shift || pmd_trans_huge(__pmd(pte_val(pte))))
703 goto no_page;
704
705 if (!pte_present(pte)) {
706 page = NULL;
707 goto no_page;
708 }
709 mask = (1UL << shift) - 1;
710 page = pte_page(pte);
711 if (page)
712 page += (address & mask) / PAGE_SIZE;
713
714 no_page:
715 local_irq_restore(flags);
716 return page;
717 }
718
719 struct page *
720 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
721 pmd_t *pmd, int write)
722 {
723 BUG();
724 return NULL;
725 }
726
727 struct page *
728 follow_huge_pud(struct mm_struct *mm, unsigned long address,
729 pud_t *pud, int write)
730 {
731 BUG();
732 return NULL;
733 }
734
735 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
736 unsigned long sz)
737 {
738 unsigned long __boundary = (addr + sz) & ~(sz-1);
739 return (__boundary - 1 < end - 1) ? __boundary : end;
740 }
741
742 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
743 unsigned long end, int write, struct page **pages, int *nr)
744 {
745 pte_t *ptep;
746 unsigned long sz = 1UL << hugepd_shift(hugepd);
747 unsigned long next;
748
749 ptep = hugepte_offset(hugepd, addr, pdshift);
750 do {
751 next = hugepte_addr_end(addr, end, sz);
752 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
753 return 0;
754 } while (ptep++, addr = next, addr != end);
755
756 return 1;
757 }
758
759 #ifdef CONFIG_PPC_MM_SLICES
760 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
761 unsigned long len, unsigned long pgoff,
762 unsigned long flags)
763 {
764 struct hstate *hstate = hstate_file(file);
765 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
766
767 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
768 }
769 #endif
770
771 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
772 {
773 #ifdef CONFIG_PPC_MM_SLICES
774 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
775
776 return 1UL << mmu_psize_to_shift(psize);
777 #else
778 if (!is_vm_hugetlb_page(vma))
779 return PAGE_SIZE;
780
781 return huge_page_size(hstate_vma(vma));
782 #endif
783 }
784
785 static inline bool is_power_of_4(unsigned long x)
786 {
787 if (is_power_of_2(x))
788 return (__ilog2(x) % 2) ? false : true;
789 return false;
790 }
791
792 static int __init add_huge_page_size(unsigned long long size)
793 {
794 int shift = __ffs(size);
795 int mmu_psize;
796
797 /* Check that it is a page size supported by the hardware and
798 * that it fits within pagetable and slice limits. */
799 #ifdef CONFIG_PPC_FSL_BOOK3E
800 if ((size < PAGE_SIZE) || !is_power_of_4(size))
801 return -EINVAL;
802 #else
803 if (!is_power_of_2(size)
804 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
805 return -EINVAL;
806 #endif
807
808 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
809 return -EINVAL;
810
811 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
812
813 /* Return if huge page size has already been setup */
814 if (size_to_hstate(size))
815 return 0;
816
817 hugetlb_add_hstate(shift - PAGE_SHIFT);
818
819 return 0;
820 }
821
822 static int __init hugepage_setup_sz(char *str)
823 {
824 unsigned long long size;
825
826 size = memparse(str, &str);
827
828 if (add_huge_page_size(size) != 0)
829 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
830
831 return 1;
832 }
833 __setup("hugepagesz=", hugepage_setup_sz);
834
835 #ifdef CONFIG_PPC_FSL_BOOK3E
836 struct kmem_cache *hugepte_cache;
837 static int __init hugetlbpage_init(void)
838 {
839 int psize;
840
841 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
842 unsigned shift;
843
844 if (!mmu_psize_defs[psize].shift)
845 continue;
846
847 shift = mmu_psize_to_shift(psize);
848
849 /* Don't treat normal page sizes as huge... */
850 if (shift != PAGE_SHIFT)
851 if (add_huge_page_size(1ULL << shift) < 0)
852 continue;
853 }
854
855 /*
856 * Create a kmem cache for hugeptes. The bottom bits in the pte have
857 * size information encoded in them, so align them to allow this
858 */
859 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
860 HUGEPD_SHIFT_MASK + 1, 0, NULL);
861 if (hugepte_cache == NULL)
862 panic("%s: Unable to create kmem cache for hugeptes\n",
863 __func__);
864
865 /* Default hpage size = 4M */
866 if (mmu_psize_defs[MMU_PAGE_4M].shift)
867 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
868 else
869 panic("%s: Unable to set default huge page size\n", __func__);
870
871
872 return 0;
873 }
874 #else
875 static int __init hugetlbpage_init(void)
876 {
877 int psize;
878
879 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
880 return -ENODEV;
881
882 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
883 unsigned shift;
884 unsigned pdshift;
885
886 if (!mmu_psize_defs[psize].shift)
887 continue;
888
889 shift = mmu_psize_to_shift(psize);
890
891 if (add_huge_page_size(1ULL << shift) < 0)
892 continue;
893
894 if (shift < PMD_SHIFT)
895 pdshift = PMD_SHIFT;
896 else if (shift < PUD_SHIFT)
897 pdshift = PUD_SHIFT;
898 else
899 pdshift = PGDIR_SHIFT;
900 /*
901 * if we have pdshift and shift value same, we don't
902 * use pgt cache for hugepd.
903 */
904 if (pdshift != shift) {
905 pgtable_cache_add(pdshift - shift, NULL);
906 if (!PGT_CACHE(pdshift - shift))
907 panic("hugetlbpage_init(): could not create "
908 "pgtable cache for %d bit pagesize\n", shift);
909 }
910 }
911
912 /* Set default large page size. Currently, we pick 16M or 1M
913 * depending on what is available
914 */
915 if (mmu_psize_defs[MMU_PAGE_16M].shift)
916 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
917 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
918 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
919
920 return 0;
921 }
922 #endif
923 arch_initcall(hugetlbpage_init);
924
925 void flush_dcache_icache_hugepage(struct page *page)
926 {
927 int i;
928 void *start;
929
930 BUG_ON(!PageCompound(page));
931
932 for (i = 0; i < (1UL << compound_order(page)); i++) {
933 if (!PageHighMem(page)) {
934 __flush_dcache_icache(page_address(page+i));
935 } else {
936 start = kmap_atomic(page+i);
937 __flush_dcache_icache(start);
938 kunmap_atomic(start);
939 }
940 }
941 }
942
943 #endif /* CONFIG_HUGETLB_PAGE */
944
945 /*
946 * We have 4 cases for pgds and pmds:
947 * (1) invalid (all zeroes)
948 * (2) pointer to next table, as normal; bottom 6 bits == 0
949 * (3) leaf pte for huge page, bottom two bits != 00
950 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
951 *
952 * So long as we atomically load page table pointers we are safe against teardown,
953 * we can follow the address down to the the page and take a ref on it.
954 * This function need to be called with interrupts disabled. We use this variant
955 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
956 */
957
958 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
959 unsigned *shift)
960 {
961 pgd_t pgd, *pgdp;
962 pud_t pud, *pudp;
963 pmd_t pmd, *pmdp;
964 pte_t *ret_pte;
965 hugepd_t *hpdp = NULL;
966 unsigned pdshift = PGDIR_SHIFT;
967
968 if (shift)
969 *shift = 0;
970
971 pgdp = pgdir + pgd_index(ea);
972 pgd = READ_ONCE(*pgdp);
973 /*
974 * Always operate on the local stack value. This make sure the
975 * value don't get updated by a parallel THP split/collapse,
976 * page fault or a page unmap. The return pte_t * is still not
977 * stable. So should be checked there for above conditions.
978 */
979 if (pgd_none(pgd))
980 return NULL;
981 else if (pgd_huge(pgd)) {
982 ret_pte = (pte_t *) pgdp;
983 goto out;
984 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
985 hpdp = (hugepd_t *)&pgd;
986 else {
987 /*
988 * Even if we end up with an unmap, the pgtable will not
989 * be freed, because we do an rcu free and here we are
990 * irq disabled
991 */
992 pdshift = PUD_SHIFT;
993 pudp = pud_offset(&pgd, ea);
994 pud = READ_ONCE(*pudp);
995
996 if (pud_none(pud))
997 return NULL;
998 else if (pud_huge(pud)) {
999 ret_pte = (pte_t *) pudp;
1000 goto out;
1001 } else if (is_hugepd(__hugepd(pud_val(pud))))
1002 hpdp = (hugepd_t *)&pud;
1003 else {
1004 pdshift = PMD_SHIFT;
1005 pmdp = pmd_offset(&pud, ea);
1006 pmd = READ_ONCE(*pmdp);
1007 /*
1008 * A hugepage collapse is captured by pmd_none, because
1009 * it mark the pmd none and do a hpte invalidate.
1010 *
1011 * We don't worry about pmd_trans_splitting here, The
1012 * caller if it needs to handle the splitting case
1013 * should check for that.
1014 */
1015 if (pmd_none(pmd))
1016 return NULL;
1017
1018 if (pmd_huge(pmd) || pmd_large(pmd)) {
1019 ret_pte = (pte_t *) pmdp;
1020 goto out;
1021 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
1022 hpdp = (hugepd_t *)&pmd;
1023 else
1024 return pte_offset_kernel(&pmd, ea);
1025 }
1026 }
1027 if (!hpdp)
1028 return NULL;
1029
1030 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1031 pdshift = hugepd_shift(*hpdp);
1032 out:
1033 if (shift)
1034 *shift = pdshift;
1035 return ret_pte;
1036 }
1037 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1038
1039 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1040 unsigned long end, int write, struct page **pages, int *nr)
1041 {
1042 unsigned long mask;
1043 unsigned long pte_end;
1044 struct page *head, *page, *tail;
1045 pte_t pte;
1046 int refs;
1047
1048 pte_end = (addr + sz) & ~(sz-1);
1049 if (pte_end < end)
1050 end = pte_end;
1051
1052 pte = READ_ONCE(*ptep);
1053 mask = _PAGE_PRESENT | _PAGE_USER;
1054 if (write)
1055 mask |= _PAGE_RW;
1056
1057 if ((pte_val(pte) & mask) != mask)
1058 return 0;
1059
1060 /* hugepages are never "special" */
1061 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1062
1063 refs = 0;
1064 head = pte_page(pte);
1065
1066 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1067 tail = page;
1068 do {
1069 VM_BUG_ON(compound_head(page) != head);
1070 pages[*nr] = page;
1071 (*nr)++;
1072 page++;
1073 refs++;
1074 } while (addr += PAGE_SIZE, addr != end);
1075
1076 if (!page_cache_add_speculative(head, refs)) {
1077 *nr -= refs;
1078 return 0;
1079 }
1080
1081 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1082 /* Could be optimized better */
1083 *nr -= refs;
1084 while (refs--)
1085 put_page(head);
1086 return 0;
1087 }
1088
1089 /*
1090 * Any tail page need their mapcount reference taken before we
1091 * return.
1092 */
1093 while (refs--) {
1094 if (PageTail(tail))
1095 get_huge_page_tail(tail);
1096 tail++;
1097 }
1098
1099 return 1;
1100 }
This page took 0.069372 seconds and 5 git commands to generate.