Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25
26 #ifdef CONFIG_HUGETLB_PAGE
27
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
31
32 unsigned int HPAGE_SHIFT;
33
34 /*
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
40 */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53
54 #define hugepd_none(hpd) ((hpd).pd == 0)
55
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
60 */
61
62 /*
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65 *
66 * Defined in such a way that we can optimize away code block at build time
67 * if CONFIG_HUGETLB_PAGE=n.
68 */
69 int pmd_huge(pmd_t pmd)
70 {
71 /*
72 * leaf pte for huge page, bottom two bits != 00
73 */
74 return ((pmd_val(pmd) & 0x3) != 0x0);
75 }
76
77 int pud_huge(pud_t pud)
78 {
79 /*
80 * leaf pte for huge page, bottom two bits != 00
81 */
82 return ((pud_val(pud) & 0x3) != 0x0);
83 }
84
85 int pgd_huge(pgd_t pgd)
86 {
87 /*
88 * leaf pte for huge page, bottom two bits != 00
89 */
90 return ((pgd_val(pgd) & 0x3) != 0x0);
91 }
92 #else
93 int pmd_huge(pmd_t pmd)
94 {
95 return 0;
96 }
97
98 int pud_huge(pud_t pud)
99 {
100 return 0;
101 }
102
103 int pgd_huge(pgd_t pgd)
104 {
105 return 0;
106 }
107 #endif
108
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111 /* Only called for hugetlbfs pages, hence can ignore THP */
112 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
113 }
114
115 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
116 unsigned long address, unsigned pdshift, unsigned pshift)
117 {
118 struct kmem_cache *cachep;
119 pte_t *new;
120
121 #ifdef CONFIG_PPC_FSL_BOOK3E
122 int i;
123 int num_hugepd = 1 << (pshift - pdshift);
124 cachep = hugepte_cache;
125 #else
126 cachep = PGT_CACHE(pdshift - pshift);
127 #endif
128
129 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
130
131 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
132 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
133
134 if (! new)
135 return -ENOMEM;
136
137 spin_lock(&mm->page_table_lock);
138 #ifdef CONFIG_PPC_FSL_BOOK3E
139 /*
140 * We have multiple higher-level entries that point to the same
141 * actual pte location. Fill in each as we go and backtrack on error.
142 * We need all of these so the DTLB pgtable walk code can find the
143 * right higher-level entry without knowing if it's a hugepage or not.
144 */
145 for (i = 0; i < num_hugepd; i++, hpdp++) {
146 if (unlikely(!hugepd_none(*hpdp)))
147 break;
148 else
149 /* We use the old format for PPC_FSL_BOOK3E */
150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
151 }
152 /* If we bailed from the for loop early, an error occurred, clean up */
153 if (i < num_hugepd) {
154 for (i = i - 1 ; i >= 0; i--, hpdp--)
155 hpdp->pd = 0;
156 kmem_cache_free(cachep, new);
157 }
158 #else
159 if (!hugepd_none(*hpdp))
160 kmem_cache_free(cachep, new);
161 else {
162 #ifdef CONFIG_PPC_BOOK3S_64
163 hpdp->pd = (unsigned long)new |
164 (shift_to_mmu_psize(pshift) << 2);
165 #else
166 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
167 #endif
168 }
169 #endif
170 spin_unlock(&mm->page_table_lock);
171 return 0;
172 }
173
174 /*
175 * These macros define how to determine which level of the page table holds
176 * the hpdp.
177 */
178 #ifdef CONFIG_PPC_FSL_BOOK3E
179 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
180 #define HUGEPD_PUD_SHIFT PUD_SHIFT
181 #else
182 #define HUGEPD_PGD_SHIFT PUD_SHIFT
183 #define HUGEPD_PUD_SHIFT PMD_SHIFT
184 #endif
185
186 #ifdef CONFIG_PPC_BOOK3S_64
187 /*
188 * At this point we do the placement change only for BOOK3S 64. This would
189 * possibly work on other subarchs.
190 */
191 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
192 {
193 pgd_t *pg;
194 pud_t *pu;
195 pmd_t *pm;
196 hugepd_t *hpdp = NULL;
197 unsigned pshift = __ffs(sz);
198 unsigned pdshift = PGDIR_SHIFT;
199
200 addr &= ~(sz-1);
201 pg = pgd_offset(mm, addr);
202
203 if (pshift == PGDIR_SHIFT)
204 /* 16GB huge page */
205 return (pte_t *) pg;
206 else if (pshift > PUD_SHIFT)
207 /*
208 * We need to use hugepd table
209 */
210 hpdp = (hugepd_t *)pg;
211 else {
212 pdshift = PUD_SHIFT;
213 pu = pud_alloc(mm, pg, addr);
214 if (pshift == PUD_SHIFT)
215 return (pte_t *)pu;
216 else if (pshift > PMD_SHIFT)
217 hpdp = (hugepd_t *)pu;
218 else {
219 pdshift = PMD_SHIFT;
220 pm = pmd_alloc(mm, pu, addr);
221 if (pshift == PMD_SHIFT)
222 /* 16MB hugepage */
223 return (pte_t *)pm;
224 else
225 hpdp = (hugepd_t *)pm;
226 }
227 }
228 if (!hpdp)
229 return NULL;
230
231 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
232
233 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
234 return NULL;
235
236 return hugepte_offset(*hpdp, addr, pdshift);
237 }
238
239 #else
240
241 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
242 {
243 pgd_t *pg;
244 pud_t *pu;
245 pmd_t *pm;
246 hugepd_t *hpdp = NULL;
247 unsigned pshift = __ffs(sz);
248 unsigned pdshift = PGDIR_SHIFT;
249
250 addr &= ~(sz-1);
251
252 pg = pgd_offset(mm, addr);
253
254 if (pshift >= HUGEPD_PGD_SHIFT) {
255 hpdp = (hugepd_t *)pg;
256 } else {
257 pdshift = PUD_SHIFT;
258 pu = pud_alloc(mm, pg, addr);
259 if (pshift >= HUGEPD_PUD_SHIFT) {
260 hpdp = (hugepd_t *)pu;
261 } else {
262 pdshift = PMD_SHIFT;
263 pm = pmd_alloc(mm, pu, addr);
264 hpdp = (hugepd_t *)pm;
265 }
266 }
267
268 if (!hpdp)
269 return NULL;
270
271 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
272
273 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
274 return NULL;
275
276 return hugepte_offset(*hpdp, addr, pdshift);
277 }
278 #endif
279
280 #ifdef CONFIG_PPC_FSL_BOOK3E
281 /* Build list of addresses of gigantic pages. This function is used in early
282 * boot before the buddy allocator is setup.
283 */
284 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
285 {
286 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
287 int i;
288
289 if (addr == 0)
290 return;
291
292 gpage_freearray[idx].nr_gpages = number_of_pages;
293
294 for (i = 0; i < number_of_pages; i++) {
295 gpage_freearray[idx].gpage_list[i] = addr;
296 addr += page_size;
297 }
298 }
299
300 /*
301 * Moves the gigantic page addresses from the temporary list to the
302 * huge_boot_pages list.
303 */
304 int alloc_bootmem_huge_page(struct hstate *hstate)
305 {
306 struct huge_bootmem_page *m;
307 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
308 int nr_gpages = gpage_freearray[idx].nr_gpages;
309
310 if (nr_gpages == 0)
311 return 0;
312
313 #ifdef CONFIG_HIGHMEM
314 /*
315 * If gpages can be in highmem we can't use the trick of storing the
316 * data structure in the page; allocate space for this
317 */
318 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
319 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
320 #else
321 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
322 #endif
323
324 list_add(&m->list, &huge_boot_pages);
325 gpage_freearray[idx].nr_gpages = nr_gpages;
326 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
327 m->hstate = hstate;
328
329 return 1;
330 }
331 /*
332 * Scan the command line hugepagesz= options for gigantic pages; store those in
333 * a list that we use to allocate the memory once all options are parsed.
334 */
335
336 unsigned long gpage_npages[MMU_PAGE_COUNT];
337
338 static int __init do_gpage_early_setup(char *param, char *val,
339 const char *unused)
340 {
341 static phys_addr_t size;
342 unsigned long npages;
343
344 /*
345 * The hugepagesz and hugepages cmdline options are interleaved. We
346 * use the size variable to keep track of whether or not this was done
347 * properly and skip over instances where it is incorrect. Other
348 * command-line parsing code will issue warnings, so we don't need to.
349 *
350 */
351 if ((strcmp(param, "default_hugepagesz") == 0) ||
352 (strcmp(param, "hugepagesz") == 0)) {
353 size = memparse(val, NULL);
354 } else if (strcmp(param, "hugepages") == 0) {
355 if (size != 0) {
356 if (sscanf(val, "%lu", &npages) <= 0)
357 npages = 0;
358 if (npages > MAX_NUMBER_GPAGES) {
359 pr_warn("MMU: %lu pages requested for page "
360 "size %llu KB, limiting to "
361 __stringify(MAX_NUMBER_GPAGES) "\n",
362 npages, size / 1024);
363 npages = MAX_NUMBER_GPAGES;
364 }
365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 size = 0;
367 }
368 }
369 return 0;
370 }
371
372
373 /*
374 * This function allocates physical space for pages that are larger than the
375 * buddy allocator can handle. We want to allocate these in highmem because
376 * the amount of lowmem is limited. This means that this function MUST be
377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378 * allocate to grab highmem.
379 */
380 void __init reserve_hugetlb_gpages(void)
381 {
382 static __initdata char cmdline[COMMAND_LINE_SIZE];
383 phys_addr_t size, base;
384 int i;
385
386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 &do_gpage_early_setup);
389
390 /*
391 * Walk gpage list in reverse, allocating larger page sizes first.
392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 * When we reach the point in the list where pages are no longer
394 * considered gpages, we're done.
395 */
396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 continue;
399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 break;
401
402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 base = memblock_alloc_base(size * gpage_npages[i], size,
404 MEMBLOCK_ALLOC_ANYWHERE);
405 add_gpage(base, size, gpage_npages[i]);
406 }
407 }
408
409 #else /* !PPC_FSL_BOOK3E */
410
411 /* Build list of addresses of gigantic pages. This function is used in early
412 * boot before the buddy allocator is setup.
413 */
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
415 {
416 if (!addr)
417 return;
418 while (number_of_pages > 0) {
419 gpage_freearray[nr_gpages] = addr;
420 nr_gpages++;
421 number_of_pages--;
422 addr += page_size;
423 }
424 }
425
426 /* Moves the gigantic page addresses from the temporary list to the
427 * huge_boot_pages list.
428 */
429 int alloc_bootmem_huge_page(struct hstate *hstate)
430 {
431 struct huge_bootmem_page *m;
432 if (nr_gpages == 0)
433 return 0;
434 m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 gpage_freearray[nr_gpages] = 0;
436 list_add(&m->list, &huge_boot_pages);
437 m->hstate = hstate;
438 return 1;
439 }
440 #endif
441
442 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
443 {
444 return 0;
445 }
446
447 #ifdef CONFIG_PPC_FSL_BOOK3E
448 #define HUGEPD_FREELIST_SIZE \
449 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
450
451 struct hugepd_freelist {
452 struct rcu_head rcu;
453 unsigned int index;
454 void *ptes[0];
455 };
456
457 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
458
459 static void hugepd_free_rcu_callback(struct rcu_head *head)
460 {
461 struct hugepd_freelist *batch =
462 container_of(head, struct hugepd_freelist, rcu);
463 unsigned int i;
464
465 for (i = 0; i < batch->index; i++)
466 kmem_cache_free(hugepte_cache, batch->ptes[i]);
467
468 free_page((unsigned long)batch);
469 }
470
471 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
472 {
473 struct hugepd_freelist **batchp;
474
475 batchp = this_cpu_ptr(&hugepd_freelist_cur);
476
477 if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 cpumask_equal(mm_cpumask(tlb->mm),
479 cpumask_of(smp_processor_id()))) {
480 kmem_cache_free(hugepte_cache, hugepte);
481 put_cpu_var(hugepd_freelist_cur);
482 return;
483 }
484
485 if (*batchp == NULL) {
486 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
487 (*batchp)->index = 0;
488 }
489
490 (*batchp)->ptes[(*batchp)->index++] = hugepte;
491 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
492 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
493 *batchp = NULL;
494 }
495 put_cpu_var(hugepd_freelist_cur);
496 }
497 #endif
498
499 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
500 unsigned long start, unsigned long end,
501 unsigned long floor, unsigned long ceiling)
502 {
503 pte_t *hugepte = hugepd_page(*hpdp);
504 int i;
505
506 unsigned long pdmask = ~((1UL << pdshift) - 1);
507 unsigned int num_hugepd = 1;
508
509 #ifdef CONFIG_PPC_FSL_BOOK3E
510 /* Note: On fsl the hpdp may be the first of several */
511 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
512 #else
513 unsigned int shift = hugepd_shift(*hpdp);
514 #endif
515
516 start &= pdmask;
517 if (start < floor)
518 return;
519 if (ceiling) {
520 ceiling &= pdmask;
521 if (! ceiling)
522 return;
523 }
524 if (end - 1 > ceiling - 1)
525 return;
526
527 for (i = 0; i < num_hugepd; i++, hpdp++)
528 hpdp->pd = 0;
529
530 #ifdef CONFIG_PPC_FSL_BOOK3E
531 hugepd_free(tlb, hugepte);
532 #else
533 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
534 #endif
535 }
536
537 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
538 unsigned long addr, unsigned long end,
539 unsigned long floor, unsigned long ceiling)
540 {
541 pmd_t *pmd;
542 unsigned long next;
543 unsigned long start;
544
545 start = addr;
546 do {
547 pmd = pmd_offset(pud, addr);
548 next = pmd_addr_end(addr, end);
549 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
550 /*
551 * if it is not hugepd pointer, we should already find
552 * it cleared.
553 */
554 WARN_ON(!pmd_none_or_clear_bad(pmd));
555 continue;
556 }
557 #ifdef CONFIG_PPC_FSL_BOOK3E
558 /*
559 * Increment next by the size of the huge mapping since
560 * there may be more than one entry at this level for a
561 * single hugepage, but all of them point to
562 * the same kmem cache that holds the hugepte.
563 */
564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
565 #endif
566 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
567 addr, next, floor, ceiling);
568 } while (addr = next, addr != end);
569
570 start &= PUD_MASK;
571 if (start < floor)
572 return;
573 if (ceiling) {
574 ceiling &= PUD_MASK;
575 if (!ceiling)
576 return;
577 }
578 if (end - 1 > ceiling - 1)
579 return;
580
581 pmd = pmd_offset(pud, start);
582 pud_clear(pud);
583 pmd_free_tlb(tlb, pmd, start);
584 mm_dec_nr_pmds(tlb->mm);
585 }
586
587 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
588 unsigned long addr, unsigned long end,
589 unsigned long floor, unsigned long ceiling)
590 {
591 pud_t *pud;
592 unsigned long next;
593 unsigned long start;
594
595 start = addr;
596 do {
597 pud = pud_offset(pgd, addr);
598 next = pud_addr_end(addr, end);
599 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
600 if (pud_none_or_clear_bad(pud))
601 continue;
602 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
603 ceiling);
604 } else {
605 #ifdef CONFIG_PPC_FSL_BOOK3E
606 /*
607 * Increment next by the size of the huge mapping since
608 * there may be more than one entry at this level for a
609 * single hugepage, but all of them point to
610 * the same kmem cache that holds the hugepte.
611 */
612 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
613 #endif
614 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
615 addr, next, floor, ceiling);
616 }
617 } while (addr = next, addr != end);
618
619 start &= PGDIR_MASK;
620 if (start < floor)
621 return;
622 if (ceiling) {
623 ceiling &= PGDIR_MASK;
624 if (!ceiling)
625 return;
626 }
627 if (end - 1 > ceiling - 1)
628 return;
629
630 pud = pud_offset(pgd, start);
631 pgd_clear(pgd);
632 pud_free_tlb(tlb, pud, start);
633 }
634
635 /*
636 * This function frees user-level page tables of a process.
637 */
638 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
639 unsigned long addr, unsigned long end,
640 unsigned long floor, unsigned long ceiling)
641 {
642 pgd_t *pgd;
643 unsigned long next;
644
645 /*
646 * Because there are a number of different possible pagetable
647 * layouts for hugepage ranges, we limit knowledge of how
648 * things should be laid out to the allocation path
649 * (huge_pte_alloc(), above). Everything else works out the
650 * structure as it goes from information in the hugepd
651 * pointers. That means that we can't here use the
652 * optimization used in the normal page free_pgd_range(), of
653 * checking whether we're actually covering a large enough
654 * range to have to do anything at the top level of the walk
655 * instead of at the bottom.
656 *
657 * To make sense of this, you should probably go read the big
658 * block comment at the top of the normal free_pgd_range(),
659 * too.
660 */
661
662 do {
663 next = pgd_addr_end(addr, end);
664 pgd = pgd_offset(tlb->mm, addr);
665 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
666 if (pgd_none_or_clear_bad(pgd))
667 continue;
668 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
669 } else {
670 #ifdef CONFIG_PPC_FSL_BOOK3E
671 /*
672 * Increment next by the size of the huge mapping since
673 * there may be more than one entry at the pgd level
674 * for a single hugepage, but all of them point to the
675 * same kmem cache that holds the hugepte.
676 */
677 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
678 #endif
679 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
680 addr, next, floor, ceiling);
681 }
682 } while (addr = next, addr != end);
683 }
684
685 /*
686 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
687 * To prevent hugepage split, disable irq.
688 */
689 struct page *
690 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
691 {
692 pte_t *ptep;
693 struct page *page;
694 unsigned shift;
695 unsigned long mask, flags;
696 /*
697 * Transparent hugepages are handled by generic code. We can skip them
698 * here.
699 */
700 local_irq_save(flags);
701 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
702
703 /* Verify it is a huge page else bail. */
704 if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep)) {
705 local_irq_restore(flags);
706 return ERR_PTR(-EINVAL);
707 }
708 mask = (1UL << shift) - 1;
709 page = pte_page(*ptep);
710 if (page)
711 page += (address & mask) / PAGE_SIZE;
712
713 local_irq_restore(flags);
714 return page;
715 }
716
717 struct page *
718 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
719 pmd_t *pmd, int write)
720 {
721 BUG();
722 return NULL;
723 }
724
725 struct page *
726 follow_huge_pud(struct mm_struct *mm, unsigned long address,
727 pud_t *pud, int write)
728 {
729 BUG();
730 return NULL;
731 }
732
733 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
734 unsigned long sz)
735 {
736 unsigned long __boundary = (addr + sz) & ~(sz-1);
737 return (__boundary - 1 < end - 1) ? __boundary : end;
738 }
739
740 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
741 unsigned long end, int write, struct page **pages, int *nr)
742 {
743 pte_t *ptep;
744 unsigned long sz = 1UL << hugepd_shift(hugepd);
745 unsigned long next;
746
747 ptep = hugepte_offset(hugepd, addr, pdshift);
748 do {
749 next = hugepte_addr_end(addr, end, sz);
750 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
751 return 0;
752 } while (ptep++, addr = next, addr != end);
753
754 return 1;
755 }
756
757 #ifdef CONFIG_PPC_MM_SLICES
758 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
759 unsigned long len, unsigned long pgoff,
760 unsigned long flags)
761 {
762 struct hstate *hstate = hstate_file(file);
763 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
764
765 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
766 }
767 #endif
768
769 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
770 {
771 #ifdef CONFIG_PPC_MM_SLICES
772 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
773
774 return 1UL << mmu_psize_to_shift(psize);
775 #else
776 if (!is_vm_hugetlb_page(vma))
777 return PAGE_SIZE;
778
779 return huge_page_size(hstate_vma(vma));
780 #endif
781 }
782
783 static inline bool is_power_of_4(unsigned long x)
784 {
785 if (is_power_of_2(x))
786 return (__ilog2(x) % 2) ? false : true;
787 return false;
788 }
789
790 static int __init add_huge_page_size(unsigned long long size)
791 {
792 int shift = __ffs(size);
793 int mmu_psize;
794
795 /* Check that it is a page size supported by the hardware and
796 * that it fits within pagetable and slice limits. */
797 #ifdef CONFIG_PPC_FSL_BOOK3E
798 if ((size < PAGE_SIZE) || !is_power_of_4(size))
799 return -EINVAL;
800 #else
801 if (!is_power_of_2(size)
802 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
803 return -EINVAL;
804 #endif
805
806 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
807 return -EINVAL;
808
809 #ifdef CONFIG_SPU_FS_64K_LS
810 /* Disable support for 64K huge pages when 64K SPU local store
811 * support is enabled as the current implementation conflicts.
812 */
813 if (shift == PAGE_SHIFT_64K)
814 return -EINVAL;
815 #endif /* CONFIG_SPU_FS_64K_LS */
816
817 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
818
819 /* Return if huge page size has already been setup */
820 if (size_to_hstate(size))
821 return 0;
822
823 hugetlb_add_hstate(shift - PAGE_SHIFT);
824
825 return 0;
826 }
827
828 static int __init hugepage_setup_sz(char *str)
829 {
830 unsigned long long size;
831
832 size = memparse(str, &str);
833
834 if (add_huge_page_size(size) != 0)
835 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
836
837 return 1;
838 }
839 __setup("hugepagesz=", hugepage_setup_sz);
840
841 #ifdef CONFIG_PPC_FSL_BOOK3E
842 struct kmem_cache *hugepte_cache;
843 static int __init hugetlbpage_init(void)
844 {
845 int psize;
846
847 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
848 unsigned shift;
849
850 if (!mmu_psize_defs[psize].shift)
851 continue;
852
853 shift = mmu_psize_to_shift(psize);
854
855 /* Don't treat normal page sizes as huge... */
856 if (shift != PAGE_SHIFT)
857 if (add_huge_page_size(1ULL << shift) < 0)
858 continue;
859 }
860
861 /*
862 * Create a kmem cache for hugeptes. The bottom bits in the pte have
863 * size information encoded in them, so align them to allow this
864 */
865 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
866 HUGEPD_SHIFT_MASK + 1, 0, NULL);
867 if (hugepte_cache == NULL)
868 panic("%s: Unable to create kmem cache for hugeptes\n",
869 __func__);
870
871 /* Default hpage size = 4M */
872 if (mmu_psize_defs[MMU_PAGE_4M].shift)
873 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
874 else
875 panic("%s: Unable to set default huge page size\n", __func__);
876
877
878 return 0;
879 }
880 #else
881 static int __init hugetlbpage_init(void)
882 {
883 int psize;
884
885 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
886 return -ENODEV;
887
888 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
889 unsigned shift;
890 unsigned pdshift;
891
892 if (!mmu_psize_defs[psize].shift)
893 continue;
894
895 shift = mmu_psize_to_shift(psize);
896
897 if (add_huge_page_size(1ULL << shift) < 0)
898 continue;
899
900 if (shift < PMD_SHIFT)
901 pdshift = PMD_SHIFT;
902 else if (shift < PUD_SHIFT)
903 pdshift = PUD_SHIFT;
904 else
905 pdshift = PGDIR_SHIFT;
906 /*
907 * if we have pdshift and shift value same, we don't
908 * use pgt cache for hugepd.
909 */
910 if (pdshift != shift) {
911 pgtable_cache_add(pdshift - shift, NULL);
912 if (!PGT_CACHE(pdshift - shift))
913 panic("hugetlbpage_init(): could not create "
914 "pgtable cache for %d bit pagesize\n", shift);
915 }
916 }
917
918 /* Set default large page size. Currently, we pick 16M or 1M
919 * depending on what is available
920 */
921 if (mmu_psize_defs[MMU_PAGE_16M].shift)
922 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
923 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
924 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
925
926 return 0;
927 }
928 #endif
929 module_init(hugetlbpage_init);
930
931 void flush_dcache_icache_hugepage(struct page *page)
932 {
933 int i;
934 void *start;
935
936 BUG_ON(!PageCompound(page));
937
938 for (i = 0; i < (1UL << compound_order(page)); i++) {
939 if (!PageHighMem(page)) {
940 __flush_dcache_icache(page_address(page+i));
941 } else {
942 start = kmap_atomic(page+i);
943 __flush_dcache_icache(start);
944 kunmap_atomic(start);
945 }
946 }
947 }
948
949 #endif /* CONFIG_HUGETLB_PAGE */
950
951 /*
952 * We have 4 cases for pgds and pmds:
953 * (1) invalid (all zeroes)
954 * (2) pointer to next table, as normal; bottom 6 bits == 0
955 * (3) leaf pte for huge page, bottom two bits != 00
956 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
957 *
958 * So long as we atomically load page table pointers we are safe against teardown,
959 * we can follow the address down to the the page and take a ref on it.
960 * This function need to be called with interrupts disabled. We use this variant
961 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
962 */
963
964 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
965 unsigned *shift)
966 {
967 pgd_t pgd, *pgdp;
968 pud_t pud, *pudp;
969 pmd_t pmd, *pmdp;
970 pte_t *ret_pte;
971 hugepd_t *hpdp = NULL;
972 unsigned pdshift = PGDIR_SHIFT;
973
974 if (shift)
975 *shift = 0;
976
977 pgdp = pgdir + pgd_index(ea);
978 pgd = READ_ONCE(*pgdp);
979 /*
980 * Always operate on the local stack value. This make sure the
981 * value don't get updated by a parallel THP split/collapse,
982 * page fault or a page unmap. The return pte_t * is still not
983 * stable. So should be checked there for above conditions.
984 */
985 if (pgd_none(pgd))
986 return NULL;
987 else if (pgd_huge(pgd)) {
988 ret_pte = (pte_t *) pgdp;
989 goto out;
990 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
991 hpdp = (hugepd_t *)&pgd;
992 else {
993 /*
994 * Even if we end up with an unmap, the pgtable will not
995 * be freed, because we do an rcu free and here we are
996 * irq disabled
997 */
998 pdshift = PUD_SHIFT;
999 pudp = pud_offset(&pgd, ea);
1000 pud = READ_ONCE(*pudp);
1001
1002 if (pud_none(pud))
1003 return NULL;
1004 else if (pud_huge(pud)) {
1005 ret_pte = (pte_t *) pudp;
1006 goto out;
1007 } else if (is_hugepd(__hugepd(pud_val(pud))))
1008 hpdp = (hugepd_t *)&pud;
1009 else {
1010 pdshift = PMD_SHIFT;
1011 pmdp = pmd_offset(&pud, ea);
1012 pmd = READ_ONCE(*pmdp);
1013 /*
1014 * A hugepage collapse is captured by pmd_none, because
1015 * it mark the pmd none and do a hpte invalidate.
1016 *
1017 * We don't worry about pmd_trans_splitting here, The
1018 * caller if it needs to handle the splitting case
1019 * should check for that.
1020 */
1021 if (pmd_none(pmd))
1022 return NULL;
1023
1024 if (pmd_huge(pmd) || pmd_large(pmd)) {
1025 ret_pte = (pte_t *) pmdp;
1026 goto out;
1027 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
1028 hpdp = (hugepd_t *)&pmd;
1029 else
1030 return pte_offset_kernel(&pmd, ea);
1031 }
1032 }
1033 if (!hpdp)
1034 return NULL;
1035
1036 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1037 pdshift = hugepd_shift(*hpdp);
1038 out:
1039 if (shift)
1040 *shift = pdshift;
1041 return ret_pte;
1042 }
1043 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1044
1045 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1046 unsigned long end, int write, struct page **pages, int *nr)
1047 {
1048 unsigned long mask;
1049 unsigned long pte_end;
1050 struct page *head, *page, *tail;
1051 pte_t pte;
1052 int refs;
1053
1054 pte_end = (addr + sz) & ~(sz-1);
1055 if (pte_end < end)
1056 end = pte_end;
1057
1058 pte = READ_ONCE(*ptep);
1059 mask = _PAGE_PRESENT | _PAGE_USER;
1060 if (write)
1061 mask |= _PAGE_RW;
1062
1063 if ((pte_val(pte) & mask) != mask)
1064 return 0;
1065
1066 /* hugepages are never "special" */
1067 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1068
1069 refs = 0;
1070 head = pte_page(pte);
1071
1072 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1073 tail = page;
1074 do {
1075 VM_BUG_ON(compound_head(page) != head);
1076 pages[*nr] = page;
1077 (*nr)++;
1078 page++;
1079 refs++;
1080 } while (addr += PAGE_SIZE, addr != end);
1081
1082 if (!page_cache_add_speculative(head, refs)) {
1083 *nr -= refs;
1084 return 0;
1085 }
1086
1087 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1088 /* Could be optimized better */
1089 *nr -= refs;
1090 while (refs--)
1091 put_page(head);
1092 return 0;
1093 }
1094
1095 /*
1096 * Any tail page need their mapcount reference taken before we
1097 * return.
1098 */
1099 while (refs--) {
1100 if (PageTail(tail))
1101 get_huge_page_tail(tail);
1102 tail++;
1103 }
1104
1105 return 1;
1106 }
This page took 0.096529 seconds and 6 git commands to generate.